首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although garlic oil and nitrate can effectively suppress ruminal methane (CH4) production in vitro, the application of these compounds is associated with suppressed total volatile fatty acid (VFA) concentration. On the other hand, the effectiveness of fumarate as a ruminal CH4 mitigating agent is variable but its application increases total VFA concentration. We therefore hypothesized that the different characteristics of the compounds can compensate for the shortcomings of the other. The objective of this study was to develop an optimal blend of garlic oil, nitrate and fumarate that can suppress in vitro ruminal CH4 without affecting total VFA concentration. Three ruminal in vitro fermentation experiments were carried out. The first one, a one factor at a time experiment was employed to investigate the effective concentration of each of the compounds on CH4 and VFA production by ruminal bacteria. We then applied the fractional factorial design and response surface methodology in the second experiment to determine optimal concentrations of the compounds in the blend. The optimal blending of garlic oil, fumarate and nitrate was determined to be 50 mg/l, 15 mm and 20 mm , respectively. This simulated optimal blend was verified in a 48 h in vitro batch fermentation experiment. The blend achieved the intended goal of suppressing CH4 whilst maintaining total VFA concentration. The blend and nitrate suppressed archaea populations (p < 0.001) but did not affect the total microbial population (p = 0.945). The observed results could be explained by additive effects of the agents making up the blend. Supplementing a high concentrate diet with the blend can significantly decrease ruminal CH4 and maintain total VFAin vitro. These findings however, need to be verified in vivo using the optimized ratio of combining the three methane inhibitors as a guide.  相似文献   

2.
《动物营养(英文)》2021,7(4):1205-1218
It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.  相似文献   

3.
This study was conducted to evaluate the effects of feeding supplemental illite to Hanwoo steers on methane (CH4) emission and rumen fermentation parameters. An in vitro ruminal fermentation technique was conducted using a commercial concentrate as substrate and illite was added at different concentrations as treatments: 0%, 0.5%, 1.0%, and 2.0% illite. Total volatile fatty acids (VFA) were different (< 0.05) at 24 h of incubation where the highest total VFA was observed at 1.0% of illite. Conversely, lowest CH4 production (< 0.01) was found at 1.0% of illite. In the in vivo experiment, two diets were provided, without illite and with addition of 1% illite. An automated head chamber (GreenFeed) system was used to measure enteric CH4 production. Cattle received illite supplemented feed increased (< 0.05) total VFA concentrations in the rumen compared with those fed control. Feeding illite numerically decreased CH4 production (g/day) and yield (g/kg dry matter intake). Rumen microbial population analysis indicated that the population of total bacteria, protozoa and methanogens were lower (< 0.05) for illite compared with the control. Accordingly, overall results suggested that feeding a diet supplemented with 1% illite can have positive effects on feed fermentation in the rumen and enteric CH4 mitigation in beef cattle.  相似文献   

4.
This study investigates the effects of Terminalia chebula Retz. meal supplementation on rumen fermentation and methane (CH4) production by using an in vitro gas technique. The experimental design was a completely randomized design (CRD) and the dietary treatments were T. chebula supplementation at 0, 4, 8, 12, 16 and 20 mg with 0.5 g of roughage and concentrate ratio at 60:40. The results revealed that cumulative gas production (96 h of incubation) were higher (P < 0.01) with T. chebula supplementation at 12, 16 and 20 mg than other treatments. However, in vitro dry matter degradability (IVDMD) and in vitro organic matter digestibility (IVOMD) were not significantly different among treatments (P > 0.05). The NH3‐N concentrations tended to quadratically increase with increasing levels of T. chebula in the diet. In addition, total volatile fatty acids (VFA) and propionate concentrations were increased (P < 0.01), while acetate concentration, acetate‐to‐propionate ratio, CH4 production and protozoal populations were decreased (P < 0.01) when supplemented with T. chebula at 8, 12 and 16 mg, respectively. Based on this study, it could be concluded that supplementation of T. chebula at 12 mg could improve rumen fermentation by reducing CH4 production and protozoa populations, thus improving in vitro gas production and VFA profiles.  相似文献   

