首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of sward surface height (SSH) and daily herbage allowance (HA) on the defoliation pattern and grazing mechanics of early lactation dairy cows grazing on irrigated perennial ryegrass–white clover pasture were studied. The hypothesis tested was that SSH and HA affect intake and diet selection through their effects on the pattern of defoliation which is influenced by the resistance to prehension bites. Factorial combinations of two initial SSH (14 and 28 cm) and two daily HA (35 and 70 kg DM cow?1 d?1) were examined in a replicated experiment. The peak longitudinal tensile force required to break the sward portion encompassed in a 100 cm2 area [bite fracture force (BFF100)] was measured as an index of the resistance to prehension. The volume of herbage defoliated and herbage intake increased with SSH (P < 0·05) and HA (P < 0·01). Corresponding to an increase in HA from 35 to 70 kg DM cow?1 d?1, there was a proportional increase in the total defoliation area (TDA) and intake by 0·24 and 0·55 in the short sward compared with 0·16 and 0·32 in the tall sward respectively. The results of this experiment suggest that a consistent spatial pattern of reduction of the canopy exists during defoliation by cows and that the volume of sward canopy defoliated is the major variable affecting herbage intake. The BFF increased down the sward profile at a rate that was higher (P < 0·05) for the taller sward than for the shorter sward. It is proposed that a relatively lower resistance to prehension in the short sward compared with the tall sward explains the greater proportionate increase in TDA and intake corresponding to an increase in HA. The rate at which BFF100 increases down the sward profile is suggested as a sward physical variable that can influence the defoliation process. The estimated time and energy costs of prehension bites are discussed in the context that larger bites are handled more efficiently than smaller bites.  相似文献   

2.
The objective of this study was to investigate the relationship between level of sward height reduction (SHR) and short-term intake of herbage by lactating dairy cows offered swards differing in initial bulk density (BD). Three experiments were carried out in which cows were presented with swards representing different levels of SHR (nominally described as ungrazed, low, moderate and high). Experiments 1 and 2 differed with respect to initial sward BD [ungrazed sward 1·7 vs. 2·5 kg dry matter (DM) m?3 respectively]. Experiment 3 investigated the interaction between BD and SHR. In each experiment, sixteen Holstein/Friesian cows (fitted with excreta collection bags) grazed for a 1-h period in 200-m2 plots that had been grazed on the previous day to predetermined sward surface heights (SSH) (= levels of SHR). Herbage intake rates were assessed from changes in live weight, with a correction for insensible weight loss (IWL). Biting rates were recorded from visual observation. High levels of SHR were associated with a significant reduction in SSH, herbage mass and leaf fraction, and a significant increase in sward BD, stem and dead fraction, and DM concentration. Herbage intake, expressed either as DM intake per bite or DM intake per hour, declined as level of SHR increased from low to high. The level of SHR generally had no effect on biting rate. Intake rates varied from 1·9 to 4·4 kg DM h?1, whereas DM intake bite?1 ranged from 0·5 to 1·3 g. Pooled regression analysis identified SSH (P < 0·001; r2 = 0·94) as the principal determinant of DM intake bite?1. The regression equation was not significantly improved by the addition of terms for leaf fraction, BD, or herbage mass. In Experiment 3, a significant interaction between level of SHR and sward BD was observed. It is concluded that the principal factor controlling intake (g DM bite?1 or kg DM h?1), as swards are progressively grazed down, is SSH, but at a high level of SHR, sward BD also influences intake bite?1.  相似文献   

3.
The objectives of this experiment were to study the effects of different grazing managements in spring on herbage intake and performance of summer-calving dairy cows and to examine the effects of regrowth in early June on herbage intake and cow performance. Four spring-grazing treatments were applied to predominantly perennial ryegrass swards: Control (C), sward grazed by cows to 6–8 cm sward surface height (SSH); CG16, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to a target SSH of 16cm in early June; CG8, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to 8cm in early June; and SG8, sward grazed by sheep to 2–3 cm SSH in May and allowed to regrow to 8 cm in early June, All swards were continuously stocked by summer-calving (May and July) primiparous and multiparous cows from 16 June to 7 September, to a target SSH of 8–10cm. Spring treatments bad marked effects on herbage intakes and milk production. Estimated in July by n alkane analysis, the mean herbage intake ± s.e.d. of cows on each treatment were 1·8, 1·4, 1·4 and 3·0 ± 0·31 kg dry matter (DM) 100 kg live weight (LW)?1 d?1 (P < 0·01) for treatments C, CG16, CG8 and SG8 respectively. Measured in August, intakes were 1·8, 20, 2·1 and 2·4 ± O·33kg DM 100kg LW?1 d?1 respectively. Severe spring grazing led to increased milk yield and reduced milk fat content from summer-calving cows fed 5·2 kg d?1 of a proprietary concentrate. Average milk yields for the eleven experimental cows on each treatment were 24·3, 23·4, 26·2 and 29·0 ± 1·20 kgd?1 (P < 0·01) for C, CG16, CG8 and SG8, and average milk fat contents were 45·4. 42·4, 43·9 and 40·9 ± 1·02gkg?1 (P<0·05) respectively. The results suggest that severe grazing of swards in early season could improve herbage intake and milk yield of summer-calving cows in mid- and late season. The most favourable spring treatment in this respect was severe grazing by sheep. However, this advantage could be negated in midseason by lax grazing at that time.  相似文献   

