首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of dietary betaine supplementation on growth performance, carcass characteristics, muscle amino acid contents, meat quality, antioxidant capacity, myogenic gene expression and mechanistic target of rapamycin (mTOR) signalling pathway in Cherry Valley ducks were evaluated. A total of 720 1‐day‐old Cherry Valley ducks were randomly distributed into four groups with six replicates of 30 birds for a 42‐day feeding trial. Ducks were fed a basal diet supplemented with 0 (control), 250, 500 or 1,000 mg/kg betaine, respectively. Growth performance was not affected by betaine. Incremental levels of betaine linearly (p < 0.05) increased the breast muscle yield and linearly (p < 0.05) decreased the subcutaneous fat thickness and the abdominal fat yield. The contents of methionine, serine, glycine, glutamate and total non‐essential amino acid in breast muscle were linearly (p < 0.05) increased by betaine supplementation. With increasing betaine levels, the drip loss and the content of malondialdehyde (MDA) were linearly (p < 0.05) decreased, and the redness of meat (linear p < 0.05), the activities of catalase (CAT) (linear p < 0.05) and total superoxide dismutase (T‐SOD) (linear p < 0.05, quadratic p < 0.05) were increased. Moreover, the myogenic differentiation factor 1 (MyoD1) mRNA expression and the mTOR mRNA expression and protein phosporylation were linearly (p < 0.05) up‐regulated, and the myostatin (MSTN) mRNA expression was linearly (p < 0.05) down‐regulated by betaine supplementation. Overall, this study indicated that betaine supplementation did not affect the growth performance of Cherry Valley ducks, but could linearly increase some amino acid contents in breast muscle, especially glycine, and increase muscle antioxidant activity to improve meat quality. Moreover, betaine supplementation could improve the breast muscle yield by increasing MyoD1 mRNA expression, decreasing MSTN mRNA expression and regulating mTOR signalling pathway.  相似文献   

2.
We evaluated the effects of supplementing betaine on growth performance, fat deposition and lipid metabolism status in broilers kept under chronic heat stress. Five hundred and forty chicks were randomly divided into six groups and the two normal temperature groups were held at normal ambient temperature and fed the basal diet (CONT) and basal diet plus 0.1% betaine, respectively. Heat stressed (HS) broilers were held at 32 ± 1°C from days 22 to 42 and fed the basal diet containing variable levels of betaine. Broilers were examined at days 28, 35 and 42 for body weight, feed consumption, fat deposition and serum lipids. The CONT and betaine‐supplemented groups showed higher (P < 0.01 or P < 0.05) feed consumption, body weight gain, and lower feed : gain ratio compared with the HS‐CONT group. Meanwhile, heat stress increased abdominal, intermuscular and subcutaneous fat deposition, whereas the supplemental betaine significantly decreased those compared with the HS‐CONT group. Additionally, betaine supplementation significantly decreased triglyceride, free fatty acids, low‐density lipoprotein cholesterol and high‐density lipoprotein cholesterol compared with HS‐CONT. Chronic HS reduces broiler production performance. However, betaine can reverse these negative effects partially and thus improve carcass composition by changing lipid metabolism.  相似文献   

3.
α‐Ketoglutarate (AKG) is an extensively used dietary supplement in human and animal nutrition. The aim of the present study was to investigate effects of dietary AKG supplementation on the energy status and anti‐oxidative capacity in liver and intestinal mucosa of Cherry Valley ducks. A total of 80 1‐day‐old ducks were randomly assigned into four groups, in which ducks were fed basal diets supplemented with 0% (control), 0.5%, 1.0% and 1.5% AKG, respectively. Graded doses of AKG supplementation linearly decreased the ratio of adenosine monophosphate (AMP) to adenosine triphosphate (ATP) in the liver, but increased ATP content and adenylate energy charge (AEC) in a quadratic and linear manner, respectively (< 0.05). Increasing dietary AKG supplemental levels produced linear positive responses in ATP content and AEC, and negative responses in AMP concentration, the ratio of AMP to ATP and total adenine nucleotide in the ileal mucosa (P < 0.05). All levels of dietary AKG reduced the production of jejunal hydrogen peroxide and hepatic malondialdehyde (P < 0.05). Hepatic and ileal messenger RNA expression of AMP kinase α‐1 and hypoxia‐inducible factor‐1α were linearly up‐regulated as dietary AKG supplemental levels increased (P < 0.05). In conclusion, dietary AKG supplementation linearly or quadratically enhanced hepatic and intestinal energy storage and anti‐oxidative capacity of Cherry Valley ducks.  相似文献   