5.
This study investigated the effect of fumarate (FUM) and rice bran (RB), alone and together, on in vitro rumen fermentation, methanogenesis and methanogens. In vitro incubation was performed with six media that were either unsupplemented (control) or supplemented with 10% RB, 5 mmol/L FUM, 10% RB + 5 mmol/L FUM, 10 mmol/L FUM, or 10% RB + 10 mmol/L FUM. Methane (CH4) production, dry matter digestibility, CH4 per digested dry matter, total short‐chain fatty acid (SCFA) production, proportion of SCFA, acetate : proprionate ratio, production of NH3‐N, and population density of rumen microbes were determined. Supplementation with 10% RB + 10 mmol/L FUM yielded a 36% decrease in CH4 production compared to the control. Supplementation of FUM, in the presence or absence of RB, provided increases in total SCFA production and propionate proportion up to 61% and 31%, respectively. Total bacteria, methanogens and protozoa populations were significantly (P < 0.05) decreased with the 10% RB + 10 mmol/L FUM supplementation. The effect of anti‐methanogenesis of FUM was enhanced by the addition of RB. Notably, the CH4 production attenuation was achieved by 10% RB + 10 mmol/L FUM without reduction of digestibility or of ruminal fermentation.  相似文献   

6.
Incubations were carried out with batch cultures of ruminal micro‐organisms from sheep to analyse the influence of the N source on in vitro CH4 production. The two substrates were mixtures of maize starch and cellulose in proportions of 75:25 and 25:75 (STAR and CEL substrates, respectively), and the three nitrogen (N) sources were ammonia (NH4Cl), casein (CA) and isolated soya bean protein (SP). Five isonitrogenous treatments were made by replacing non‐protein‐N (NPN) with CA or SP at levels of 0 (NPN), 50 (CA50 and SP50, respectively) and 100% (CA100 and SP100) of total N. All N treatments were applied at a rate of 35 mg of N/g of substrate organic matter and incubations lasted 16.5 h. With both proteins, N source × substrate interactions (p = 0.065 to 0.002) were detected for CH4 production and CH4/total VFA ratio. The increases in CH4 production observed by replacing the NPN with protein‐N were higher (p < 0.05) for STAR than for CEL substrate, but the opposite was observed for the increases in volatile fatty acid (VFA) production. As a consequence, replacing the NPN by increased levels of CA or SP led to linear increases (p < 0.05) in CH4/total VFA ratio with STAR, whereas CH4/total VFA ratio tended (p < 0.10) to be decreased with CEL substrate. Increasing the amount of both proteins decreased linearly (p < 0.05) ammonia‐N concentrations, which may indicate an incorporation of amino acids and peptides into microbial protein without being first deaminated into ammonia‐N. In incubations with the tested N sources as the only substrate, the fermentation of 1 mg of CA or SP produced 1.24 and 0.60 μmol of CH4 respectively. The results indicate the generation of CH4 from protein fermentation, and that the response of CH4 production to protein‐N supply may differ with the basal substrate.  相似文献   

7.
A 4‐unit, single‐flow continuous culture fermenter system was developed to assess in vitro nutrient digestibility, volatile fatty acid (VFA) concentration and daily enteric methane (CH4) production of ruminant diets. The objective was to develop a closed‐vessel system that maintained protozoal populations and provided accurate predictions of total CH4 production. A diet of 50% orchardgrass (Dactylis glomerata L.) and 50% alfalfa (Medicago sativa L.) was fed during 4, 10‐day periods (7‐day adaptation and 3‐day collection). Fermenters were fed 82 g of dry matter (DM)/day in four equal feedings. pH and temperature were taken every 2 min, and CH4 concentration was measured every 10 min. Samples for DM and protozoal counts were taken daily, and daily effluent samples were collected for determination of DM, VFA and NH3‐N concentrations. There was no effect (p > 0.17) of adaptation versus collection days on vessel and effluent DM, temperature or pH. Initial protozoal counts decreased (p < 0.01), but recovered to initial counts by the collection period. Total VFA, acetate, propionate and isobutyrate concentrations did not differ (p ≥ 0.13) among periods or days of the collection period. There was no difference (p ≥ 0.37) among days or periods in total daily CH4 production and CH4 production per g of OM, NDF, digestible OM or digestible NDF fed. Data collected throughout 4 experimental periods demonstrated that the system was able to reach a steady state in fermentation well within the 7‐day adaptation period and even typically variable data (i.e., CH4 production) were stable within and across periods. While further research is needed to determine the relationship between this system and in vivo data, this continuous culture fermenter system provides a valid comparison of in vitro ruminal fermentation and enteric CH4 production of ruminant diets that can then be further validated with in vivo studies.  相似文献   

