首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
上海市绿地表层土壤有机碳储量的估算   总被引:1,自引:0,他引:1  
张青青  伍海兵  梁晶 《土壤》2020,52(4):819-824
本文调查了上海市472个绿地土壤样点,通过对其土壤有机碳含量、密度等指标进行测定分析,最终估算出上海市绿地土壤表层有机碳储量,同时为预测上海市未来十几年的碳库变化提供数据支撑。研究结果表明:①上海市绿地表层(0~20 cm)土壤有机碳空间分异性较大,土壤有机碳含量和密度表现为西高东低,且自中心向四周逐渐增高。②不同绿地类型土壤有机碳含量大小依次为:公园绿地公共绿地道路绿地;有机碳密度的大小依次为:公共绿地公园绿地道路绿地。不同绿地类型土壤有机碳含量和密度差异显著,其中,城区不同绿地类型土壤有机碳含量和密度差异显著(P0.05),但郊区不同绿地类型土壤有机碳含量和密度差异不显著(P0.05)。③2015年上海市绿地表层土壤有机碳储量约为4.26×106 t。预计到2035年,上海市绿地表层土壤有机碳储量约可达到1.53×107 t。  相似文献   

2.
通过对甘肃省庄浪县梯田土壤采样分析,结合第二次土壤普查及庄浪县耕地质量评价数据,估算梯田土壤固碳速率并分析其影响因素。结果表明: 1)该县农田土壤沟谷台地的有机碳含量最高,沟谷、 梁峁坡地次之,沟谷川坪地有机碳最低,不同地形有机碳含量差异显著(P0.05); 2)80% 的样点土壤有机碳含量在6.0~11.0 g/kg之间,总体上020 cm农田土壤有机碳含量呈现正态分布,剖面有机碳含量从上至下呈逐渐递减规律; 3)现阶段庄浪县020 cm农田土壤有机碳密度为20.02 t/hm2,低于全国耕层土壤有机碳密度平均水平(33.45 t/hm2),近30年020 cm 土壤固碳速率为C 63 kg /(hm2a),近5年固碳速率为 C 26 kg /(hm2a); 4)在半干旱区县域尺度上,地形部位可解释43%的有机碳变异性,有机肥、 坡向和田面坡度三者之和可解释47.1% 的有机碳变异性,土壤类型可解释9.9% 的有机碳变异性。综合分析表明,庄浪县农田土壤有机碳密度在过去30年间呈增加趋势,可能与庄浪县在60年代开始的大规模梯田建设和水土流失治理有关。  相似文献   

3.
干旱半干旱区农田土壤碳垂直剖面分布特征研究   总被引:8,自引:0,他引:8  
以中国干旱半干旱区农田土壤为研究对象,通过收集自然农田和长期定位站点(178个剖面,0~100 cm土层)农田土壤碳的数据并对其进行整合,分析了农田土壤有机碳和无机碳含量的垂直剖面分布特征及其影响因素。结果表明,随土层深度增加,农田土壤有机碳呈下降趋势,表层含量高于底层;不同地区农田土壤无机碳含量变化趋势不一,随土壤深度增加整体呈现升高的趋势,但是也有一些地区呈现下降趋势。土壤剖面深度为100 cm的农田土壤有机碳和无机碳密度平均值分别为8.33和15.83 kg m-2,农田土壤无机碳储量大约是土壤有机碳的2倍。土壤深度为0~30 cm的有机碳占100 cm总有机碳含量的45%,无机碳仅占100 cm总无机碳含量的29%;土壤无机碳主要集中在30~100 cm土层,占100 cm总无机碳含量的71%,远高于有机碳在此土层占100 cm总有机碳含量的百分比(55%)。综合自然农田和长期定位站点农田土壤碳的数据,土壤容重与土壤p H是影响农田土壤有机碳和无机碳分布特征的重要因素:自然农田土壤有机碳与土壤p H(R2=0.61,p0.01)和土壤容重(R2=0.64,p0.01)呈显著负相关;长期定位站点土壤无机碳与土壤p H(R2=0.56,p0.01)和土壤容重(R2=0.63,p0.01)呈显著正相关。中国干旱半干旱区农田土壤有机碳和无机碳的分布特征与影响因素,将为陆地生态系统碳储量估算提供数据基础与理论支撑。  相似文献   