4.
The effects of continuous stocking by sheep at sward surface heights (SSH) of 3, 5, 7 and 9 cm in grass/clover (GC) and nitrogen-fertilized grass (GN) swards were examined in relation to herbage mass and quality, clover content, tiller density and rates of herbage production and senescence in two periods in each of three grazing seasons (1987-89). The GN swards received a total of 300 kg N ha?1 each year in six equal dressings from March; GC swards received a single dressing of 50 kg N ha?1 in March each year. Herbage mass measured from ground level increased linearly with SSH with overall mean herbage masses of 0·89, 1·38, 1·78 and 2·12 t OM ha?1 (s.e.m.0·024, P < 0·001) at SSH of 3, 5, 7 and 9 cm respectively. GN and GC swards had mean herbage masses of 1·58 and 1·51 t OM ha?1 (s.e.m. 0·051, NS) respectively. Mean N content of herbage on GN swards was greater than that on GC swards and declined with increasing SSH. Crude, fibre (CF) content of herbage was similar for both sward types and increased with increasing SSH. Clover content of GC swards remained low throughout the experiment, ranging from 0·002 to 0·074 of herbage mass. However, from tissue turnover rates it was estimated that its contribution to herbage production was in the range of 0·049–0·219 of net herbage growth. Total growth increased with increasing SSH in both sward types, with maximum growth rates in GN swards of 143 and 130 kg DM ha?1 d?1 and in GC swards of 88·2 and 85·4 kg DM ha?1 d?1 in Periods 1 (up to early July) and 2 (after July) respectively. Senescence rates ranged between 13·3 and 50·1 kg DM ha?1 d?1 and tended to be higher in Period 2 than in Period 1. Net production increased with increasing SSH in Period 1, while in Period 2 net production declined at SSH above 6·5 cm. The increased net herbage production in taller swards was not associated with greater utilized metabolizable energy production at sward heights above 5 cm.  相似文献   

5.
Four intermediate‐heading perennial ryegrass (Lolium perenne L.) varieties, which in previous studies had been associated with high‐ or low‐intake characteristics when swards containing them had been continuously stocked with sheep, were sown as monocultures. They were rotationally grazed, using 1‐d paddocks, with core groups of four yearling Simmental × Holstein beef heifers in 2002 and 2003 and ingestive and ruminative behaviour, and sward factors, were measured. There were two diploid (Belramo and Glen) and one tetraploid (Rosalin) perennial ryegrass varieties and one tetraploid hybrid (Lolium × boucheanum Kunth) (AberExcel) variety. Intake rate (IR) was significantly higher in August 2003 for heifers grazing Glen than those grazing Belramo [27·5 vs. 20·6 g dry matter (DM) min?1; P = 0·019], but there were no significant differences between varieties in two other measurement periods. This is in contrast to previous results with sheep when IR were significantly higher for Glen than Belramo and for AberExcel than Rosalin. Total jaw movement rates during grazing were significantly higher for heifers on the tetraploid swards than those on the diploid swards (87·7 vs. 83·6 jaw movements min?1; P = 0·023) in September 2002. Ruminating time was significantly lower for heifers on the tetraploid swards than those on the diploid swards (453 vs. 519 min 24 h?1; P = 0·012) in July 2002. Digestibility of grass snips was significantly higher on the tetraploid than the diploid swards [697 vs. 680 g digestible organic matter (DOM) kg?1 DM; P = 0·042] in September 2003 and, within diploids, was significantly higher for Glen than Belramo (696 vs. 663 g DOM kg?1 DM; P = 0·014). There were significant differences in sheath tube and leaf lengths and in the population density of tillers between and within ploidies, which might have been expected to have influenced intake characteristics, but this was not generally found under rotational grazing with cattle. In order to separate the effects of defoliation interval from those of grazing style of the different ruminant species, it is suggested that grass variety evaluations using continuously stocked cattle swards are required.  相似文献   