8.
Rumen fermentation can produce hydrogen sulfide (H2S), and H2S can be rapidly absorbed by the intestinal wall in nature. If excessive H2S was produced in rumen, it might be toxic to ruminants. This article reviews the research progress of toxicity of H2S, rumen H2S production pathway and its influential factors to lay a foundation for further research and application of rumen H2S‐producing regulation in ruminant.  相似文献   

9.
Our study investigated the effects of condensed tannins (CT) on rumen in vitro methane (CH4) production and fermentation characteristics by incubating lucerne in buffered rumen fluid in combination with different CT extracts at 0 (control), 40, 80 and 120 g CT/kg of substrate DM. Condensed tannins were extracted from four sainfoin accessions: Rees ‘A’, CPI63763, Cotswold Common and CPI63767. Gas production (GP) was measured using a fully automated GP apparatus with CH4 measured at distinct time points. Condensed tannins differed substantially in terms of polymer size and varied from 13 (Rees ‘A’) to 73 (CPI63767) mean degree of polymerization, but had relatively similar characteristics in terms of CT content, procyanidin: prodelphinidin (PC: PD) and cis:trans ratios. Compared to control, addition of CT from CPI63767 and CPI63763 at 80 and 120 g CT/kg of substrate DM reduced CH4 by 43% and 65%, and by 23% and 57%, respectively, after 24‐h incubation. Similarly, CT from Rees ‘A’ and Cotswold Common reduced CH4 by 26% and 46%, and by 28% and 46% respectively. Addition of increasing level of CT linearly reduced the maximum rates of GP and CH4 production, and the estimated in vitro organic matter digestibility. There was a negative linear and quadratic (p < 0.01) relation between CT concentration and total volatile fatty acid (VFA) production. Inclusion of 80 and 120 g CT/kg of substrate DM reduced (p < 0.001) branched‐chain VFA production and acetate: propionate ratio and was lowest for CPI63767. A decrease in proteolytic activity as indirectly shown by a change in VFA composition favouring a shift towards propionate and reduction in branched‐chain VFA production varied with type of CT and was highest for CPI63767. In conclusion, these results suggest that tannin polymer size is an important factor affecting in vitro CH4 production which may be linked to the CT interaction with dietary substrate or microbial cells.  相似文献   

10.
A 2 × 2 factorial experiment was conducted to assess the effects of presence or absence of rumen protozoa and of dietary coconut oil distillate (COD) supplementation on rumen fermentation characteristics, digesta kinetics and methane production in Brahman heifers. Twelve Brahman heifers were selected to defaunate, with 6 being subsequently refaunated. After defaunation and refaunation, heifers were randomly allocated to COD supplement or no supplement treatments while fed an oaten chaff‐based diet. Methane production (MP; 94.17 v 104.72 g CH4/d) and methane yield [MY; 19.45 v 21.64 g CH4/kg dry matter intake (DMI)] were reduced in defaunated heifers compared with refaunated heifers when measured at 5 weeks after refaunation treatment (p < 0.01). Supplement of COD similarly reduced MP and MY (89.36 v 109.53 g/d and 18.46 v 22.63 g/kg DMI, respectively; p < 0.01), and there were no significant interactions of defaunation and COD effects on rumen fermentation or methane emissions. Concentration of total volatile fatty acid (VFA) and molar proportions of acetate, propionate and butyrate was not affected by defaunation or by COD. Microbial crude protein (MCP; g/d) outflow was increased by defaunation (p < 0.01) in the absence of COD but was unaffected by defaunation in COD‐supplemented heifers. There was a tendency towards a greater average daily gain (ADG) in defaunated heifers (p = 0.09), but COD did not increase ADG (p > 0.05). The results confirmed that defaunation and COD independently reduced enteric MP even though the reduced emissions were achieved without altering rumen fermentation VFA levels or gut digesta kinetics.  相似文献   