4.
中国陆地土壤有机碳储量估算及其不确定性分析   总被引:3,自引:0,他引:3  
土壤有机碳密度和储量的统计对于研究土壤碳循环至关重要.为提高土壤有机碳密度和储量的估算精度,明晰导致估算存在不确定性的内在原因,根据第二次土壤普查资料,采用两种方式、两种土层厚度、两个公式以及3种碳密度取值方法估算了中国土壤有机碳储量,结果表明,中国陆地土壤有机碳储量大致在50.6~154.0 Pg(1 Pg=1015 g)之间,平均储量为(102.3±51.7)Pg;估算的不确定性处于25.5%~30.4%之间.中国陆地土壤有机碳储量估算结果差异以及不确定性主要来源于以下几个方面:碳密度的取值方法不同,估算深度不一致,计算公式不统一,基础数据不一样以及制图尺度差异.本文研究结果认为基于GIS数字土壤图,采用标准1 m厚度土层,运用不考虑大于2 mm砾石含量的碳密度计算公式以及分土层累计计算法是估算中国陆地土壤有机碳储量最优方法.  相似文献   

5.
基于随机森林的县域土壤有机碳密度及储量估算   总被引:1,自引:0,他引:1       下载免费PDF全文
采用2009年云南省玉龙县土壤调查数据,基于土壤类型法将所测样点的土壤有机质含量转换为有机碳密度,经克里金插值进行空间化,再以2009年landsat7-Level2影像及SRTM 90 m数字高程模型数据为基础,提取归一化植被指数、亮度、绿度、湿度、坡度、坡向、曲率等与土壤有机碳形成密切相关的解释变量;通过随机森林模型模拟土壤有机碳密度及其空间分布,基于有机碳密度估算出0~20 cm表层土壤的有机碳总储量,并对两种模拟结果进行误差分析。结果显示:克里金和随机森林的估算结果分别为2.4×10~8和1.7×10~8 t,均方根误差分别为20.77和14.11,普通克里金插值误差较大,且对采样点数量及空间分布有较强的依赖性;随机森林模型不仅能处理高维数据,还能给出多个变量的重要性,估算结果精度更高,也更接近区域实际情况,对小尺度的细节表现更佳,适于地形复杂且样点有限的县域土壤有机碳密度及其储量的估算。  相似文献   

6.
农田土壤长期受到人类干预,与自然土壤相比,其与大气之间的碳交换强度更大。以辽宁省农田生态系统为研究对象,采用生态系统碳循环模型-CENTURY模型模拟辽宁省农田耕层土壤有机碳(0~20 cm)在1951~2005年的动态变化,并以2005年大量样点的分析结果为基础,估算有机碳储量。研究表明:全省2005年农田耕层土壤有机碳密度平均为2.66kg m-2,其中辽东山区辽中南平原区辽西低山丘陵区,全省农田耕层土壤碳储量为112.15 Tg;CENTURY模型模拟的农田土壤有机碳与实测值有较好的一致性。  相似文献   

7.
不同布点密度条件下土壤有机碳的空间变异特性   总被引:1,自引:0,他引:1  
选择福建省漳州市三个不同尺度的典型区,在格网法采样的基础上设计6种不同分类方法和4种格网密度,研究不同尺度下高效表征耕地土壤有机碳空间变异的样点布设方式。研究结果表明:市级尺度(漳州市)高效的样点布设方法为结合地貌类型和土壤类型信息的分类格网法,样点密度以接近6 km×6 km为最节省的采样方法。县级(龙海市)尺度按土壤类型与格网法相结合的方法是高效的布点方式,土壤类型若仅划分到土类,格网密度需接近1 km×1 km;若土壤类型划分到亚类或土属,格网密度可放宽到2 km×2 km。乡镇级(程溪镇)最适合的样点布设方法是未分类格网法。由于土壤类型信息是表征土壤有机碳空间变异最重要的影响因素,因此建议在县级以上尺度进行土壤有机碳空间变异研究时应考虑到土壤类型的影响。  相似文献   