6.
The effect of feeding indoors fresh perennial ryegrass vs. grazing on ingestive behaviour, release of cell contents and comminution of particles during ingestion, as well as on gas production of ingested boli fermented in vitro, was studied. Indoor feeding and grazing were compared using four dairy cows according to a triple reversal design with six periods. Chemical and morphological composition of the ingested herbage was similar for both indoor feeding and grazing treatments. The intake rate was markedly higher indoors compared with grazing [52·1 vs. 22·9 g dry matter (DM) min?1] with heavier boli and less saliva added per gram of DM intake. The proportions of intracellular nitrogen and chlorophyll released during mastication after ingestion of herbage fed indoors were lower, and the median size of the particles in the boli was larger (5·97 vs. 4·44 mm) compared with grazing. As a result, the rate of gas production in vitro was also lower for herbage fed indoors compared with grazing (0·423 vs. 0·469 mL min?1 g?1 incubated DM). Indoor feeding or grazing may have limited consequences in vivo on the kinetics of availability of nutrients for micro‐organisms in the rumen, because the consequences of the more extensive physical damage suffered by herbage ingested at grazing could be compensated by a lower intake rate.  相似文献   

7.
The relative importance of breed versus rearing experience on the grazing behaviour and diet selection of beef cattle when grazing unimproved grassland was examined over 4 years. Suckler‐reared calves of a traditional (T) breed (North Devon) or a commercial (C) breed (Simmental × Hereford Friesian) were cross‐fostered and then reared either extensively (E) on unimproved grassland or intensively (I) on agriculturally improved fertilized grassland. As yearlings, the four groups of calves (Traditional breed + Extensive rearing (TE); Traditional breed + Intensive rearing (TI); Commercial breed + Extensive rearing (CE) and Commercial breed + Intensive rearing (CI)) grazed unimproved grassland dominated by Molinia caerulea, for 2 months, and foraging behaviour was studied in a test phase. There was a breed effect on total (bites + chews; TJM) jaw movement rate (T, 78·2 vs. C, 76·5 min?1; F prob. = 0·041) during grazing and on the proportion of bites taken from plant communities with sward height ≥6 cm (T, 0·83 vs. C, 0·76; F prob. = 0·018). Rearing experience affected TJM rate in the first year in July (E, 80·0 vs. I, 76·8 min?1; F prob. = 0·015) and August (E, 78·5 vs. I, 75·5 min?1; F prob. = 0·046). The intensively reared animals grew less well on average during the test phase than those that had previous experience of the unimproved grassland as calves with their mothers (E, 0·16 vs. I, 0·09 kg day?1; F prob. = 0·033). Our findings indicate that the rearing experience of livestock appears to be as important as the breed when designing grazing managements for nature conservation areas.  相似文献   

8.
An experiment was conducted to test the hypothesis that for cows with high levels of milk yield, rotational grazing produces higher milk yields than continuous grazing. The comparison of grazing systems was made at two levels of milk yield (initially 20·3 and 32·5 kg d?1), and interactions with sward height and concentrate level were also examined. The study used 48 multiparous Holstein Friesian cows over a period of 62 d. Mean milk yield, its persistency and composition, live weight, body condition score and liveweight gain were not significantly affected by grazing system at either level of milk yield. There were no significant interactions between grazing system and sward height or concentrate level for any milk production measurement. Mean estimated herbage and total dry matter (DM) intake (P < 0·01), grazing time (P < 0·05) and ruminating time (P < 0·01) were significantly greater on the continuous grazing system. The cows in the higher milk yield group and those grazed at the higher sward height had a significantly (P < 0·05) higher estimated daily herbage DM intake and rate of herbage intake on the continuous grazing system than those on the rotational grazing system. There was no evidence to support the hypothesis that rotational grazing systems support higher levels of milk production than continuous grazing for cows of high milk yield. The shorter grazing time on the rotational grazing system indicated that cows may anticipate the timing of the daily movement of the electric fence, and this reduces their time spent grazing residual herbage.  相似文献   