4.
Betaine has been demonstrated to improve growth performance and antioxidant status of animals under various stress conditions. However, there is no literature on the effects of betaine in animals exposed to mycotoxins, which are among the most prevalent contaminants in feed. Therefore, this study was conducted to evaluate the influence of dietary betaine on broilers fed a diet based on mold-contaminated corn (MCC). A total of 192 Ross 308 male broiler chicks at 1 d of age were randomly divided into 4 groups with 6 replicates and fed an MCC-based diet supplemented with 0, 250, 500, and 1,000 mg/kg betaine, respectively. Betaine increased average daily gain (linear, P = 0.030) and decreased feed conversion ratio (linear, P = 0.027) of broilers during d 1 – 21, and decreased feed conversion ratio during d 22 – 42 (linear, P = 0.012; quadratic, P < 0.001) and d 1 – 42 (linear, P = 0.003; quadratic, P = 0.004), whereas feed intake was not affected. Total cholesterol (linear, P = 0.024), alanine aminotransferase (quadratic, P < 0.001) and alkaline phosphatase (linear, P = 0.007; quadratic, P = 0.025) activities in serum were decreased by betaine. Betaine linearly increased breast muscle yield (P = 0.003) and pH24 h (P = 0.008), and decreased drip loss (P = 0.022). Betaine increased (linear, P = 0.025; quadratic, P = 0.016) total superoxide dismutase activity in breast muscle and reduced malondialdehyde content in serum (linear, P = 0.006), liver (quadratic, P = 0.006) and breast muscle (linear, P = 0.003). Moreover, the zearalenone concentrations in breast muscle were linearly decreased by betaine (P = 0.006). It was concluded that betaine could improve growth performance, liver health, antioxidant status, and breast meat yield and quality, and reduce zearalenone residue in broilers fed the MCC-based diet, especially at 500 or 1,000 mg/kg.  相似文献   

5.
The objectives of this study were to investigate the effects of dietary n‐6/n‐3 fatty acid (FA) ratio on digestibility, blood metabolites and FA profile of Hanwoo heifers. Fifteen Hanwoo heifers (22 ± 3 months old; 357 ± 69.7 kg) were randomly assigned to three dietary treatments with n‐6/n‐3 FA ratios of 2.07, 5.18 and 7.37. The animals were housed individually in digestion crates and fed total mixed rations at 2.2% of body weight for 2 weeks of adaptation and 1 week of collection. Treatment effects on in vivo digestibility, plasma metabolite and fatty acid profiles, and in vitro ruminal fermentation and fatty acid profiles were examined. In vivo digestibility was not affected (P > 0.05) by dietary n‐6/n‐3 FA ratio. However, in vitro dry matter digestibility and concentrations of total volatile fatty acids and propionate decreased (P < 0.05) linearly with increasing n‐6/n‐3 FA ratio. Plasma insulin and progesterone increased linearly (P < 0.05), but linolenic acid and total n‐3 FA decreased linearly (P < 0.05) with increasing n‐6/n‐3 ratio. Increasing the dietary n‐6/n‐3 FA ratio can increase the n‐6/n‐3 FA ratio in plasma and ruminal fluid as well as plasma progesterone secretion.  相似文献   

