首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixture of 1,3-dicloropropene 60.5% w/w and chloropicrin 33.3% w/w (Telone C35 EC) may be registered in Italy for soil drip fumigation. Five experiments on greenhouse tomatoes in Northern, Central and Southern Italy compared the effectiveness of this mixture in comparison with methyl bromide to find the optimum application rate in soils infested by Fusarium oxysporum f.sp. lycopersici, F. oxysporum f.sp. radicis lycopersici, Sclerotium rolfsii, Meloidogyne javanica and M. incognita. Its efficacy against F. oxysporum f.sp. radicis lycopersici and M. incognita was confirmed when applied to soils at 100, 200, 300 and 400 l ha−1 (132.4, 268.4, 402.6 and 536.8 kg ha−1) under gas-tight films with 15–45 mm of application water (900–1200 mg Telone C35 EC l−1). In sandy soils, with slight F. radicis lycopersici infections and with heavy nematode (M. incognita) attacks, the mixture, drip applied at 900 mg l−1 during late summer (fumigation: late summer; transplant: late-summer/autumn; last harvest: early spring), performed well up to 132.4 kg ha−1 (100 l ha−1). In sandy loam soils with slight F. radicis lycopersici infections and severe infections of F. lycopersici and galling nematodes (M. javanica), 268.4 kg ha−1 (200 l ha−1) of the mixture applied at 900 mg l−1 as a drip provided yields similar to those of methyl bromide treated plots both in spring and summer cycles. In sandy loam soils, the diseases (F. lycopersici, F. radicis lycopersici) were controlled at rates 268.4 kg ha−1 (containing 90 kg ha−1 of chloropicrin), but the mixture was ineffective against Sclerotium rolfsii occasionally observed in sandy loam soils. In both sandy and sandy loam soils, no significant relationships were found between the rates of mixture applied (132.4, 268.4, 402.6 and 536.8 kg ha−1) and the degree of nematode infestation.  相似文献   

2.
Two field trials were conducted to examine the efficacy of methyl bromide (MBr) alternatives in the control of Cyperus rotundus L. (purple nutsedge) and Fusarium oxysporum Schlecht. f.sp. lycopersici (Sacc.) Snyder & Hansen (Fusarium wilt) in fresh market tomato (Lycopersicon esculentum Mill.). Various treatments compared combinations of soil fumigants and herbicides based on methyl bromide, chloropicrin, 1,3-dichloropropene, metam sodium, dazomet, and pebulate. The data show that consistently 1,3-dichloropropene plus chloropicrin at both doses in combination with the herbicide pebulate can be considered alternatives to methyl bromide in fresh market tomato. These treatments had excellent purple nutsedge and Fusarium wilt control, and marketable tomato yields were similar to that for methyl bromide plus chloropicrin.  相似文献   

3.
M.A.K. Smith   《Crop Protection》2006,25(12):1221-1226
Field experiments and bioassay tests were carried out to evaluate the relative response of the crops, tossa jute (Corchorus olitorius L.) and okra [Abelmoschus esculentus (L.) Moench], and their associated weeds to pre-emergence application of pendimethalin at 0.33, 0.66, 0.99, 1.32 kg ai ha−1 and a pendimethalin+atrazine tank mixture at 1.32+2.05 kg ai ha−1. Bioassay tests were carried out using herbicide solutions of corresponding concentrations and herbicide-treated soil. Field application of pendimethalin at 0.66 kg ai ha−1 and the herbicide mixture in both crops effectively controlled most seedling weeds including Rottboellia cochinchinensis. Euphorbia heterophylla and Calopogonium mucunoides, which persisted from 2 weeks after treatment (WAT) were not controlled. Herbicide application during crop establishment markedly inhibited the growth of both seedling weeds and crops. The mixture caused the highest weed and crop injury. Pendimethalin at 0.33 kg ai ha−1 had minimal effect on these crops. Weed growth, weed tolerance of herbicide treatment and crop seedling injury were higher in tossa jute than that in okra, under the conditions of this study. The use of low pendimethalin doses in an integrated weed management system will ensure effective control of seedling weeds, and prevent crop injury and residue accumulation in edible plant produce.  相似文献   