9.
Abstract Four sward height treatments were imposed by continuous variable stocking using at least ten Suffolk × Greyface lambs per plot from late July to late August: constant 3·5 cm. constant 6·0 cm. 3·5cm increasing to 6·0 cm and 6·0 cm decreasing to 3·5 cm. The treatments were established on two swards given fertilizer N applications over the season of 97 and 160 kg N ha?1 respectively. Animal density was greater on the high fertilizer treatment, at the lower sward height and especially on the decreasing height treatments. Liveweight change of lambs was higher (P <0·001) on the 6-cm than on the 3·5-cm treatments (+159 vs-13g d?1 and was also higher (P <0·001) on the increasing than on the decreasing sward height treatments (+92 vs-26 g d?1). Herbage organic matter intake (OMI), measured on two occasions in the experiment, was greater (P <0·001) on the 6·0 cm than on the 3·5-cm sward heights whereas values for the increasing sward height treatments were much greater than those for the decreasing sward height treatments. There was little difference in the organic matter digestibility of the diet between treatments. Diets were composed largely of lamina, although there was more pseudostem and dead herbage in the diets of Iambs grazing the decreasing than the increasing sward height treatments at the end of the experiment. Bite mass was closely related to OMI but the treatment and period differences were relatively greater than for OMI. Bite mass was more closely related to the depth of the lamina layer (sward height-pseudostem height) than it was to sward height. There was evidence that pseudostem acted as a barrier to defoliation on these short swards and also that the proportion of youngest leaf in the diet was positively related to sward height and to increases in sward height. Sward height and especially the direction of change in sward height, together with associated stock density, were potent influences on lamb growth rate. This was a consequence of differences in herbage intake, which was strongly influenced by bite mass.  相似文献   

10.
Development of simulation models of grazing beef cattle requires measurement of the components of the ingestive process and the establishment of relationships between these components and the structure of the sward. The ingestive behaviour of eight half-sib Angus steers (live weight (LW), x?= 270 kg) grazing alfalfa (Medicago sativa L.) was studied at three stages of maturity (26, 40 and 47 days of regrowth) and at four allowances of herbage dry matter (DM) (1·0, 1·5, 20 and 2·5 kg per 100 kg LW) at each of two daily grazing sessions. A tethering system of grazing was used in which the experimental unit was a tethered steer and its plot for one grazing session. Grazing sessions commenced at 08.00 and 14.00 h EDT. Intake (DM) increased linearly from 1·98 kg per steer session at a DM allowance of 1 kg (100 kg LW)?1 to 2 89 kg steer session at an allowance of 2·5 kg (100 kg LW) ?1 as utilization of herbage declined linearly from 0·69 to 0·43. Herbage DM in take per bite increased from 1 0 g at 1 kg (100 kg LW) ?1 allowance to 1·5 g at 2·5 kg (100 kg LW) ?1 allowance. Rates of biting were not affected by herbage allowance and averaged 21 bites min?1. Dry matter intake increased from 1·77 to 3 41 kg per steer session as the alfalfa matured and herbage mass changed from 1500 to 4656 kg ha?1. Mean rates of biting were 24 bites min?1 for steers grazing the youngest alfalfa and 16 bites min?1 for steers on the oldest forage. Herbage DM intakes per bite were 1·1 g and 1·7 g at the same stages. Rates of DM intake approached 2 kg h?1 and maximum daily DM intake was estimated at 2 75 kg (100 kg LW) ?1. Intake of alfalfa was limited by allowance and mass of herbage above a canopy horizon of 20 cm and, to a lesser extent, by the length of fast.  相似文献   

11.
The effects of stem density of tropical swards and age of cattle on their foraging behaviour were evaluated using artificial microswards, consisting of leaves of 20 cm in height and high tensile‐resisting stems of 25 cm in height of Panicum maximum. The treatments consisted of a factorial combination of four stem densities of swards (0, 100, 200 and 400 stems m?2) and two ages of cattle (1‐ and 3‐year‐old steers). There was a significant interaction between stem density of sward and age of cattle for bite area (BA), bite mass (BM) and instantaneous intake rate (IIR). Stem density had a significant negative effect on these variables describing ingestive behaviour which was particularly strong for older steers. In leaf‐only swards, mature cattle achieved a much greater BA (106·5 vs. 57·9 cm2), BM (0·88 vs. 0·47 g DM) and IIR (46·9 vs. 17·2 g DM min?1) than did young cattle. However, these variables were very similar across ages of cattle at the highest stem density of sward. These results show the importance of the high tensile‐resisting stems as deterrents of the grazing process in tropical pastures, particularly in older cattle.  相似文献   