11.
The main objective of the present work was to study nutritive strategies for lessening the CH4 formation associated to ruminant tropical diets. In vitro gas production technique was used for evaluating the effect of tannin-rich plants, essential oils, and biodiesel co-products on CH4 formation in three individual studies and a small chamber system to measure CH4 released by sheep for in vivo studies was developed. Microbial rumen population diversity from in vitro assays was studied using qPCR. In vitro studies with tanniniferous plants, herbal plant essential oils derived from thyme, fennel, ginger, black seed, and Eucalyptus oil (EuO) added to the basal diet and cakes of oleaginous plants (cotton, palm, castor plant, turnip, and lupine), which were included in the basal diet to replace soybean meal, presented significant differences regarding fermentation gas production and CH4 formation. In vivo assays were performed according to the results of the in vitro assays. Mimosa caesalpineaefolia, when supplemented to a basal diet (Tifton-85 hay Cynodon sp, corn grain, soybean meal, cotton seed meal, and mineral mixture) fed to adult Santa Ines sheep reduced enteric CH4 emission but the supplementation of the basal diet with EuO did not affect (P > 0.05) methane released. Regarding the microbial studies of rumen population diversity using qPCR with DNA samples collected from the in vitro trials, the results showed shifts in microbial communities of the tannin-rich plants in relation to control plant. This research demonstrated that tannin-rich M. caesepineapholia, essential oil from eucalyptus, and biodiesel co-products either in vitro or in vivo assays showed potential to mitigate CH4 emission in ruminants. The microbial community study suggested that the reduction in CH4 production may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.  相似文献   

12.
ABSTRACT

This study assessed the potential of a pine bark extract (PBE) to decrease methane (CH4) and ammonia nitrogen (NH3-N) production in vitro. Dietary substrates, mixed hay, soybean meal and corn grain, were supplemented 0, 2, 4 and 6% of PBE and incubated in an in vitro batch culture for 24-h. Incubations were run three times. Total gas production (GP) was determined at 6, 12 and 24-h and gas samples were analysed for CH4. Samples were collected for volatile fatty acids (VFA) and NH3-N analysis. Treatments were compared by polynomial contrasts for PBE concentration. Increasing PBE caused linear decreases in NH3-N, microbial biomass production and digestibility, whereas the degradation rate was quadratically reduced. Total VFA were decreased but total GP and CH4 production and kinetics were unaffected. The inclusion of 2% PBE in ruminant feed has the capability to reduce NH3-N concentration by 50%, without affecting diet digestibility or CH4 production.  相似文献   

13.
The effect of ethanol on nitrate and nitrite reduction was examined by conducting in vitro experiments with mixed ruminal microbes. The addition of ethanol to cultures of mixed ruminal microbes stimulated nitrate reduction, and, to a greater extent, nitrite reduction, which resulted in a decrease in nitrite accumulation. However, known nitrate‐reducing ruminal bacteria, such as Selenomonas ruminantium, Veillonella parvula and Wolinella succinogenes, were unable to utilize ethanol directly as an electron donor for nitrate reduction. No nitrate‐reducing bacterium capable of utilizing ethanol was found in the rumen of goats. However, when mixed ethanol‐utilizing, hydrogen gas (H2)‐producing bacteria (Ruminococcus albus and Ruminococcus flavefaciens) were added to the culture of the mixed nitrate‐reducing bacteria described above, nitrate and nitrite reduction was observed. These results suggest that the nitrate‐reducing bacteria utilized the H2 that was produced from ethanol oxidation by the ethanol‐utilizing bacteria as an electron donor. It is conceivable that the stimulation of nitrate and nitrite reduction by ethanol, observed in the culture of mixed ruminal microbes, was a result of electron transfer from ethanol to nitrate, and nitrite through H2, that is, ‘interspecies hydrogen transfer’ from ethanol‐metabolizing bacteria to nitrate‐reducing bacteria. Thus, the addition of ethanol to high‐nitrate diets may be effective for preventing nitrate poisoning. Furthermore, methane production was reduced to less than one‐third by the addition of mixed nitrate‐reducing bacteria to the co‐culture of mixed methanogens with mixed ethanol‐utilizing bacteria incubated in a medium containing ethanol and nitrate. Therefore, the addition of ethanol and nitrate may decrease methanogenesis without suppressing overall fermentation in the rumen.  相似文献   