6.
This study aimed to determine the effect of different dietary levels of a Chlorella by‐product (CBP) on the growth performance, immune response, intestinal microflora and intestinal mucosal morphology of broilers. In total, 480 one‐day‐old broiler chickens were randomly allotted to four dietary treatments with four replicated pens consisting of 30 chicks. The basal diet was formulated to be adequate in energy and nutrients. Three additional diets were prepared by supplementing 25, 50 or 75 g/kg of CBP to the basal diet. The diets were fed to the broilers ad libitum for 35 days. Result indicated that increasing inclusion level of CBP improved BW gain (linear, p < 0.05). There was no effect of inclusion level of CBP in diets on total cholesterol, triglyceride, aspartate aminotransferase and alanine aminotransferase levels during the 35 days. Plasma IgG, IgM and IgA concentrations increased (linear, p < 0.05) with inclusion level of CBP in diets. Supplementation of CBP in the diets increased (linear, p < 0.05) the concentrations of Lactobacillus in the caecal content and decreased (linear, p < 0.05) the concentrations of Escherichia coli and Salmonella in the caecal content. Villus height increased (linear and quadratic, p < 0.05) with inclusion level of CBP in diets. Crypt depth increased (quadratic, p < 0.05) with inclusion level of CBP, and a decreased villus height: crypt depth ratio (quadratic, p < 0.05) was observed as inclusion level of CBP in diets increased. The results of the current experiment indicate that dietary supplementation of CBP improves growth performance of birds. Dietary CBP has improving Lactobacillus spp. concentrations in the gastrointestinal tract, plasma immunoglobulin concentrations and intestinal mucosal morphology.  相似文献   

7.
Forty‐eight castrated male goats were used to determine the effects of feeding green tea by‐products (GTB) on growth performance, meat quality, blood metabolites and immune cell proliferation. Experimental treatments consisted of basal diets supplemented with four levels of GTB (0%, 0.5%, 1.0% or 2.0%). Four replicate pens were assigned to each treatment with three goats per replicate. Increasing dietary GTB tended to linearly increase the overall average weight gain and feed intake (p = 0.09). Water holding capacity, pH and sensory attributes of meat were not affected by GTB supplementation, while cooking loss was reduced both linearly and quadratically (p < 0.01). The redness (linear; p = 0.02, quadratic; p < 0.01) and yellowness (quadratic; p < 0.01) values of goat meat were improved by GTB supplementation. Increasing dietary GTB quadratically increased protein and decreased crude fat (p < 0.05), while linearly decreased cholesterol (p = 0.03) content of goat meat. The proportions of monounsaturated fatty acid, polyunsaturated fatty acid (PUFA) and n‐6 PUFA increased linearly (p < 0.01) and n‐3 PUFA increased quadratically (p < 0.05) as GTB increased in diets. Increasing dietary GTB linearly increased the PUFA/SFA (saturated fatty acid) and tended to linearly and quadratically increase (p ≤ 0.10) the n‐6/n‐3 ratio. The thiobarbituric acid‐reactive substances values of meat were lower in the 2.0% GTB‐supplemented group in all storage periods (p < 0.05). Dietary GTB linearly decreased plasma glucose and cholesterol (p < 0.01) and quadratically decreased urea nitrogen concentrations (p = 0.001). The growth of spleen cells incubated in concanavalin A and lipopolysaccharides medium increased significantly (p < 0.05) in response to GTB supplementation. Our results suggest that GTB may positively affect the growth performance, meat quality, blood metabolites and immune cell proliferation when supplemented as a feed additive in goat diet.  相似文献   

8.
A total of 540 2‐day‐old male Ross 308 broilers were used in a 35‐day experiment and were randomly divided into five treatments: (i) NC (low energy); (ii) PC (high energy diet); (iii) P1 (NC + 0.1% carbohydrases); (iv) P2 (NC + 0.05% emulsifier); and (v) P3 (NC + 0.1% carbohydrases + 0.05% emulsifier). From days 0 to 21, body weight gain in PC and P3 treatments increased (P < 0.05) compared with NC treatment. The chicks fed PC, P1, P2 and P3 improved (P < 0.05) feed conversion ratio compared with the NC treatment throughout the whole experiment. Abdominal fat weight was heavier (P < 0.05) in PC, P2 and P3 treatments than in NC and P1 treatments. On day 35, serum total cholesterol and low density lipoprotein cholesterol concentration were higher (P < 0.05) and high‐density lipoprotein cholesterol was lower (P < 0.05) in NC and P2 treatments than in PC, P1 and P3 treatments. The concentration of oleic acid, linoleic acid and total unsaturated fatty acids were highest (P < 0.05) in PC than in the other treatments. In conclusion, the results indicate that low energy density diet had lower growth performance, while the inclusion of emulsifier and carbohydrases in low energy diets can partially improve growth performance.  相似文献   