12.
The combined benefits of a high crude protein concentration, and possible protein protection and growth‐promoting properties, make forage legumes potentially attractive as a natural means of increasing liveweight gain and time to slaughter of lambs in lamb finishing systems. An experiment was conducted to compare the production performance and meat quality of grazing lambs finished on red clover (Trifolium pratense), lucerne (Medicago sativa) or perennial ryegrass (Lolium perenne) swards. Replicate (n = 2) swards of red clover, lucerne and perennial ryegrass were rotationally grazed by ten ram lambs and ten ewe lambs from weaning until selection for slaughter at UK fat class 3L. Lambs grazing the red clover sward had a significantly higher liveweight gain and required significantly fewer days to slaughter than lambs grazing the lucerne sward (305 g d?1 vs. 243 g d?1; 38 d vs. 50 d), which in turn had a higher liveweight gain and required fewer days to slaughter than lambs grazing the perennial ryegrass sward (184 g d?1; 66 d). Lambs grazing the red clover and lucerne swards had significantly higher herbage intakes than those grazing the perennial ryegrass sward (2·06, 1·72 and 1·16 kg DM d?1 respectively), but in vivo digestibility of herbage was similar. Lambs grazing the red clover and lucerne swards also had significantly higher serum urea concentrations than those grazing ryegrass (12·5, 11·1 and 6·2 mmol L?1 respectively). Killing‐out percentage was significantly higher for lambs grazing the red clover sward than for lambs grazing the perennial ryegrass sward (48% vs. 46%). There were no significant effects of finishing system on meat flavour, but meat from lambs finished on the lucerne sward was oxidatively less stable than that from lambs finished on the perennial ryegrass sward. Grazing the forage legume swards significantly increased the proportion of linoleic and linolenic acid in muscle tissue, and therefore the proportion of unsaturated to saturated fatty acids (0·19, 0·16 and 0·12 for the red clover, lucerne and perennial ryegrass swards respectively). However, the n?6/n?3 ratio was significantly lower for the muscle of lambs grazing the perennial ryegrass sward compared with those grazing the forage legume swards (1·13, 1·08 and 0·98 for the red clover, lucerne and perennial ryegrass swards respectively). The results indicate that by grazing lambs on forage legume swards it is possible to increase individual lamb performance without compromising meat quality.  相似文献   

13.
Low rates of herbage dry matter (DM) intake impose limits on total daily DM intake in grazing dairy cows. The objective of this study was to increase total daily DM intake and milk production by restricting daily time available for grazing (TAG) and replacing it with time available for eating a maize silage/soyabean meal (TAMS) diet indoors. The treatments (TAG + TAMS) were 20 + 0, 19 + 1, 10 + 10 and 5 + 15 h. Measurements were made of milk production, intake and feeding behaviour. The interactions of TAG + TAMS treatments with sward height (SH) and concentrate level (CL) were also examined. Two experiments, each lasting 42 days, were carried out in spring ( Experiment 1 ) and autumn ( Experiment 2 ) using forty‐eight and twenty‐four Holstein‐Friesian cows respectively. Treatments were arranged in a factorial design with TAG + TAMS treatments, SH ( Experiment 1 only) and CL as the independent variables and a TAG + TAMS of 20 h. Reducing TAG and increasing TAMS significantly reduced estimated herbage DM intake and significantly increased maize silage/soyabean meal intake in both experiments, but there were no significant main effects of TAG + TAMS treatments on milk yield (mean, 27·4 and 25·5 kg d?1 for Experiments 1 and 2 respectively), and yield of milk constituents. Increasing SH ( Experiment 1 ) and CL ( Experiments 1 and 2 ) significantly increased milk yield. In Experiment 1 , there was a significant interaction between TAG + TAMS treatments and SH with the taller sward height of 8–10 cm and the 20 + 0 treatment having the highest milk yield (29·7 kg d?1) and the 5 + 15 treatment the lowest (27·2 kg d?1), whereas at the lower sward height of 4–6 cm, milk yield was lowest on the 20 + 0 treatment (25·5 kg d?1) with the other three treatments being higher (mean, 26·9 kg d?1). Replacing TAG with TAMS significantly increased liveweight gain in Experiment 1 but not in Experiment 2 . Estimated rates of intake of herbage were lower in the autumn experiment ( Experiment 2 , 9·6 g DM min ?1) than in the spring experiment ( Experiment 1 , 29·4 g DM min ?1) but rates of intake of maize silage were higher in the autumn (112·4 g DM min?1) than in the spring (72·5 g DM min?1). In conclusion, in spring the response to replacing TAG with TAMS was dependent on sward conditions with the highest milk fat plus protein yield being on the 20 + 0 treatment at the high sward height and on the 19 + 1 treatment at the low sward height. The high liveweight gain of the 5 + 15 treatment could be an important means of restoring body condition in grazing lactating cows. In autumn, intakes of herbage were low in spite of its high estimated nutritive value with all treatments having a similar level of performance.  相似文献   