14.
The addition of natural plant secondary compounds to ruminant feed has been extensively studied because of their ability to modify digestive and metabolic functions, resulting in a potential reduction in greenhouse gas emissions, among other benefits. Condensed tannin (CT) supplementation may alter ruminal fermentation and mitigate methane (CH4) emissions. This study’s objective was to determine the effect of quebracho CT extract [QT; Schinopsis quebracho-colorado (Schltdl.) F.A. Barkley & T. Meyer] within a roughage-based diet on ruminal digestibility and kinetic parameters by using the in situ and in vitro gas production techniques, in addition to blood urea nitrogen (BUN) and ruminal (volatile fatty acid [VFA], NH3-N, and protozoa count) parameters. Twenty rumen-cannulated steers were randomly assigned to four dietary treatments: QT at 0%, 1%, 2%, and 3% of dry matter (DM; QT0: 0% CT, QT1: 0.70% CT, QT2: 1.41% CT, and QT3: 2.13% CT). The in situ DM digestibility increased linearly (P = 0.048) as QT inclusion increased, whereas in situ neutral detergent fiber digestibility (NDFD) was not altered among treatments (P = 0.980). Neither total VFA concentration nor acetate-to-propionate ratio differed among dietary treatments (P = 0.470 and P = 0.873, respectively). However, QT3 had lower isovalerate and isobutyrate concentrations compared with QT0 (P ≤ 0.025). Ruminal NH3 and BUN tended to decline (P ≤ 0.075) in a linear fashion as QT inclusion increased, suggesting decreased deamination of feed protein. Ruminal protozoa count was reduced in quadratic fashion (P = 0.005) as QT inclusion increased, where QT1 and QT2 were lower compared with QT0 and QT3. Urinary N excretion tended to reduce in a linear fashion (P = 0.080) as QT increased. There was a treatment (TRT) × Day interaction for in vitro total gas production and fractional rate of gas production (P = 0.013 and P = 0.007, respectively), and in vitro NDFD tended to be greater for QT treatments compared with no QT inclusion (P = 0.077). There was a TRT × Day interaction (P = 0.001) on CH4 production, with QT3 having less CH4 production relative to QT0 on day 0 and QT2 on days 7 and 28. Feeding QT up to 3% of the dietary DM in a roughage-based diet did not sacrifice the overall DM digestibility and ruminal parameters over time. Still, it is unclear why QT2 did not follow the same pattern as in vitro gas parameters. Detailed evaluations of amino acid degradation might be required to fully define CT influences on ruminal fermentation parameters and CH4 production.  相似文献   

15.
Introduction Major methanol sources in ruminant feeds are pectins esterified with methoxyl groups. Methanol can be released by pectin esterase activity of rumen bacteria (R exova -B enkova and M arkovic 1976). It has been detected in rumen fluid of cows in vivo and in vitro (V antcheva et al. 1970, 1972). It is, however, not likely to accumulate in the rumen fluid since it can be readily used by methylotrophic organisms. Methanogenic archaebacteria such as Methanosarcina barkeri (H utten et al. 1980; M& uuml ; ller et al. 1986) are able to use methanol as energy and carbon source. Two equations have been reported for this conversion: 4CH4 → 3CH4 + CO2 + 2 H2O (1) CH3OH + H2 → CH4 + H2O (2) Methanogenesis from methanol has been shown to occur during in vitro fermentations with rumen fluid as inoculum (C zerkawski and B reckenridge 1972; P ol and D emeyer 1988). However, acidogenic micro-organisms, such as Eubacterium limosum or Butyribacterium methylotrophicum, may also utilize methanol. In rumen fluid of sheep fed a molasses-rich diet, Eubacterium limosum was the predominant methanol-utilizing bacterium (G enthner et al. 1981). Major products of these acidogenic methylotrophs are acetate and butyrate. These different fermentation end-products, methane versus fatty acids, will affect the metabolizable energy content of feedstuffs that are rich in highly methoxylated pectins or other methyl group-containing compounds. The purpose of the present study was to investigate whether the rumen simulation technique (RUSITEC) would be a suitable model to evaluate the methanogenic or acidogenic potential of methanol during ruminal fermentation. The study focused on methane production, fermentation characteristics and methanol turnover. Fermentation traits included pH, redox potential, ammonia and volatile fatty acid production, and degradation of feed constituents.  相似文献   