4.
Two application methods, single- and double-chisel injection of the fumigant nematicide 1,3-dichloropropene (1,3-D) were evaluated for efficacy and environmental fate in pineapple field experiments. The objectives were to compare the 1,3-D soil distribution between injection methods, evaluate volatile losses to the atmosphere, and to determine efficacy with each method. In a small-plot field experiment, 1,3-D (224, 337, and 393 1 ha−1) was manually injected 30 cm deep with fumiguns to simulate the commercial practice of a single- or double-chisel injection per planting bed. 1,3-D concentrations in the soil atmosphere and in soil samples were determined and compared to nematode control. In two large-scale field experiments, 1,3-D (224 1 ha−1) was applied with commercial injection equipment with and without polyethylene mulch. Air monitoring for 1,3-D showed a reduction in 1,3-D air emissions with single-chisel injection compared with double-chisel injection. In all experiments, the two injection methods resulted in equivalent 1,3-D concentrations in the plant line. Single-chisel injection resulted in improved retention of 1,3-D within the planting bed as shown by low 1,3-D soil concentrations in the interbed. Nematode counts and bioassay studies found equivalent nematode control in the planting bed with either injection method. The single-chisel method, however, resulted in reduced nematode control in the interbed region.  相似文献   

5.
Small-plot research and large-field validations were conducted to determine the effect of 1,3-dichloropropene (1,3-D)+chloropicrin (Pic) application methods in combination with the herbicides pebulate and napropamide on pest control in fresh market tomato (Lycopersicon esculentum Mill.). In both the small-plot trials and the large-validation fields, various treatments compared the efficacy of soil fumigants and herbicides based on methyl bromide, in-bed and broadcast applications of 1,3-D+Pic, pebulate, and napropamide. The results consistently indicated that either in-bed or broadcast applications of 1,3-D+Pic in combination with pebulate and napropamide are equally effective against the weed Cyperus spp., the nematodes Tylenchorhynchus spp., Belonolaimus longicaudatus, and Meloidogyne spp., and the soilborne disease Fusarium oxysporum f.sp. lycopersici in fresh market tomato. Therefore, broadcast 1,3-D+Pic application can reduce personnel exposure and poisoning risks, without losing pest control efficacy.  相似文献   

6.
Application and crop safety parameters for soil fumigants   总被引:2,自引:0,他引:2  
Metam sodium alone and in combination with 1,3-dichloropropene plus 17% chloropicrin (1,3-D+C-17) were evaluated under polyethylene mulch film as alternatives for methyl bromide in tobacco and tomato transplant production for both efficacy against pests and crop safety. Eight different weed species, 10 genera or species of fungi and several agronomic criteria were evaluated at three different sites. In general both the metam sodium alone and in combination with 1,3-D+C-17 were highly efficacious when compared to methyl bromide. Short polyethylene film retention times and short aeration times resulted in poor stands and poor crop vigor while relatively long polyethylene film retention times and long aeration periods at the same rates typically resulted in high stand counts and vigor. Combination treatments were more phytotoxic to germinating seed of tobacco and tomato. Vigor and stand counts of the seedlings were higher as aeration time increased, suggesting phytotoxic residues dissipate with time. Method of application of metam sodium, either injected with chisels or sprayed onto the soil surface and incorporated with a tractor-powered tiller alone or co- applied with 1,3-D+C-17 chisel injected, did not affect the efficacy of the treatments. Caution regarding phytotoxicity must be exercised when seeding into soil fumigated with metam sodium alone or combined with 1,3-D+C-17. Additional work will be required to establish safety periods required prior to transplanting crops into fumigated soil.  相似文献   

7.
Efficient use of external inputs and water conservation are a prerequisite of sustainable agricultural productivity in semiarid West Africa. A field experiment was carried out during 3 years (2000–2002) at Saria in semiarid Burkina Faso (800 mm of annual rainfall, PET of 2000 mm per year) to assess the effects of stone rows or grass strips of Andropogon gayanus Kunth cv. Bisquamulatus (Hochst. Hack.) as soil and water conservation (SWC) measures, the sole application of an organic (compost-N) or mineral (urea-N) nitrogen and the combined use of SWC and compost-N or urea-N on N flows and balances. The trial was conducted on a Ferric Lixisol with 1.5% slope and comprised nine treatments in two replications. The SWC measures were put along contours lines. During the three consecutive years, all treatments induced negative annual N balances (−75 to −24 kg N ha−1). The main factors explaining these negative balances were N exports by sorghum biomass and soil erosion-induced N losses. Large amounts of N (7 kg N ha−1 per year in 2000 and 44 kg N ha−1 per year in 2002) were lost in the control treatment through runoff and eroded sediments, which corresponds respectively to about 10 and 43% of the total outflow of N. Sole stone rows and grass strips reduced erosion N losses to 8 and 12%, respectively, of the total annual loss. The combined application of SWC measures and nutrients inputs reduced erosion N losses to only 2–7% of the annual N loss. The application of urea-N or compost-N led to the lowest soil N mining over the 3 years, whereas the highest N mining was observed in plots without added N. We conclude that N mining in poor fertile soils of West Africa can be mitigated through an integration of local water and nutrient management practices.  相似文献   