14.
Herbage intake is usually depressed when beef cattle grazing abundant pastures are supplemented with energy-rich feedstuffs but relatively little is known about the effects of supplementation on the components of ingestive behaviour. An experiment was conducted to establish the effect of ground corn (Zea mays L.) on the ingestive behaviour of yearling Angus and Angus × Hereford steers (Bos taurus) (mean live weight (LW) of 323 kg) grazing autumn stockpiled Boone cocksfoot (Dactylis glomerata L.) using a tethered grazing system in which the experimental unit was the tethered steer and its grazing area (45 m2) for one grazing session. Herbage dry matter (DM) mass was 1662 kg ha?1 and herbage DM allowance was 7–5 kg steer?1 for each grazing session. Herbage DM intake was measured as the difference between herbage DM mass offered and refused. Grazing took place during two daily sessions each of about 2 h duration commencing at 08.00 and 14.00 h for 9 days. Ground corn (0, 1·5, 3·0 and 4·5 kg steer?1) was fed each day at 12.00 h and had no significant (P < 0·05) effect on rate of DM intake, rate of biting or DM intake per bite. Mean DM intake was 6 2 kg steer?1 d?1 (87 mg (kg LW)?1 min?1). Steers averaged 4832 bites per grazing session, with a mean DM intake per bite of 644 mg (2·0 mg (kg LW)?1) and a mean rate of 44 bites min?1. Data obtained at the beginning and end of each grazing period on ingestive behaviour of one group of four steers (mean LW of 306 kg) fitted with oesophageal fistulae supported data for the two groups of normal steers and showed no response to supplementation. Mean values for rate of DM intake, DM intake per bite and rate of biting established for the fistulated cattle were 73 mg (kg LW)?1 min?1, 521 mg bite?1 (1·7 mg (kg LW)?1) and 39 bites min?1, respectively.  相似文献   

15.
Herbage allowance is one of the important pasture factors in the determination of intake by grazing livestock. Ingestive behaviour of 12 adult Angus cows (Bos taurus) was measured over a range of allowances (0·25 to 0·72 kg dry matter (DM) per 100 kg live weight (LW) for a 1-h period) of vegetative tall fescue (Festuca arundinacea Schreb.). A balanced change-over design was used to estimate direct, residual and permanent effects of herbage allowance on rate of DM intake, rate of biting and herbage DM intake per bite. In Experiment 1, herbage DM intake per meal increased linearly from 0·68 to 1·72 kg (100 kg LW)?1 as DM allowance increased from 0·25 to 0·72 kg (100 kg LW)?1 h?1. Cows grazed at ·30 kg (100 kg LW)?1 h?1 and stopped grazing when the sward was reduced to a height about 10 to 12 cm above the soil surface, approximately defined by the tops of pseudostems. In Experiment 2, herbage DM intake rates of 0·29, 0·47 and 0·42 kg (100 kg LW)?1 h?1 were recorded as cows grazed allowances of 0·43, 0·70 and 0·90 kg (100 kg LW)?1 h?1 for most of the 1-h grazing period. Limiting herbage DM allowances in Experiment 2 were associated with small reductions in rate of biting and herbage DM intake per bite as allowance declined. Sward DM density (>5 cm) was an important variable in the determination of herbage DM intake rates at lower herbage allowances.  相似文献   