8.
长期施肥对土壤碳储量和作物固定碳的影响   总被引:28,自引:5,他引:28       下载免费PDF全文
孟磊  蔡祖聪  丁维新 《土壤学报》2005,42(5):769-776
利用长期定位试验研究有机肥、化肥以及有机肥和化肥混合施用对耕层土壤有机C储量变化和作物固定C的影响。处理包括化学肥料NPK不同组合。NPK、NP、NK、PK、全部施用有机肥(OM)、化学肥料氮和有机肥氮对半施用(1/20M)及不施肥(CK)七个处理。均衡施用N、P和K,显著提高土壤有机C储量,而养分缺乏的施肥,土壤有机碳大量损失。抵消N2O排放后,只有外源有机碳输入的OM和1/2OM具有净的碳固定。土壤有机碳储量变化(Y)与土壤有机碳输入量(X)符合线性方程Y=1.3231X-1942.7(r=0.9840, n=7)。作物固定碳量和可以返还到土壤的根茬和秸秆中有机碳量都以NPK、NP和1/2ON施肥处理最多。若固定于根茬和秸秆的碳返还到原施肥土壤,则这些处理的土壤有机碳储量最多。但从经济效益考虑,最佳的施肥方式为有机和化学肥料配合施用。  相似文献   

9.
农田土壤有机碳库是陆地生态系统最重要的土壤碳库之一,明晰农田土壤有机碳的空间分布特征与影响机制,可为农田土壤肥力及固碳能力评价提供采样依据和理论基础。以江汉平原典型农业灌排单元(面积45 hm2)为研究对象,测定了104个样点0—200 cm深度范围内1 560个土壤样品的有机碳含量,并计算碳密度,揭示土壤有机碳密度的空间分布特征,并分析耕作方式和耕作历史对其分布的影响。结果表明:(1)0—200 cm农田土壤剖面内,20,200 cm厚度土层有机碳密度的均值变化范围分别为1.75~3.77,11.67~34.24 kg/m2,随着土层深度的增加,农田土壤有机碳密度先急剧降低后缓慢增加,且100—200 cm土层的有机碳密度约占整个土壤剖面的45.26%,深层有机碳储量需引起重视;(2)在灌排单元尺度上,0—20 cm土层和0—200 cm剖面有机碳密度均具有较强空间自相关性,表明成土母质和地形等结构性因素是影响灌排单元尺度土壤有机碳空间空间分布特征的主导因子;(3)耕作方式和耕作历史影响农田土壤的有机碳密度,稻田所有土层的有机碳密度均高于旱地,0—200 cm剖面的有机碳密度是旱地的1.31倍;老稻田所有土层的有机碳密度均高于新稻田;林地改稻田和旱地改稻田样地在0—200 cm剖面有机碳总密度差异较小,但林地浅层土体的碳密度更大;合理的增加稻田面积是快速提高农田碳储量的有效途径之一;(4)灌排单元尺度农田土壤有机碳密度的代表性稳定深度为180—200 cm,在进行土壤有机碳密度调查时应尽量延伸采样深度。研究结果为提高农田土壤有机碳密度估算的准确性与采样设计的合理性,以及农田土壤的固碳能力评价提供了科学依据。  相似文献   

10.
土壤有机碳储量研究进展   总被引:7,自引:0,他引:7  
如何有效进行土壤有机碳储量估算,世界各国都做了有益地探索和研究。本文通过对比分析目前国内外土壤有机碳相关研究成果,系统总结了土壤有机碳的研究背景、研究方法、评价指标及储量等主要成果,并指出了我国在土壤有机碳储量研究方面存在的若干问题。最后提出目前需要深入的几个研究方向,包括采用大比例尺地形图,进一步提高不同海拔地块土壤碳储量估算精度,加强土壤有机碳与气候相互作用机理分析,综合分析土地利用/覆盖变化对土壤有机碳的影响,并寻求不同时空条件下土壤有机碳估算方法。  相似文献   

11.
室内恒温条件下稻田土壤中菌渣的分解过程及CO2释放特征   总被引:1,自引:0,他引:1  
菌渣是栽培食用菌后的下脚料,可作为有机肥再利用。本文通过实验室条件下培养不同比例的菌渣和稻田土壤混合物[不施用菌渣(TS),土壤与菌渣质量比为10∶1(SM1)、5∶1(SM2)和2∶1(SM3),全部菌渣(TM)],研究不同处理有机碳和全氮的变化,探讨菌渣在稻田土壤中的分解过程,并分析CO_2释放特征,为菌渣合理利用提供参考。结果表明,在相同培养时间,添加不同比例菌渣处理有机碳和氮含量均比TS处理高,其中TM处理的有机碳和全氮分别比TS处理提高了10.7倍和11.0倍。有机碳、氮含量的提高量主要依赖于菌渣的添加量。总体来说,各处理随培养时间的延长,由于碳氮的分解,有机碳、氮均有下降趋势;在35 d后TM处理有机碳氮下降较快。添加菌渣越多,有机碳残留率也越大。在培养63 d后,菌渣有机碳(YC)和氮(YN)的分解残留率与菌渣添加量(X)的关系式分别为:YC=71.26X-0.607 5,r2=1.000 0**和YN=74.039X-0.413 3,r2=0.999 9**。各处理土壤CO_2释放速率均表现出先增后降然后趋于稳定趋势。菌渣用量越高,CO_2释放速率越高,各处理在不同培养时间CO_2释放速率均表现为TMSM3SM2SM1TS。在第7 d时各处理CO_2释放速率最高,在第14 d时渐渐处于平稳下降状态,培养35 d后,各处理土壤有机碳矿化强度很小,大部分有机碳被固定在土壤中,其中TM处理有机碳矿化强度最小。总之,还田菌渣越多,土壤中被固定的碳越多。  相似文献   