8.
Subsoil constraints are major limiting factors in crop production in many soils of southern Australia. A field study examined effects of deep incorporation of organic and inorganic amendments in 30–40 cm on soil properties, plant growth and grain yield of wheat (Triticum aestivum var. Ambrook) on a Sodosol with dense sodic subsoil with or without lucerne history in a high rainfall region (long-term average annual rainfall 576 mm) of Victoria. Amendments were applied at a rate of 10–20 t ha−1. Deep ripping alone and deep ripping with gypsum did not significantly affect grain yields. In comparison, application of organic materials doubled biomass production and increased grain yield by 1.7 times. Organic amendment-treated plots produced 60% more grains per area than the untreated control. The crop extracted over 50 mm extra water from below 40 cm soil in organic amendment-treated plots than the untreated control. Nitrogen uptake was almost doubled (403 kg ha−1) in the organic amendment-treated plots than the untreated control (165 kg ha−1). The improved yield with amendments was related to an increase in plant available water in the hostile subsoil, and prolonged greenness of leaves and supply of nitrogen and other nutrients.  相似文献   

9.
A 3 years field trial examined the effect of newly and previously applied lime on the growth and yield of two near-isogenic wheat genotypes differing only in aluminium (Al) tolerance (Triticum aestivum L. Al-sensitive line ES8 and Al-tolerant line ET8), and barley (Hordeum vulgare cv. Mundak) on an acid soil (pHCaCl2 4.6 in 0–10 cm and pH 4.1–4.3 in 10–40 cm) in the medium rainfall region of Western Australia. The trial consisted of four lime treatments: (i) no lime control; (ii) surface liming at 1.5 t ha−1 in 1999; (iii) surface liming at 2.5 t ha−1 in 1984; (iv) liming in 1984 and re-liming in 1999. Wheat crops were grown in 1999 and 2001, and barley was grown in 2000.

Liming in 1984 increased the pH in both topsoil and subsoil and decreased toxic Al in the subsoil. Liming in 1999 largely increased soil pH in the 0–10 cm in previously unlimed and limed plots, but only slightly increased the pH in 10–20 cm 2 years after application. In 1999, there was an overall 14% grain yield increase by growing ET8, mostly due to much better performance (41%) of ET8 over ES8 in the treatment with surface liming in 1999. In 2001, ET8 had yield 24% higher in the no lime control and 14% higher in the treatment with liming in 1999 compared with ES8. While both genotypes had similar root length density in the topsoil, root length density in acid subsoil was 22–160% higher for ET8 than for ES8. Wheat genotypes produced 23–24% higher yield due to the liming in 1984 compared to the no lime control. In 2000 season, shoot biomass of barley increased by 45–70% in the limed treatments compared with the no lime control. Liming at 2.5 t ha−1 in 1984 or liming at 1.5 t ha−1 in 1999 increased yield by 25%. Liming in 1984 and re-liming in 1999 increased the yield by over 50%. The results suggest that surface liming can ameliorate subsoil acidity as measured 15–17 years after application, and that growing an Al-tolerant crop in combination with surface liming provides a good strategy to combat subsoil acidity. The genotypic variation in response to liming appears to result from the difference in the sensitivity of root proliferation to low pH and high Al.  相似文献   


10.
A. E. Abdullahi   《Crop Protection》2002,21(10):1093-1100
Field experiments were conducted during two cropping seasons at two sites in Botswana to determine the efficacy of combining glyphosate and tillage in controlling C. dactylon. Treatments consisted of no-tillage, single and double ploughing during winter and spring plus the application of glyphosate at 0, 1.08, and 2.16 kg ha−1 3–4 weeks after the last ploughing. Visual assessment indicated higher levels of grass control from combining glyphosate and tillage than when these elements were applied separately. However, biomass data indicated that either double ploughing or glyphosate application controlled C. dactylon. A single ploughing followed by glyphosate at 2.16 kg ha−1 after a regrowth of C. dactylon may provide an effective and affordable control method to small-scale farmers.  相似文献   

