首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Plant genome sequencing has resulted in the identification of a large number of uncharacterized genes. To investigate these unknown gene functions, several transient transformation systems have been developed as quick and convenient alternatives to the lengthy transgenic assay. These transient assays include biolistic bombardment, protoplast transfection and Agrobacterium-mediated transient transformation, each having advantages and disadvantages depending on the research purposes.  相似文献   

2.

Background  

Gene silencing vectors based on Barley stripe mosaic virus (BSMV) are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species) have created a need for tools to study gene function in these species.  相似文献   

3.

Background  

We describe novel plasmid vectors for transient gene expression using Agrobacterium, infiltrated into Nicotiana benthamiana leaves. We have generated a series of pGreenII cloning vectors that are ideally suited to transient gene expression, by removing elements of conventional binary vectors necessary for stable transformation such as transformation selection genes.  相似文献   

4.

Background  

Mg chelatase is a multi-subunit enzyme that catalyses the first committed step of chlorophyll biosynthesis. Studies in higher plants and algae indicate that the Mg chelatase reaction product, Mg-protoporphyrin IX plays an essential role in nuclear-plastid interactions. A number of Mg chelatase mutants have been isolated from higher plants, including semi-dominant alleles of ChlI, the gene encoding the I subunit of the enzyme. To investigate the function of higher plant CHLI, bacterial orthologues have been engineered to carry analogous amino acid substitutions to the higher plant mutations and the phenotypes examined through in vitro characterization of heterologously produced proteins. Here, we demonstrate the utility of a transient expression system in Nicotiana benthamiana for rapidly assaying mutant variants of the maize CHLI protein in vivo.  相似文献   

5.

Background  

The β-glucuronidase (GUS) gene reporter system is one of the most effective and employed techniques in the study of gene regulation in plant molecular biology. Improving protocols for GUS assays have rendered the original method described by Jefferson amenable to various requirements and conditions, but the serious limitation caused by inhibitors of the enzyme activity in plant tissues has thus far been underestimated.  相似文献   

6.
7.

Background  

Although the complete genome sequence and annotation of Arabidopsis were released at the end of year 2000, it is still a great challenge to understand the function of each gene in the Arabidopsis genome. One way to understand the function of genes on a genome-wide scale is expression profiling by microarrays. However, the expression level of many genes in Arabidopsis genome cannot be detected by microarray experiments. In addition, there are many more novel genes that have been discovered by experiments or predicted by new gene prediction programs. Another way to understand the function of individual genes is to investigate their in vivo expression patterns by reporter constructs in transgenic plants which can provide basic information on the patterns of gene expression.  相似文献   

8.

Background  

A common limitation in guard cell signaling research is that it is difficult to obtain consistent high expression of transgenes of interest in Arabidopsis guard cells using known guard cell promoters or the constitutive 35S cauliflower mosaic virus promoter. An additional drawback of the 35S promoter is that ectopically expressing a gene throughout the organism could cause pleiotropic effects. To improve available methods for targeted gene expression in guard cells, we isolated strong guard cell promoter candidates based on new guard cell-specific microarray analyses of 23,000 genes that are made available together with this report.  相似文献   

9.
10.
11.
12.
13.

Background

The genus Populus is accepted as a model system for molecular tree biology. To investigate gene functions in Populus spp. trees, generating stable transgenic lines is the common technique for functional genetic studies. However, a limited number of genes have been targeted due to the lengthy transgenic process. Transient transformation assays complementing stable transformation have significant advantages for rapid in vivo assessment of gene function. The aim of this study is to develop a simple and efficient transient transformation for hybrid aspen and to provide its potential applications for functional genomic approaches.

Results

We developed an in planta transient transformation assay for young hybrid aspen cuttings using Agrobacterium-mediated vacuum infiltration. The transformation conditions such as the infiltration medium, the presence of a surfactant, the phase of bacterial growth and bacterial density were optimized to achieve a higher transformation efficiency in young aspen leaves. The Agrobacterium infiltration assay successfully transformed various cell types in leaf tissues. Intracellular localization of four aspen genes was confirmed in homologous Populus spp. using fusion constructs with the green fluorescent protein. Protein-protein interaction was detected in transiently co-transformed cells with bimolecular fluorescence complementation technique. In vivo promoter activity was monitored over a few days in aspen cuttings that were transformed with luciferase reporter gene driven by a circadian clock promoter.