12.
气候因子和地表覆盖对沿海滩涂土壤盐分动态的影响   总被引:3,自引:0,他引:3  
为探明气候因子对沿海滩涂表层土壤盐分季节性变化规律的影响,并探讨植被和秸秆覆盖对滩涂土壤脱盐效果及控盐的作用。2014年5月—2015年5月,在江苏沿海滩涂盐碱地(中重度盐分),设置4种处理进行田间试验,分别为对照(裸地,CK)、秸秆覆盖(覆盖量为15 t·hm-2,SM)、植被覆盖(PC)和植被+秸秆覆盖(覆盖量为7.5 t·hm-2,PC+1/2SM),监测了气候因子和表层土壤盐分的季节性动态变化。结果表明:1)在沿海滩涂裸地中,土壤盐分具有一定程度的季节性规律,表现为在10—12月具有明显的积盐效果,且在10月EC1︰5达到最大值为3.90 d S·m-1。2)相关分析表明:采样前7 d降雨累积量与土壤盐分变化有着极密切负相关关系;气候因子的多因子及互作逐步分析表明:降雨量增加可以促进土壤脱盐作用,大气温度升高可加剧土壤盐分表聚,降雨量和大气温度的互作效应增加会对土壤盐分累积产生正效应。3)地表覆盖(包括PC和SM)显著地改变了气候因子对土壤盐分动态变化的影响,累积降雨量和大气平均温度与土壤盐分无显著相关性,且大量秸秆覆盖对滩涂表层土壤脱盐具有更明显的效果。因此,在沿海气候向暖湿方向发展的趋势下,综合考虑脱盐及控盐作用,选择适量秸秆覆盖(如覆盖量15 t·hm-2)或适量秸秆覆盖结合植被种植覆盖,同时充分利用沿海地区降雨量集中的特点,可能是未来滩涂盐碱盐渍土快速脱盐和土壤改良的重要措施。  相似文献   

13.
Conservation tillage systems are advocated worldwide for sustainable crop production; however, their favorable effects on soil properties are subject to the length of their use. The following study aimed at using the CENTURY agroecosystem model to simulate long-term changes in soil organic carbon (SOC) fractions and wheat (Triticum aestivum L.) production. Tillage systems include conventional tillage (CT, control), minimum tillage, chisel plow (CP) and zero tillage with (R+) and without residues (R?) in fallow-wheat system. The model validation with 2-year field experiment showed that the simulated results were strongly correlated with observed results for total organic carbon (r2 = 0.94), active soil carbon (r2 = 0.91), slow soil carbon (r2 = 0.84) and passive soil carbon (r2 = 0.85). Similarly, model simulations for biomass and grain yields were, respectively, 81% and 76% correlated with observed results. The long-term simulations predicted that SOC stock and its fractions will gradually build up, crop biomass and grain yield will enhance with crop residue retention, especially under chisel plough in comparison of existing CT system. The study concludes that CP and retention of crop residues have potential to improve SOC contents and ultimately crop production.  相似文献   