9.
The objective of this study was to investigate the effects of epigallocatechin gallate (EGCG) on fat metabolism and to establish the molecular mechanism of these effects in broilers. Seventy‐two 28‐day‐old male Ross 308 broiler chickens were divided into three groups with different levels of EGCG supplementation for 4 weeks: normal control (NC) group, L‐EGCG (a low‐level supplement of EGCG, 40 mg/kg body weight daily) and H‐EGCG (a high‐level supplement of EGCG, 80 mg/kg body weight daily). After 4 weeks of oral administration, EGCG significantly reduced the level of abdominal fat deposition in broilers. The serum triglycerides and low‐density lipoprotein cholesterol of chickens in H‐EGCG group were also significantly decreased compared with the NC group, and the high‐density lipoprotein cholesterol was notably increased at the same time. Moreover, the vital role of the liver and abdominal adipose tissue in lipid metabolism of poultry animals was examined through gene expression and enzyme activities related to fat anabolism and catabolism in these organs. Our data show that EGCG supplementation for 2 weeks significantly downregulated the expression of fatty acid synthesis and fat deposition‐related genes, and upregulated the expression of genes involved in fatty acid β‐oxidation and lipolysis genes. Simultaneously, the activities of hepatic fatty acid synthesis enzymes (fatty acid synthase and acetyl CoA carboxylase) were significantly decreased, and the activity of carnitine palmitoyl transferase‐1 was notably elevated. The results suggest that EGCG could alleviate fat deposition in broilers through inhibiting fat anabolism and stimulating lipid catabolism in broilers.  相似文献   

10.
The present study assessed the effect of feeding palm oil (PO), sunflower oil (SO) and their combination on performance, fat deposition, fatty acid composition and lipogenic gene expression of broilers reared for 42 days. A total of 144 1‐day‐old broilers (Cobb500) were randomly allotted into four treatment diets with each having six replicates of six chicks in each replicate following a completely randomized design. Live weight gain and feed efficiency was significantly (P < 0.05) higher in birds fed with a combination of oil sources compared to controls. Birds fed with the combination of oil and SO alone had higher carcass yield and lower abdominal fat. Higher (P < 0.05) concentrations of unsaturated fatty acids (UFA) and lower concentrations of palmitic acid and saturated fatty acid (SFA) was found in birds fed SO alone and combinations of SO and PO. Furthermore, the outcomes showed that birds fed diet supplemented with SO and the combination of SO and PO down‐regulated gene expression of key hepatic lipogenic enzymes of fatty acids synthase (FAS), acetyl‐CoA carboxylase (ACC) and stearoyl‐CoA desaturase (SCD). These findings suggest that the diet containing the combination of 2% PO and 4% SO may reduce hepatic lipogenesis, as well as lower abdominal fat content of broilers.  相似文献   

11.
Various lines of evidence suggest that appetite‐related neuropeptides in the hypothalamus are regulated by adiposity signals such as leptin and insulin in mammals. In the present study, we examined age‐dependent changes in the weight of abdominal fat and hypothalamic mRNA levels of neuropeptide Y (NPY, an orexigenic neuropeptide) and proopiomelanocortin (POMC, a precursor of anorexigenic neuropeptides) in growing chickens at 7, 14, 21 and 28 days of age. Hypothalamic NPY mRNA levels were significantly (P < 0.05) decreased after 14 days of age, whereas hypothalamic POMC mRNA levels were significantly (P < 0.05) increased at 28 days of age. The percentage of abdominal fat was significantly increased after 14 days of age in chickens. We next examined the correlation of hypothalamic NPY and POMC mRNA levels and several parameters at 28 days of age. There were no significant correlations between hypothalamic mRNA levels of NPY or POMC and the percentage of abdominal fat. These findings suggest that the gene expressions of NPY and POMC do not depend on adiposity in chickens, at least in 28‐day‐old layer chickens.  相似文献   