Conclusions

The Agrobacterium infiltration assay developed here is a simple and enhanced throughput method that requires minimum handling and short transgenic process. This method will facilitate functional analyses of Populus genes in a homologous plant system.  相似文献   

14.

Background  

Genome analysis of soybean (Glycine max L.) has been complicated by its paleo-autopolyploid nature and conserved homeologous regions. Landmarks of expressed sequence tags (ESTs) located within a minimum tile path (MTP) of contiguous (contig) bacterial artificial chromosome (BAC) clones or radiation hybrid set can identify stress and defense related gene rich regions in the genome. A physical map of about 2,800 contigs and MTPs of 8,064 BAC clones encompass the soybean genome. That genome is being sequenced by whole genome shotgun methods so that reliable estimates of gene family size and gene locations will provide a useful tool for finishing. The aims here were to develop methods to anchor plant defense- and stress-related gene paralogues on the MTP derived from the soybean physical map, to identify gene rich regions and to correlate those with QTL for disease resistance.  相似文献   

15.
16.

Background  

Transient assays using protoplasts are ideal for processing large quantities of genetic data coming out of hi-throughput assays. Previously, protoplasts have routinely been prepared from dicot tissue or cell suspension cultures and yet a good system for rice protoplast isolation and manipulation is lacking.  相似文献   

17.

Background  

Protoplasts isolated from leaves are useful materials in plant research. One application, the transient expression of recombinant genes using Arabidopsis mesophyll protoplasts (TEAMP), is currently commonly used for studies of subcellular protein localization, promoter activity, and in vivo protein-protein interactions. This method requires cutting leaves into very thin slivers to collect mesophyll cell protoplasts, a procedure that often causes cell damage, may yield only a few good protoplasts, and is time consuming. In addition, this protoplast isolation method normally requires a large number of leaves derived from plants grown specifically under low-light conditions, which may be a concern when material availability is limited such as with mutant plants, or in large scale experiments.  相似文献   

18.

Background  

The lower eudicot genus Aquilegia, commonly known as columbine, is currently the subject of extensive genetic and genomic research aimed at developing this taxon as a new model for the study of ecology and evolution. The ability to perform functional genetic analyses is a critical component of this development process and ultimately has the potential to provide insight into the genetic basis for the evolution of a wide array of traits that differentiate flowering plants. Aquilegia is of particular interest due to both its recent evolutionary history, which involves a rapid adaptive radiation, and its intermediate phylogenetic position between core eudicot (e.g., Arabidopsis) and grass (e.g., Oryza) model species.  相似文献   

19.

Background  

The diploid woodland strawberry (Fragaria vesca) is an attractive system for functional genomics studies. Its small stature, fast regeneration time, efficient transformability and small genome size, together with substantial EST and genomic sequence resources make it an ideal reference plant for Fragaria and other herbaceous perennials. Most importantly, this species shares gene sequence similarity and genomic microcolinearity with other members of the Rosaceae family, including large-statured tree crops (such as apple, peach and cherry), and brambles and roses as well as with the cultivated octoploid strawberry, F. ×ananassa. F. vesca may be used to quickly address questions of gene function relevant to these valuable crop species. Although some F. vesca lines have been shown to be substantially homozygous, in our hands plants in purportedly homozygous populations exhibited a range of morphological and physiological variation, confounding phenotypic analyses. We also found the genotype of a named variety, thought to be well-characterized and even sold commercially, to be in question. An easy to grow, standardized, inbred diploid Fragaria line with documented genotype that is available to all members of the research community will facilitate comparison of results among laboratories and provide the research community with a necessary tool for functionally testing the large amount of sequence data that will soon be available for peach, apple, and strawberry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号