14.
Soil organic carbon (SOC) is the most important carbon pool in the terrestrial ecosystem. However, temporal variations in paddy SOC under a temperate continental monsoon climate are poorly understood. Here, we demonstrate that significant SOC variations occur in meadow soil (MS), black soil (BS) and planosol (PS) paddy soils. Several soil samples were collected from different regions where rice was cultivated for 1, 6, 10, 23 and 40 years for MS samples; for 1, 6, 10, 20 and 35 years for BS samples and 1, 5, 10, 15 and 25 years for PS samples. The total organic carbon (TOC) content and humus organic carbon (HOC) content were found to increase as the rice cultivation duration increased, while the mineralizable organic carbon (MOC) content and carbohydrate organic carbon (COC) content exhibited the opposite trend. The relationships between the relative carbon accumulation (Y) in the three soil types and time (X) were consistent with the following models: YTOC = 0.9973X0.0245, YHOC = 0.9936X0.0457, YMOC = 1.023X−0.073, and YCOC = 1.040X−0.059, describing the temporal variation in the various forms of organic carbon in paddy soils under a temperate continental monsoon climate. The results of this study provide a reference for soil carbon pool management and fertilization management.  相似文献   

15.
Many national and regional databases of soil properties and associated estimates of soil carbon stock consider organic, but not inorganic carbon (IC). Any future change in soil carbon stock resulting from the formation of pedogenic carbonates will be difficult to set in context because historical measurements or estimates of IC concentration and stock may not be available. In their article describing a database of soil carbon for the United Kingdom published in this journal, Bradley et al. [Soil Use and Management (2005) vol. 21, 363–369] only consider data for organic carbon (OC), despite the occurrence of IC‐bearing calcareous soils across a substantial part of southern England. Robust techniques are required for establishing IC concentrations and stocks based on available data. We present linear regression models (R2 between 0.8 and 0.88) to estimate IC in topsoil based on total Ca and Al concentrations for soils over two groups of primary, carbonate‐bearing parent materials across parts of southern and eastern England. By applying the regression models to geochemical survey data across the entire area (18 165 km2), we estimate IC concentrations on a regular 500‐m grid by ordinary kriging. Using bulk density data from across the region, we estimate the total IC stock of soil (0–30 cm depth) in this area to be 186 MtC. This represents 15.5 and 5.5% of the estimated total soil carbon stock (OC plus IC) across England and the UK, respectively, based on the data presented by Bradley et al. [Soil Use and Management (2005) vol. 21, 363–369]. Soil geochemical data could be useful for estimating primary IC stocks in other parts of the world.  相似文献   

16.
Corn (Zea mays L.) is planted in two seasons per year in northern Iran (mid-April as a main crop and mid-June as a second crop). The main objective of this study was to determine whether corn yield response would differ between these two seasons and different plant populations. Two field experiments were conducted at the Agricultural Research Center of Golestan – Iran in 2007 and 2008 at different planting densities. The results showed that the values of grain yield and most traits were significantly lower in the second season. Maximum grain yield was observed at planting densities of 6.5 plants m?2 in the first season, whereas in the second season grain yield was the same for planting densities between 2.5 and 12.5 plants m?2. Based on the second-year experimental results, the following functions were fitted to show the relationship between yield ha?1 (Y) and planting densities (X) for the first and second seasons, respectively: (Y = ?167.6X 2 + 2672.2X + 511.77; R 2 = 0.992) and (Y = 1200.1 ln(X) + 2924.4; R 2 = 0.935). This study found that the optimum plant population was 6.5 plants m?2 under low heat stress, and should be reduced to 2.5–4.5 plants m?2 under heat stress conditions.  相似文献   

17.
沙地农田肥水因子对春玉米产量形成的影响   总被引:2,自引:0,他引:2  
采用二次回归通用旋转组合设计方法,对沙地春玉米水肥因子进行了试验研究,结果表明,试验条件下沙地农田土壤相对含水量保持在66.6%。施用尿素量59.4g/m^2时可获得1.13kg/m^2的最高产量,影响春玉米产量形成的关键因子是N肥施用量和土壤相对含水量。春玉米产量(Y)——与土壤相对含水量(X1)、N肥施用量(X2)的关系为Y=4.1 0.54X1 0.46X2-0.23X1X2-0.24X21-0.16X^22。  相似文献   