12.
This study was to investigate the effects of Epigallocatechin‐3‐gallate (EGCG) on intestinal morphology, antioxidant capacity and anti‐inflammatory response in heat‐stressed broiler. A total of 192 2‐week‐old Arbour Acres broilers chickens were divided into four groups with six replicates per group and eight chickens per replicate: one thermoneutral control group (28°C, group TN), which was fed the basal diet; and three cyclic high‐temperature groups (35°C from 7:00 to 19:00 hr; 28°C from 19:00 hr to 7:00 hr, heat stress group), which were fed the basal diet supplementation with EGCG 0 mg/kg (group HS0), 300 mg/kg (group HS300) and 600 mg/kg (group HS600). The gut morphology and intestinal mucosal oxidative stress indicators, as well as intestinal barrier‐related gene expression, were analysed. The results showed that compared with group TN, heat stress reduced the villus height (VH), activities of glutathione peroxidase (GSH‐Px), superoxide dismutase (SOD)and catalase (CAT), increased the crypt depth (CD) and malondialdehyde (MDA)content at 21, 28 and 35 days (p < 0.05). After the heat‐stressed broilers were supplemented with EGCG, VH, VH/CD (V/C), and the activities of GSH‐Px, SOD and CAT were increased, and CD and MDA content were reduced compared with those in group HS0 without EGCG supplementation at 21, 28 and 35 days (p < 0.05). The EGCG supplementation promoted the gene expression of nuclear factor‐erythroid 2‐related factor 2 (Nrf2), Claudin‐1, Mucin 2 (Muc2) and alleviated the nuclear factor‐kappa B (NF‐κB) and lipopolysaccharide‐induced tumour necrosis factor (LITAF) gene expression compared with group HS0 (p < 0.05). Moreover, intestinal morphology was strongly correlated with antioxidant ability and inflammatory response. In conclusion, EGCG alleviated the gut oxidative injury of heat‐stressed broilers by enhancing antioxidant capacity and inhibiting inflammatory response.  相似文献   

13.
14.
Atmospheric ammonia in animal housing is reported to have adverse effects on livestock performance and animal health. Previous experiments have found that 75 ppm ammonia reduced the production performance and altered body fat distribution quality of broilers. In this study, we examined the body fat distribution, serum metabolites and lipid metabolism gene expression of broiler exposed to ammonia. A total of 400 chickens were randomly allocated to four groups with four replicates and received ammonia treatments at 0, 25, 50 and 75 ppm, respectively, for 3 weeks. The average daily feed intake and weight gain were decreased when broiler was exposed to ammonia concentration exceeding 50 ppm (< .05). The increased abdominal fat and reduced thickness of subcutaneous adipose were found in broilers of 75 ppm group (< .05). When ammonia exceeded 50 ppm, the content of fat in breast muscle of broiler was increased, and when ammonia was higher than 25 ppm, the fat in liver was increased (< .05). It showed that the fat content in liver was a sensitive index for broilers exposed to ammonia. Furthermore, ammonia exposure had no significant effect on total cholesterol and triglyceride in serum, but significantly increased the relative mRNA expression of acetyl‐CoA carboxylase (= .046) and malic enzyme in liver (= .038), which indicated that ammonia exposure may increase the de novo fat synthesis in liver. In addition, ammonia increased the high‐density lipoprotein cholesterol (= .02) and activity of hepatic lipase in serum (< .001), which indicated that ammonia exposure may improve the transportation of cholesterol to liver. To conclude, our results indicated that ammonia exposure might increase the de novo fat synthesis in liver and increased the transportation of cholesterol to liver. In addition, the concentration of ammonia in poultry house should be limited lower than 25 ppm based on the variation of hepatic fat content.  相似文献   

15.
1. The present study was designed to evaluate purified bee venom (BV) as an alternative to antibiotics in broiler chickens. The experimental treatment diets were formulated by adding BV into a maize-soybean meal-based diet to give 0, 10, 50, 100, and 500 μg BV per kg of diet.

2. Dietary BV quadratically improved (P < 0.05) feed conversion ratio and increased body weight gain at 1–21 d as level in diet increased. Higher BV levels lowered relative weight of spleen (linear and quadratic, P < 0.05), bursa of Fabricius (quadratic, P < 0.05), and liver (linear and quadratic, P < 0.05) at 21 d of age. Relative breast meat yields were increased quadratically at 21 d and linearly at 35 d with supplementation levels. Dietary BV increased (linear and quadratic, P < 0.05) lightness (L*) value for meat at 21 d, decreased (linear, P < 0.05) ileal villus height and narrowed (quadratic, P < 0.05) width.