16.
In 1988 and 1989, swards of grass (G0), while clover (C0) and grass/white clover (GC0) receiving no N fertilizer, and a grass sward supplied with 420 kg N ha?1 (G420), were grazed by non-lactating sheep to maintain a sward surface height of 6 cm. Herbage organic matter (OM) intakes averaged between 1200 and 1700 g OM ewe?1 d?1. For treatments G0, C0, GC0 and G420 respectively, the ewes' live weight gain was 102, 112, 100 and 110 g d?1 and changes in body condition scores were +0·28, +0·52, +0·36 and +0·44 units season?1. However, the effect of treatment was not significant for either variable. There were similar levels of output of faecal N ewe?1 but significantly more urinary N ewe?1 was excreted on treatments C0 and G420, where the concentrations of N in herbage laminae were also higher. For example, in 1989, total daily N excreted was 39·7, 64·4, 44·0 and 63·3 g N ewe?1 for G0, C0, GC0 and G420 respectively. Taking into account the mean daily stocking rates, which were 19·4, 26·6, 27·2 and 36·5 ewe ha?1, the total faeces and urine returns over the season were 161, 358, 249 and 484 kg N ha?1 for each treatment respectively. The herbage OM intakes ewes?1 d?1 measured in September and October were similar for C0 and G420, and so the intake of herbage OM ha?1 d?1 was related to stocking rate, i. e. the estimated herbage intake ha?1 over the growing season for the white clover monoculture was 73% of that for N-fertilized grass. Excretal nitrogen returns to the pasture from grazed mono-cultures of clover were high, and similar to those from a grass sward receiving 420 kg fertilizer N ha?1. Consequently potential losses of N to the environment are high under these management systems.  相似文献   

17.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

18.
Intensive grazing of pastures may cause drastic and rapid changes in swards which have major effects on ingestive behaviour and diet. Twelve adult Angus cows (Bos Taurus), mean live weight of 482±19 kg, were allowed to graze on swards of lucerne (Medicago sativa L.) that were not grazed (TO), or had been grazed previously for 1 h (T1), or 2 h (T2) in a balanced changeover design. Herbage dry ma er (DM) masses (>5 cm) were 2611, 1895 and 1441 kg ha?1; leaf fractions were 0-48, 0-29 and 0-14; and herbage DM allowances per animal were 10·6, 7·9 and 6·0 kg h?1 for TO, T1 and T2, respectively. During a 1 h measured grazing session that followed an overnight fast, cows ingested 2-93, 1·71 and 0·66 kg DM h?1 with herbage DM intakes per bite of 1·6, 0·9 and 0·4 g for T0, T1. and T2, respectively. Rates of biting did not respond to sward treatment and averaged 30 bites min?1. Intake of leaf DM was estimated at 98, 70 and 6% of total DM intake for the same treatment sequence. Utilization of herbage allowance was 0·29, 0·23 and 0·12, for TO, T1 and T2, respectively. Metabolzable energy (ME) intake per animal was 30, 17 and 5 MJ h?1 and ME intake per bite was 16, 9 and 3 KJ for TO, T1 and T2, respectively. Data show that grazing-induced differences in sward characteristics moderate both ingestive behaviour and diet.  相似文献   

19.
Non‐pregnant, non‐lactating ewes grazed adjacent monocultures of white clover and perennial ryegrass with three sward surface height (SSH) combinations [6 cm white clover: 6 cm perennial ryegrass (c6g6), 3 cm white clover: 6 cm perennial ryegrass (c3g6), 3 cm white clover: 9 cm perennial ryegrass (c3g9)] at two stocking densities (21·3 or 29·8 ewes ha–1). Immediately prior to the experiment, all ewes grazed a c6g6 sward. Grazing time on each plant species was recorded during daylight over two 48 h‐test periods. Subsequently, herbage intake rates for each species at each SSH were measured allowing intakes of each species to be calculated. For the first 24 h of both test periods (D1), ewes on treatment c3g6 spent less time grazing white clover than those on treatment c6g6 (228 vs. 362 min) and more time grazing perennial ryegrass (360 vs. 182 min). Total grazing time on treatment c3g6 was more than on treatment c6g6 (587 vs. 544 min) but the difference was not significant. Perennial ryegrass intake was higher (895 vs. 452 g), and white clover intake (814 vs. 1687 g), total intake (1719 vs. 2140 g) and proportion of white clover in the diet (0·460 vs. 0·794) were lower for treatment c3g6 than treatment c6g6. There were no significant differences in total grazing time, grazing time on either species, proportion of grazing time on white clover or proportion of white clover in the diet between treatment c3g6 and treatment c3g9. However, the higher intake rate of perennial ryegrass in treatment c3g9 led to higher perennial ryegrass and total intakes. For the second 24 h of both test periods (D2), ewes on treatment c3g6 again spent more time grazing perennial ryegrass than on treatment c6g6 (270 vs. 161 min) but time spent grazing white clover was similar (318 vs. 308 min). Total grazing time was significantly higher on treatment c3g6 than on treatment c6g6 (588 vs. 469 min) but proportion of grazing time on white clover was similar (0·554 vs. 0·668). Perennial ryegrass intake was significantly higher for treatment c3g6 than for treatment c6g6 (672 vs. 402 g) while white clover intake was significantly lower (1140 vs. 1435 g) but total intake was similar (1812 vs. 1836 g). The proportion of white clover in the diet was significantly lower for treatment c3g6 (0.628 vs. 0.785) than for treatment c6g6. The only significant differences between treatments c3g6 and c3g9 were in perennial ryegrass intake (672 vs. 906 g) and in total intake (1812 vs. 2287 g). Intake of perennial ryegrass on treatment c3g9 was also significantly greater than on treatment c6g6 (906 vs. 402 g) and total intake was higher (2287 vs. 1836 g). At the higher stocking density, time spent grazing perennial ryegrass and perennial ryegrass intake were significantly lower on D1 and D2 while total grazing time was also significantly lower and proportion of time grazing white clover and proportion of white clover in the diet were significantly higher at the higher stocking rate on D2. The results indicate that behaviour changed over the 48 h observation period for treatments c3g6 and c3g9 but behaviour remained relatively constant for animals on treatment c6g6. Ewes traded off dietary preference against total intake by altering grazing times on perennial ryegrass and white clover to achieve maximum net benefit.  相似文献   