11.
Results are reported from on-farm surveys of N2 fixation in Nepal, conducted between 1994 and 1999, involving the summer legumes soybean, mashbean and groundnut, and the winter legumes lentil and chickpea, at various locations in the Hill and Terai regions of Nepal. Additional less-detailed data were also collected for pigeonpea, grasspea and fababean. There were a total of 107 crops in the major and minor surveys. Estimates of the proportion of legume nitrogen (N) derived from N2 fixation (Pfix) were determined using the natural 15N abundance method. Mean estimates of Pfix for the various species were 62% (soybean), 47% (mashbean), 57% (groundnut), 78% (lentil), 79% (chickpea), 75% (pigeonpea), 87% (grasspea) and 85% (fababean). Estimates of total N fixed (including roots) were 59 kg N ha−1 (soybean), 28 kg N ha−1 (mashbean), 153 kg N ha−1 (groundnut), 72 kg N ha−1 (lentil), 84 kg N ha−1 (chickpea), 412 N ha−1 (pigeonpea) and 80 N ha−1 (grasspea and fababean). The on-farm measurements of N2 fixation were generally similar to those of experimental crops in the same areas of the country. Correlation matrices of soil fertility parameters, shoot dry matter and N, and N2 fixation revealed that the total amounts of N fixed were influenced primarily by crop growth. Based on the above figures, it was estimated that approximately 30,000 t N were fixed annually in Nepal by legumes, valued at US$ 15 million.  相似文献   

12.
Much of the rapidly growing demand for rice in West Africa will be met from increased production in irrigated lowlands, which cover about 12% of the regional rice-growing area. A large potential for expansion of irrigated areas exists particularly in the inland valleys of the humid forest zone. Current production is characterized by large variability in productivity, management practices and production constraints. Quantifying the variability in rice yield and identifying the determining factors are prerequisites to the development of site-specific recommendations and to improved targeting of technologies. Diagnostic on-farm trials were conducted on 64 irrigated lowland fields in the humid forest zone of southern Côte d'Ivoire, in 1995–1996. This was a part of the regional gradient study of irrigated systems from the desert margin to the humid forest zone. Cropping calendars, field operations and input use were monitored. Weed biomass, rice N uptake, and grain yield were determined in farmers' fields as well as in super-imposed, researcher-managed subplots (clean weeding, no N control, and mineral fertilizer N application). Rice yield potential was simulated by using the Oryza-S crop growth model. Yield losses were attributed to management factors based on performance of rice in researcher-managed subplots (management-related yield gap) and by multiple regression with management options. Grain yields varied between 0.2 and 7.3 Mg ha−1 with mean yields of 3.2 in partially and 4.2 Mg ha−1 in fully irrigated systems, 44% and 57% of the potential yield of 7.3 Mg ha−1, respectively. Age of seedlings at transplanting, timeliness of operations and application of P fertilizer were correlated to yield and explained 60% of the observed variability. Grain yield was correlated with N uptake (r2 = 0.93***) but not with N application rate. Split application of mineral fertilizer N was associated with a 0.48 Mg ha−1 yield increase (p = 0.002), regardless of the quantity applied. Additional weeding increased yield only in systems with imperfect irrigation. Weed biomass was reduced with improved water control and it increased with age of seedlings at transplanting, and was higher in direct-seeded than in transplanted rice. Echinochloa spp. were the most common weeds in fully irrigated systems and Panicum laxum was more common in the imperfectly irrigated fields. While improved water management was associated with substantial rice yield increases (1.16 Mg ha−1), the timeliness of transplanting, weeding and N fertilization appears to be the key to increased rice yields in the forest zone of West Africa.  相似文献   