3. Dietary BV inclusion linearly increased the concentration of secretory immunoglobulin A (sIgA) on ileal mucosa at 21 d and decreased (quadratic, P < 0.05) nitric oxide contents in serum samples at 21 d and 35 d. Total short-chain fatty acids (SCFA) in caecal digesta were reduced with increasing venom in diets at 21 d of age. None of the serum parameters except for creatinine was affected by dietary BV.

4. It was concluded that dietary BV exhibited wide range of in vivo biological properties in broiler chickens and could be incorporated into feed to promote growth and animal health.  相似文献   


16.
Insulin‐independent actions of glucagon‐like peptide‐1 (GLP‐1) are not yet clear in ruminants. Four Suffolk mature wethers (60.0 ± 6.7 kg body weight (BW)) were intravenously infused with insulin (0.5 mU/kg BW/min; from 0 to 90 min) and GLP‐1 (0.5 μg/kg BW/min; from 60 to 150 min) with both hormones co‐administered from 60 to 90 min, in a repeated‐measure design under euglycemic clamp for 150 min, to investigate whether GLP‐1 has insulin‐independent actions. Jugular blood samples were taken at 15‐min intervals for plasma hormones and metabolites analysis. Compared to baseline concentrations (at 0 min), insulin infusion decreased (P < 0.05) plasma concentrations of glucagon, non‐esterified fatty acids (NEFA), lactate, nonessential amino acids (NEAA), branched‐chain amino acids (BCAA), total amino acids (TAA) and urea nitrogen (UN). Insulin plus GLP‐1 infusion induced a greater increase (P < 0.05) in plasma concentrations of insulin and triglyceride (TG), but decreased (P < 0.05) glucagon, total cholesterol (T‐Cho), NEAA and UN plasma concentrations. GLP‐1 infusion increased (P < 0.05) NEFA, β‐hydroxybutyrate and TG, but decreased (P < 0.05) glucagon, T‐Cho, NEAA, BCAA and UN plasma concentrations. In conclusion, GLP‐1 exerts extrapancreatic roles in ruminants not only insulin‐independent but probably, in contrast to non‐ruminants, antagonistic to insulin effects.  相似文献   

17.
To investigate effects of Aspergillus oryzae culture (AOC) and 2‐hydroxy‐4‐(methylthio) butanoic acid (HMB) on milk performance and rumen fermentation of dairy cows. Sixty‐four multiparous Chinese Holstein cows were randomly allocated into four experimental diets: (i) Control diet; (ii) AOC diet: 5 g AOC/day per head; (iii) HMB diet: 25 g HMB/day; and (iv) AH diet: 5 g AOC plus 25 g HMB/day. Added HMB tended to increase the yield of milk protein (P = 0.06) and 3.5% fat‐corrected milk (P = 0.08) and milk fat content (P = 0.09). Milk fat yield (P = 0.03) and the contents of milk protein (P = 0.05) were increased by adding HMB. The cows fed on AOC diet had a tendency for higher body weight (BW) gain (P = 0.08). Addition of AOC, HMB and AH increased content of microbial protein (MCP) and total volatile fatty acids (VFA) (P < 0.01) in rumen fluid. Populations of rumen fungi, Fibrobacter succinogenes and Ruminococcus flavefaciens relative to total bacterial 16S rDNA (P ≤ 0.03) and activity of carboxymethylcellulase (CMCase) (P < 0.01) were increased with added AOC or HMB. It is inferred that added AOC or HMB can increase the contents of MCP and total VFA potentially by stimulating rumen microbe populations and CMCase activity.  相似文献   