16.
The objectives of the trial were to study the effects of rare earth element (REE) lanthanum (La) on the in vitro rumen methane (CH4) and volatile fatty acid (VFA) production and the microbial flora of feeds. Four feed mixtures with different levels of neutral detergent fibre (NDF), that is 20.0% (I), 31.0% (II), 41.9% (III) and 52.7% (IV), were formulated as substrates. Five levels of LaCl3, that is 0, 0.4, 0.6, 0.8 and 1.0 mmol/kg dry matter (DM), were added to the feed mixtures, respectively, as experimental treatments in a two‐factor 5 × 4 randomized design. The in vitro incubation lasted for 24 h. The results showed that supplementing LaCl3 increased the total gas (p < 0.001) production and tended to increase the total VFA production (p = 0.072) and decreased the CH4 production (p = 0.001) and the ratios of acetate/propionate (p = 0.019) and CH4/total VFA (p < 0.001). Interactions between LaCl3 and NDF were significant in total gas production (p = 0.030) and tended to be significant in CH4 production (p = 0.071). Supplementing LaCl3 at the level of 0.8 mmol/g DM decreased the relative abundance of methanogens and protozoa in the total bacterial 16S rDNA analysed using the real‐time PCR (p < 0.0001), increased F. succinogenes (p = 0.0003) and decreased R. flavefaciens (p < 0.0001) whereas did not affect R. albus and anaerobic fungi (p > 0.05). It was concluded that LaCl3 decreased the CH4 production without negatively affecting feed digestion through manipulating rumen microbial flora when feed mixtures with different levels of NDF were used as substrates.  相似文献   

17.
The objective of this study was to evaluate the effects of using encapsulated nitrate product (ENP) replacing soybean meal in diets differing in concentrate to forage ratio on ruminal fermentation and methane production in vitro using a semi‐automatic gas production technique. Eight treatments were used in a randomized complete design with a 2 × 4 factorial arrangement: two diet (20C:80F and 80C:20F concentrate to forage ratio) and four levels of ENP addition (0%, 1.5%, 3.0%, and 4.5% of DM) replacing soybean meal. There was a diet × ENP interaction (p = 0.02) for methane production. According to ENP addition, diets with 80C:20F showed more intense reduction on methane production that 20C:80F. A negative linear effect was observed for propionate production with ENP addition in diet with 80C:20F and to the relative abundance of methanogens Archaea, in both diet. The replacement of soybean meal by ENP in levels up to 3% of DM inhibited methane production due to a reduction in the methanogens community without affecting the organic matter degradability. However, ENP at 4.5% of DM level affected fiber degradability, abundance of cellulolytic bacteria, and propionic acid production, indicating that this level of inclusion is not recommended for ruminant production.  相似文献   

18.
In this study, the effects of seven pure plant secondary metabolites (PSM s) on rumen fermentation, methane (CH4) production and rumen bacterial community composition were determined. Two in vitro trials were conducted. In trial 1, nine concentrations of 8‐hydroxyquinoline, αterpineol, camphor, bornyl acetate, αpinene, thymoquinone and thymol were incubated on separate days using in vitro 24‐hr batch incubations. All compounds tested demonstrated the ability to alter rumen fermentation parameters and decrease CH4 production. However, effective concentrations differed among individual PSM s. The lowest concentrations that reduced (<  .05) CH4 production were as follows: 8 mg/L of 8‐hydroxyquinoline, 120 mg/L of thymoquinone, 240 mg/L of thymol and 480 mg/L of αterpineol, camphor, bornyl acetate and αpinene. These concentrations were selected for use in trial 2. In trial 2, PSM s were incubated in one run. Methane was decreased (<  .05) by all PSM s at selected concentrations. However, only 8‐hydroxyquinoline, bornyl acetate and thymoquinone decreased (<  .05) CH4 relative to volatile fatty acids (VFA s). Based on denaturing gradient gel electrophoresis analysis, different PSM s changed the composition of bacterial communities to different extents. As revealed by Ion Torrent sequencing, the effects of PSM s on relative abundance were most pronounced in the predominant families, especially in Lachnospiraceae , Succinivibrionaceae , Prevotellaceae , unclassified Clostridiales and Ruminococcaceae . The CH 4 production was correlated negatively (?.72; <  .05) with relative abundance of Succinivibrionaceae and positively with relative abundance of Ruminococcaceae (.86; <  .05). In summary, this study identified three pure PSM s (8hydroxyquinoline, bornyl acetate and thymoquinone) with potentially promising effects on rumen CH4 production. The PSM s tested in this study demonstrated considerable impact on rumen bacterial communities even at the lowest concentrations that decreased CH4 production. The findings from this study may help to elucidate how PSM s affect rumen bacterial fermentation.  相似文献   