13.
Paradox (Juglans hindsii × J. regia), the dominant rootstock used in the California walnut industry, is susceptible to crown gall caused by Agrobacterium tumefaciens. In practice, soil fumigation has been a common pre-plant management strategy for crown gall, but even the industry standard, methyl bromide (MeBr), results in inconsistent disease control. To examine MeBr efficacy and identify potential alternatives, combinations of 1,3-dichloropropene (1,3-D), chloropicrin, iodomethane, dazomet, and metam-sodium were examined. Except for 1,3-D alone, all treatments reduced A. tumefaciens and Phytophthora cactorum populations below detection limits. MeBr eliminated A. tumefaciens populations in buried gall tissue, but a combination of 1,3-D and chloropicrin (TC35) did not. An additional 280 kg/ha of chloropicrin in addition to TC35 eliminated A. tumefaciens populations in buried gall tissue. Of the treatments tested, TC35 was the best alternative to MeBr given its efficacy on soil populations of A. tumefaciens and P. cactorum and potential suppressiveness to soil recolonization by A. tumefaciens. MeBr reduced general aerobic bacterial populations below detection limits producing a temporary biological vacuum. A. tumefaciens reintroduced in soils treated with MeBr and TC35 reached significantly higher populations than in non-fumigated soil. However, A. tumefaciens populations in TC35-treated soil were 100-fold lower than MeBr-treated soil 110 d after reintroduction. Increased recolonization rates resulting in higher subsequent soil populations could be a mechanism underlying the observed inconsistent crown gall control after MeBr application.  相似文献   

14.
Chemical fumigants are routinely used for soil disinfestation of high value crops. Good agricultural practices (GAPs) are needed to reduce their human health risks, environmental impacts, and improve their cost-effectiveness. This study investigated the effect of fumigant application methods on soil persistence and emission of 1,3-dichloropropene (1,3-D) and chloropicrin (CP). Field experiments were conducted to measure the individual and combined effects of pre-application tillage practices, fumigant application technology, and plastic films on 1,3-D soil concentrations to obtain a numerical index (CT value) to estimate their potential for pest control efficacy and to compare soil persistence, atmospheric flux rate, and cumulative emission of CP and 1,3-D under two diverse application scenarios. Greater 1,3-D soil vapor concentrations were observed by combining a pre-application soil seal with low soil disturbance application technology when compared to pre-application soil tillage and the use of back-swept application shanks. Under high density polyethylene plastic, the low disturbance scenario resulted in time weighted exposure concentration (CT) values ranging from 6.8 to 12.2 μg h cm−3 of soil as compared to CT values ranging from 2.9 to 5.4 μg h cm−3 under the conventional application scenario. Cumulative atmospheric emission of 1,3-D was decreased by 18% under the low disturbance scenario and atmospheric emission of CP by 21% when compared to a conventional application scenario. This study identified GAPs that can be readily implemented in the field to reduce the human and environmental impacts of soil fumigants and improve their cost-effectiveness under solid-tarp (broadcast) applications.  相似文献   

15.
D.E. Groth   《Crop Protection》2008,27(7):1125-1130
The increased number of sheath blight (Rhizoctonia solani)-resistant rice (Oryza sativa) cultivars available will allow producers to use less fungicide and avoid significant reductions in grain and milling yields. Among cultivars currently in cultivation in the southern United States, sheath blight resistance levels range from very susceptible to moderately resistant. A study was conducted to determine the response of cultivars, with different levels of susceptibility, to sheath blight inoculations and fungicide application and to determine the impact of sheath blight disease development on rice yield and quality. Sheath blight epidemics in field plots were initiated by inoculation at the panicle differentiation growth stage in 2006 and 2007. Azoxystrobin at 0.17 kg a.i. ha−1 was applied at mid-boot. Inoculation significantly increased sheath blight severity and incidence and caused yield losses of 8% in moderately resistant cv. Jupiter to 40% in very susceptible cv. Trenasse. Milling yields were affected to a lesser extent. Fungicide treatments reduced sheath blight incidence and severity, regardless of cultivar except in Jupiter. Single azoxystrobin applications were effective in minimizing yield loss due to sheath blight in all cultivars.  相似文献   

16.
The effect of nitrogen (N) supply and weeds on grain yield of spring barley was investigated from 1997 to 2004 in an organic farming crop rotation experiment in Denmark on three different soil types varying from coarse sand to sandy loam. Two experimental factors were included in the experiment in a factorial design: (1) catch crop (with and without), and (2) manure (with and without). The crop rotation included grass-clover as a green manure crop. Animal manure was applied as slurry in rates corresponding to 40% of the N demand of the cereal crops.