18.
本研究基于详尽、系统的土壤采样调查,研究了喀斯特高基岩出露坡地典型样地(100 m×100 m)内表层土壤(0~15 cm)有机碳(SOC)含量的空间异质性特征,并以土壤斑块加和法为基准,探讨了传统空间插值方法和基于岩石出露率、土深校正的空间插值方法在喀斯特高基岩出露地区土壤表层有机碳储量估算中的适用性。结果表明,研究区SOC和容重均值分别为75.5 g·kg-1和0.8 g·cm-3,变异系数分别为30.6%与47.3%,皆呈现中等变异;SOC半变异函数的最优拟和模型为指数模型,块金值和基台值分别为260.8与521.7,变程为52.5 m,其半变异函数分别在滞后距0~15.2 m与34.7~54.2 m范围内呈现明显的各向异性,说明在该尺度范围内微地貌与地形显著影响SOC的空间分布;利用土壤斑块加和法估算的样地表层SOC储量和碳密度分别为983.8 kg和0.1 kg·m-2,利用传统空间插值方法估算的表层SOC储量和碳密度分别为86 264.0 kg和8.6 kg·m-2,利用基于岩石出露率、土深校正的空间插值方法估算的表层SOC储量和碳密度分别为2 712.8 kg和0.3 kg·m-2。其中传统空间插值方法大大高估了喀斯特地区表层SOC储量和碳密度值,用该方法估算的SOC储量为该区SOC实际储量的87.7倍,其误估率为8 668.4%。说明传统地统计学方法不适合估算喀斯特高基岩出露坡地表层SOC储量及碳密度。而基于岩石出露率、土深校正的空间插值方法大大降低了估算喀斯特高基岩出露坡地表层SOC储量和碳密度的误差,为该区SOC实际储量及碳密度的2.7倍。说明校正后的地统计方法在估算该区高基岩出露坡地表层SOC储量时具有一定的适用性。以上研究表明,地统计方法是表示该区SOC空间分布的有效手段,但由于传统地统计方法难以精确拟合高基岩出露坡地土壤斑块的空间分布、微地貌特征、岩石出露率以及土层深度等信息,在估算同类坡地SOC储量和碳密度时必须修正估算公式以接近实际值。  相似文献   

19.
《Soil biology & biochemistry》2001,33(7-8):907-912
Dissolved gases in saturated soils and waters are usually monitored by the gas extraction equilibration technique (EET). A novel sampling technique, using silicone tubing, was developed and tested with dissolved nitrous oxide (N2O) and carbon dioxide (CO2). The device consists of a silicone cell encased in a PVC pipe through which a continuous flow of water was maintained. Dissolved gases diffuse through the silicone membrane into the cell. Air samples were withdrawn from the silicone cell headspace, and gas phase concentrations were converted into dissolved N2O and CO2 using Henry's law coefficients. Effluent from the PVC pipe was also collected into evacuated bottles, and dissolved gases content was determined using EET. Statistical analysis showed no significant difference between the two techniques. Regression analysis between concentrations of dissolved N2O and CO2 obtained using the new method (Y) and EET (X) yielded the following relationships: Y=0.961 X (R2=0.996) and Y=1.01 X (R2=0.756) for N2O and CO2, respectively. Equilibration time between gas and liquid phases across the silicone membrane varies with gaseous species, membrane thickness, temperature, and the silicone cell dimensions (volume to area ratio). After nearly 1 year of operation, no indication of microbial growth on the membrane was found. These results confirm the development of a new, accurate and versatile technique to monitor dissolved gases.  相似文献   

20.
On a sandy tropical soil, organic materials (prunings of Leucaena leucocephala, Senna siamea and maize stover) with contrasting C/N ratio (13, 18 and 56, respectively) were applied at the rate of 15 t ha?1a?1 in order to increase the amount of soil organic matter. Two light fractions (LF1 = LF > 2 mm and LF2 = 0.25 mm < LF < 2 mm) and the heavy fraction (HF) of the soil organic matter pool were determined by means of a combined density/particle size fractionation procedure and data obtained were related to soil nitrogen mineralization under controlled conditions and to nitrogen uptake by maize under field conditions. Under controlled conditions and when the LF1 fraction was excluded, nitrogen mineralization was found not to be correlated to total organic carbon content in the soil (R2=0.02). The R2-value of the linear regression increased considerably, when amount and C/N ratio of the LF2 fraction was taken into account in the regression analysis (R2 = 0.88). Under field conditions, a multiple linear regression with amount and C/N ratio of HF, LF1 and LF2 better explained variation in crop nitrogen content and nitrogen uptake of maize (R2 = 0.78 and 0.94) than a simple linear regression with total organic carbon (R2 = 0.48 and 0.76). The results illustrate the importance of the two light and heavy organic matter fractions for estimating soil nitrogen mineralization. Determination of light and heavy soil organic matter fractions by density/particle size fractionation seems to be a promising tool to characterize functional pools of soil organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号