19.
The experiment was designed to study the use of rambutan (Nephelium lappaceum) fruit peel powder (RP) with urea (U) supplementation on rumen fermentation, digestibility, methane (CH4) production, milk production and composition in lactating dairy cows. Four Holstein crossbred lactating dairy cows, with starting liveweight of 450 ± 15 kg with 130 ± 10 DIM (days-in-milk), were randomly allocated to respective treatments: without supplementation (control; T1), supplementation of urea (U) at 90 g/hd/day (T2), supplementation of RP at 450 g/hd/day (T3) and supplementation of RPU (RP at 450 g/hd/day and U 90 g/hd/day) (T4), respectively, using a 4 × 4 Latin square design. The results showed that the U, RP and RPU supplementation did not change feed intakes (p > 0.05) and digestibilities of DM and OM were similar. However, digestibilities of CP and NDF were increased in the U and RPU groups (p < 0.05). Acetate production was decreased, while propionate production was dramatically increased (p < 0.05) in both the RP and RPU groups respectively. Notably, the ratio of C2:C3, protozoal population and CH4 production was reduced in both the RP and RPU groups. In addition, nitrogen intake and nitrogen excretion were significantly higher while nitrogen retention was increased in the U and RPU groups. Allantoin excretion and absorption, microbial protein synthesis and efficiency of microbial N supply were increased in the U and RPU supplementation groups (p < 0.05). Furthermore, milk yield, milk fat and total solids were significantly enhanced in the U and RPU groups (p < 0.05). Moreover, the 3.5% FCM was increased (p < 0.05) while milk protein, lactose, solids-not-fat and milk urea nitrogen were not altered (p > 0.05). Supplementation of either U or RPU significantly improved fibre digestibilities, rumen fermentation, microbial protein synthesis, reduced protozoal population, mitigated CH4 production and enhanced milk yield and milk composition.  相似文献   

20.
Our objectives were to compare the effects of sources of supplemental N on ruminal fermentation of dried citrus pulp (DCP) and performance of growing steers fed DCP and bahiagrass (Paspalum notatum) hay. In Exp. 1, fermentation of DCP alone was compared with that of isonitrogenous mixtures of DCP and solvent soybean meal (SBM), expeller soybean meal (SoyPLUS; SP), or urea (UR). Ground (1 mm) substrates were incubated in buffered rumen fluid for 24 h, and IVDMD and fermentation gas production kinetics and products were measured. Nitrogen supplementation increased (P < 0.10) ruminally fermentable fractions, IVDMD, pH, and concentrations of NH3 and total VFA, but reduced the rate of gas production (P < 0.10) and the lag phase (P < 0.01). Supplementation with UR vs. the soy-based supplements increased ruminally fermentable fractions (P < 0.05) and concentrations of total VFA (P < 0.10) and NH3 (P < 0.01), but these measures were similar (P > 0.10) between SBM and SP. In Exp. 2, 4 steers (254 kg) were fed bahiagrass hay plus DCP, or hay plus DCP supplemented with CP predominantly from UR, SBM, or SP in a 4 x 4 Latin square design, with four 21-d periods, each with 7 d for DMI and fecal output measurement. Nitrogen-supplemented diets were formulated to be isonitrogenous (11.9% CP), and all diets were formulated to be isocaloric (66% TDN). Intake and digestibility of DM, N, and ADF were improved (P < 0.05) by N supplementation. Compared with UR, the soy-based supplements led to greater (P < 0.05) DM and N intakes and apparent N and ADF digestibilities. Plasma glucose and urea concentrations increased (P < 0.10) with N supplementation and were greater (P < 0.01) for the soy-based supplements than for UR. Intake, digestibility, and plasma metabolite concentrations were similar (P > 0.1) for SBM and SP. In Exp. 3, 24 steers (261 kg) were individually fed bahiagrass hay plus DCP (control), or hay plus DCP supplemented with CP predominantly from UR or SBM. Over 56 d, DMI and ADG were greatest (P < 0.05) in steers fed SBM. Nitrogen supplementation increased (P < 0.05) DMI, ADG, and G:F. However, SBM supplementation produced greater (P < 0.05) DMI and ADG and similar (P > 0.05) G:F compared with UR supplementation. We conclude that supplemental N is important to optimize ruminal function and performance of growing steers fed forage diets supplemented with DCP. Diets with supplemental N mainly from SBM improved diet digestibility and animal performance beyond that achieved by UR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号