Application of 50 kg NH4-N ha−1 in manure (slurry) increased average barley grain DM yield by 1.0–1.3 Mg DM ha−1, whereas the use of catch crops (primarily perennial ryegrass) increased grain DM yield by 0.2–0.4 Mg DM ha−1 with the smallest effect on the loamy sand and sandy loam soils and the greatest effect on the coarse sandy soil. Model estimations showed that the average yield reduction from weeds varied from 0.2 to 0.4 Mg DM ha−1 depending on weed species and density. The yield effects of N supply were more predictable and less variable than the effects of weed infestation. The infestation level of leaf diseases was low and not a significant source of yield variation.

The apparent recovery efficiency of N in grains (N use efficiency, NUE) from NH4-N in applied manure varied from 29 to 38%. The NUE of above-ground N in catch crops sampled in November prior to the spring barley varied from 16 to 52% with the largest value on the coarse sandy soil and the smallest value on the sandy loam soil. A comparison of grain yield levels obtained at the different locations with changes in soil organic matter indicated a NUE of 21–26% for soil N mineralisation, which is smaller than that for the mineral N applied in manure. However, this estimate is uncertain and further studies are needed to quantify differences in NUE from various sources of N.

The proportion of perennial weeds in total biomass increased during the experiment, particularly in treatments without manure application. The results show that manure application is a key factor in maintaining good crop yields in arable organic farming on sandy soils, and in securing crops that are sufficiently competitive against perennial weeds.  相似文献   


17.
《Field Crops Research》2004,90(2-3):203-212
Previous research indicated that prolific (multi-ear) maize (Zea mays L.) hybrids might perform better than nonprolific (single-ear) hybrids under lower-yielding environments. Field experiments were conducted during 1996–1999 to evaluate the agronomic responses of 10 maize hybrids differing in ear prolificacy under reduced-input and high-input cropping systems. Hybrids were of similar maturity (FAO 400) and divided into two prolificacy groups (prolific versus nonprolific), each consisting of five hybrids. The reduced-input system consisted of plowing at 20–22 cm; fertilization at 105, 104, and 104 kg ha−1 N, P2O5, and K2O; 37–38 000 plants ha−1; and low input of herbicide. The high-input system involved plowing at 30–32 cm; fertilization at 213, 130, and 130 kg ha−1 N, P2O5, and K2O; 60–65 000 plants ha−1; and high input of herbicides. Grain yields significantly decreased under reduced-input compared to high-input cropping system by an average of 26.1%. Significant cropping system×prolificacy group interactions were found for most yield components but not for grain yields. This indicated that both prolificacy groups exhibited a similar yield decrease under the reduced-input system even though prolific hybrids had 1.33 ears per plant compared to only 1.01 ears per plant of nonprolific types. All prolific hybrids responded similarly to various cropping input levels principally by means of changes in kernels per plant, whereas some nonprolific hybrids had greater response through 1000-kernel weight then kernels per plant. Prolific hybrids tended to achieve higher grain yields which averaged 10 414 kg ha−1 compared to 9383 kg ha−1 for nonprolific types partly due to less barren plants per hectare and primarily because of a higher grain weight per plant. Larger grain weights per plant of prolific hybrids were primary due to more kernels per plant in the reduced-input system, and a combined effect of more kernels and heavier 1000-kernel weight per plant in the high-input system. Improved kernel number per plant for prolific hybrids was associated with kernels from secondary ears. Although prolific hybrids outyielded nonprolific types, our findings failed to indicate that the prolificacy trait per se had any important effect on hybrid performance when grown under reduced-input compared to high-input cropping system.  相似文献   

18.
Globe artichoke (Cynara scolymus L.) and cultivated cardoon (C. cardunculus L. var. altilis DC.) are horticulturally important crop plants. These species have potential as biomass and oilseed crops. We field tested, for 3 years, two artichoke and two cardoon cultivars and one wild cardoon (C. cardunculus L. var. sylvestris Lam.) population on the Sicilian plain of Catania (37°27′ N, 15°04′ E, 10 m a.s.l.). On a 3-year average, the dry aboveground biomass resulted about 31 t ha−1 in both cultivated cardoons, 18.8 t ha−1 in wild cardoon, 13.7 t ha−1 in globe artichoke ‘3/10 V.S.’ and 9.9 t ha−1 in globe artichoke ‘374’ F1. The caloric values of aboveground biomass (except for seeds), which was not significantly different among genotypes, ranged between 16 005 and 17 028 KJ kg−1 of dry matter. The cultivated cardoon ‘Gigante di Lucca’ had the greatest grain yield (on 3-year average, 2.6 t ha−1), whereas the two globe artichokes had the lowest yield (on 3-year average, 0.5 t ha−1). Regardless of genotypes and years, the grains contain 20.1% crude protein, 24.4% oil, 18.5% crude fiber and 4.1% ash (dry weight basis). The grains of globe artichokes showed the highest crude protein content (21.6%), whereas those of cardoons the highest oil content (25.2%).  相似文献   