18.
This study investigated gender, caponization and exogenous estrogen effects on lipids, bone and blood characteristics in Taiwan country chickens. Thirty male chickens were caponized at 8 weeks (capons); 15 capons were injected with estrogen (5 mg/bird estradiol 3‐benzoate) every 2 weeks from 8 to 28 weeks, and 15 sham‐operated male (shams) chickens and 15 females were selected for this trial. The results showed that the shams had lower relative abdominal and chest subcutaneous fat than females (P < 0.05). The estrogen‐treated capons had greater relative abdominal and chest subcutaneous fat than shams and capons (P < 0.05), which might result from higher blood very low‐density lipoproteins and triacylglycerol concentrations (P < 0.05). Caponization could dramatically increase relative abdominal fat (506%; P < 0.05). The shams had higher tibia weight and biomechanical properties, such as maximum bone strength and bending moment values than the capons (P < 0.05). Tibia biomechanical properties were reduced by estrogen treatment (P < 0.05). The females obtained the lowest biomechanical value in all treatments (P < 0.05). Histological examination revealed cavity formation in the cortical bone of estrogen‐treated capons and female chickens, which suggested that estrogen reduced bone biomechanical properties by destroying its structural integrity.  相似文献   

19.
This study was designed using 360 21‐day‐old chicks to determine the influences of diet supplementation with glutamine (5 g/kg), γ‐aminobutyric acid (GABA, 100 mg/kg) or their combinations on performance and serum parameters exposed to cycling high temperatures. From 22 to 35 days, the experimental groups (2 × 2) were subjected to circular heat stress by exposing them to 30–34 °C cycling, while the positive control group was exposed to 23 °C constant. The blood of broilers was collected to detect serum parameters on days 28 and 35. Compared with the positive control group, the cycling high temperature decreased (p < 0.05) the feed consumption, weight gain and serum total protein (TP), glucose, thyroxine (T4), insulin, alkaline phosphatase (ALP), glutamine, GABA and glutamate levels, while increased (p < 0.05) the serum triglyceride (TG), corticosterone (CS), glucagon (GN), creatine kinase (CK), glutamic oxaloacetic transaminase (GOT), nitric oxide synthase (NOS), glutamate pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) levels during 22–35 days. However, dietary glutamine (5 g/kg) increased (p < 0.05) the feed consumption, weight gain and serum levels of glutamine, TP, insulin and ALP, but decreased (p < 0.05) the serum TG, CK, GOT, NOS and GPT levels. Diet supplemented with GABA also increased (p < 0.05) weight gain and the serum levels of TP, T4, ALP, GABA and glutamine. In addition, the significant interactions (p < 0.05) between glutamine and GABA were found in the feed consumption, weight gain and the serum ALP, CK, LDH, GABA, T3 and T4 levels of heat‐stressed chickens. This research indicated that dietary glutamine and GABA improved the antistress ability in performance and serum parameters of broilers under hot environment.  相似文献   

20.
The effects of yeast culture (YC) supplementation and the dietary ratio of non‐structural carbohydrate to fat (NSCFR) on growth performance, carcass traits and fatty acid profile of the longissimus dorsi (LD) muscle in lambs were determined in a 2 × 3 full factorial experiment. Thirty‐six Small‐tailed Han lambs were randomly divided into six groups with six replicates per group. The lambs were fed one of the six pelleted total mixed rations (TMRs) for 60 days after 15 adaption days. The six rations were formed by two NSCFRs (11.37 and 4.57) and three YC supplementation levels (0, 0.8 and 2.3 g/kg dietary dry matter). The average daily gain (ADG), dry matter intake (DMI) and feed conversion ratio (FCR) data of each lamb were recorded and calculated. All the lambs were slaughtered for determining carcass traits and fatty acid profile of the LD muscle. DMI was significantly increased (p < 0.05) in a quadratic fashion with 0.8 g/kg of YC supplementation. Carcass weight (CW) and dressing percentage (DP) were significantly increased (p < 0.05) in a linear fashion with 2.3 g/kg of YC supplementation. Animals fed with high‐NSCFR diet had higher (p < 0.05) contents of myristoleic acid (C14:1), pentadecanoic acid (C15:0) and cis‐10‐heptadecenoic acid (C17:1), and lower (p < 0.05) stearic acid (C18:0) content in LD muscle than those fed with low‐NSCFR diet. Moreover, ADG, growth rate (GR), backfat thickness (BFT), percentages of crude fat (CF) and crude protein (CP), SFAs, MUFAs and PUFAs in LD muscle, were significantly affected (p < 0.05) by interaction of dietary NSCFR and supplemental YC level. Overall, YC not only improved the growth performance and carcass traits of the animals but also modified the fatty acid profile of the LD muscle. Furthermore, the effects of YC supplementation may depend on dietary compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号