20.
The selection by sheep (six Coopworth ewe hoggets, 44·3 ± 4·6 kg live weight) and goats (six Saanen/Anglo‐Nubian yearling males, 38·1 ± 3·8 kg live weight) for perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and for sward height was measured in two experiments involving paired turves. Pairs of turves with herbage of differing height and of either the same or different plant species were offered. One sward (fixed height species, FHS) was always offered at 130 mm and the other (variable height species, VHS) at 130, 90 or 50 mm. Turves (450 mm × 220 mm) were cut to a soil depth of 100–150 mm from areas of perennial ryegrass and white clover regrown to the desired height after previously being cut to 30 mm. Each turf in a pair was weighed (±1 g) before and after grazing by penned animals maintained on a barley‐based pelleted diet. The number of prehending bites taken from each turf was recorded over a grazing period (128 ± 12 s). Bite mass, bite rate and intake rate were calculated. As the sward height of the VHS turf declined, an increasing proportion of the diet was selected from the 130 mm turf. When averaged over all height contrasts, both animal species selected a higher proportion (0·776 ± 0·026) of their diet from 130‐mm white clover than from 130‐mm perennial ryegrass (0·591 ± 0·018) turves. On average, goats selected a higher proportion (0·721 ± 0·022) of their dry‐matter (DM) intake from the 130‐mm turf than sheep (0·646 ± 0·019), but the effect was not consistent. In contrasts with perennial ryegrass as the VHS (and both perennial ryegrass and white clover as FHS), the proportion of the diet selected from the 130‐mm turf was very similar for both animal species. However, with white clover as the VHS (and both perennial ryegrass and white clover as FHS), goats selected a higher proportion of their intake from the 130‐mm turf to the extent that in the 130‐mm perennial ryegrass/50‐mm white clover contrast sheep showed as strong selection for 50‐mm white clover as goats did for 130‐mm perennial ryegrass. This lesser selection of goats for white clover as its height in a sward declines is likely to contribute to the higher white clover content observed in swards grazed by goats. Bite mass was greater on white clover (246 ± 5 mg DM bite–1) than on perennial ryegrass (173 ± 5 mg DM bite–1) and was greater for goats (255 ± 6 mg DM bite–1) than for sheep (195 ± 5 mg DM bite–1). Bite rate was greater on perennial ryegrass (45·9 ± 1·0 bites min–1) than on white clover (39·9 ± 1·0 bites min–1) and was greater for sheep (45·5 ± 1·1 bites min–1) than for goats (42·5 ± 1·1 bites min–1). Apparent intake rate by both sheep and goats was lower (mean, 5·0 ± 0·29 g DM min–1) on 130 mm perennial ryegrass/white clover than on 130 mm perennial ryegrass/perennial ryegrass (7·0 ± 0·27 g DM min–1), but was higher (9·62 ± 0·29 g DM min–1) on 130‐mm white clover/perennial ryegrass than on 130‐mm white clover/white clover (8·2 ± 0·29 g DM min–1) combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号