19.
Responses of wheat grown on a heavy clay soil in the Goulburn-Murray Irrigation Region of south-eastern Australia to a factorial combination of three irrigation treatments and nitrogen and gypsum application were investigated.Irrigation treatments included a rainfed control (treatment RF) and irrigation on either a weekly (treatment Iw) or fortnightly (treatmnt IF) basis beginning in spring and maintained until physiological maturity. Nitrogen was applied at 0 and 150 kg N ha−1 (treatments N0 and N150, respectively) and gypsum at 0 and 5 t ha−1. Nitrogen and gypsum treatments were applied at sowing.

Yield increased from a mean of 4 t ha−1 treatment RF to 6.6 t ha−1 in treatments IF and IW, largely because of promotive effects of irrigation on kernel weight (increase from 31 mg to 42 mg kernel−1 and kernel spikelet−1 (1.4 as compared with 1.7). Seasonal conditions and the relative fertility of the site were sufficient to maximise spike number and spikelet spike−1. Nitrogen increased kernel spikelet−1 but effects on yield were not significant because of a decrease in kernel weight. Effects of gypsum on yield were not significant.

Water-use efficiency of both rainfed and irrigated treatments was ca. 1.25 g grain kg−1 H2O. However, transpirational water-use efficiency, calculated after allowing 110 mm water for soil evaporation, fell from 2 g kg−1 in treatment RF to 1.7 and 1.5 g kg−1 in treatments IF and IW, respectively. The decrease was ascribed, in part, to lodging and soil evaporative losses may have been in excess of 110 mm with more frequent irrigation. Effects of N on water use could not be distinguished, again because of the initial fertility of the site, which supported rapid growth and resulted in complete canopy closure.

Nitrogen and irrigation treatments had independent effects on the concentration of N in the grain (%NG) which increased by a mean of 0.6% with N treatment despite a decrease in N harvest index (HIN) from 0.77 to .70. Irrigation decreased %NG by approximately 0.5%. Approximately 90 kg pN ha−1 was found in the grain of treatments RFN0, IWN0, IwN0 and RFN150 and differences in %NG in these treatments attributed to a ‘dilution’ effect mediated by the increase in yield effected by irrigation. The grain accounted for approximately 115 kg N ha−1 in treatments IFN150 and IWN150, countering the inverse relationship between %Ng and yield despite the increase in HIN index caused by N application.  相似文献   


20.
The opportunity for site-specific management of crops depends on both the magnitude and spatial structure of yield variation. This study explored the applicability of Lorenz curves and Gini coefficients (G) to characterise the magnitude of the variation in grain yield. Maize crops were grown in farmers fields in a semi-arid region of central Argentina. Major sources of yield variation between and within paddocks included season, soil type and topography, rate of nitrogen fertiliser (nil to 132 kg N ha−1), and the interactions among these factors. Nitrogen treatments were applied in a complete block strip trial (strip size700 m×9.8 m) with three replicates. Data were collected with an AgLeader™ yield monitor, and GIS software was used to create 9.8 m×9.8 m grids over the observations. Average yield in 0.7–2.8 ha field sections ranged from 1.6 to 7.0 t ha−1. Gini coefficient ranged from 0.027 to 0.191 whereas its theoretical limits are 0 for a perfectly uniform population, and 1 for a theoretical population of infinite size where all units but one yield 0. Conditions conducive to high yield, e.g. adequate availability of nitrogen and water, reduced crop yield inequality, as quantified with G. The agronomic relevance of G was summarised in an inverse relationship with yield. Lorenz curves seemed particularly apt to present crop heterogeneity in terms of inequality, and to highlight the relative contribution of low- and high-yielding sections of the field to total paddock yield. Lorenz curves and Gini coefficients provide a potentially useful extension tool, a complement to yield maps and other statistical indices of yield variation, and further contact points between site-specific management, economics and ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号