首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Downy mildew of sunflower, caused by the Oomycete, Plasmopara halstedii is at present controlled by major resistance genes. However, the pathogen has shown a considerable capacity for changes in virulence and these resistance genes are overcome only a few years after they have been introduced into new sunflower varieties. This paper presents research for quantitative, non-race-specific resistance independent of major genes. The reaction of cultivated sunflower genotypes to field attack by downy mildew was studied over 4 years in several environments and in the presence of the two most common races in France: 703 and 710. An experimental protocol with pre-emergence irrigation was developed, making it possible to observe downy mildew reaction whatever the weather conditions. Significant levels of partial resistance were observed in about 50 inbred sunflower lines among the 800 observed. These results suggest that it should be possible to select for non-race-specific downy mildew resistance and to include it in modern varieties. However, since this non-specific resistance is partial, it may be necessary to combine it with major gene resistance. Possible strategies are discussed to obtain durable resistance to downy mildew.  相似文献   

2.
Downy mildew, caused by Pseudoperonospora cubensis (Berk. & Curt.) Rostov, is one of the most economically important foliar diseases in cucumber (Cucumis sativus L.). Cucumber line CS-PMR1, derived from self-pollination of USDA Plant Introduction 197088, has a high level of resistance to downy mildew and is considered to be promising breeding material. In this study, we performed quantitative trait locus (QTL) analysis for downy mildew resistance using 111 recombinant inbred lines (RILs) derived from a cross between CS-PMR1 and the old Japanese cultivar Santou, which exhibits moderate resistance. The resistance of the RILs and their parents was evaluated by diverse methods using different plant organs (cotyledons, true leaves), stages (seedlings and adult plants), and evaluation criteria (lesion expansion and extent of sporulation). The high resistance of CS-PMR1 was associated with many QTLs with relatively small effects, whereas the moderate resistance of Santou was associated with one major QTL and possibly two others with relatively small effects. In all assays, the major QTL at which the Santou allele was associated with increased resistance had the largest effect. This QTL allele from Santou and several of the most effective QTL alleles identified in CS-PMR1 should be highest priority for selection to efficiently breed new cultivars that carry adequate levels of downy mildew resistance.  相似文献   

3.
Genetic diversity of maize inbred lines in relation to downy mildew   总被引:2,自引:0,他引:2  
A major emphasis in maize breeding in Asian countries has been the improvement for resistance to downy mildew, a serious disease that causes significant yield losses. A total of 102 inbred lines, including lines from Asian breeding programs, Mexico, USA and Germany, were analyzed with 76 SSR markers to measure diversity and investigate the effect of selection for downy mildew resistance. A mean polymorphism information content of 0.59, with a range of 0.14 to 0.83, was observed. Diversity at the gene level showed an average of 5.4 alleles per locus and a range of two to 16 alleles per locus, with a total of 409 alleles. About half of the alleles in the Asian lines had frequencies of 0.10 or less, and only 2% had frequencies > 0.80, indicating the presence of many alleles, and thus a high level of diversity. Some of the high-frequency alleles were in chromosomal regions associated with disease resistance. However, the frequencies of alleles in three SSR loci that are linked to a QTL for resistance to downy mildews in Asia were not significantly different in the subtropical/tropical Asian lines as compared to all the lines in the study. Lines from the US, Germany, and China, comprised three clusters of temperate maize(GS = 0.31), while those from India, Indonesia, Philippines, Thailand, Vietnam and CIMMYT comprised seven indistinct clusters of subtropical and subtropical maize (GS = 0.29). We conclude that maize breeding activity in Asia has not caused a decline in the overall amount of diversity in the region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
One hundred and eighty six F1 plants from a ‘Regent’ × ‘RedGlobe’ cross were used to generate a partial linkage map with 139 microsatellite markers spanning all 19 chromosomes. Phenotypic scores for downy mildew, taken over two years, confirmed a major resistance QTL (Rpv3) against downy mildew in the interval VVIN16-cjvh to UDV108 on chromosome 18 of ‘Regent’. This locus explained up to 62 % of the phenotypic variance observed. Additionally a putative minor downy mildew resistance locus was observed on chromosome 1 in one season. A major resistance locus against powdery mildew (Ren3) was also identified on chromosome 15 of ‘Regent’ in the interval UDV116 to VChr15CenGen06. This study established the efficacy of and validated the ‘Regent’-derived downy and powdery mildew major resistance genes/QTL under South African conditions. Closely linked SSR markers for marker-assisted selection and gene pyramiding strategies were identified.  相似文献   

5.
Downy mildews cause considerable damage to maize (Zea mays L.) worldwide, particularly in the tropical Asia. We have evaluated a set of 42 tropical/sub-tropical maize inbred lines developed in different countries in Asia (India, Thailand and Philippines), and Mexico, for analysing the genetic variability for resistance to sorghum downy mildew [Peronosclerospora sorghi; SDM] and Rajasthan downy mildew [P. heteropogoni; RDM]. Experiments were carried out in replicated trials under artificial infection in field conditions against SDM and RDM at Mandya in Karnataka, India, and Udaipur in Rajasthan, India, respectively, during 1999 and 2000. The study resulted in identification of five inbred lines offering consistent and strong resistance to both SDM and RDM, while several inbred lines revealed resistance only to RDM. It was also revealed that the SDM-resistant inbreds are invariably resistant to RDM, while the RDM-resistant inbreds might show differential responses to the SDM. The maize inbred lines identified in this study with broad-spectrum resistance to downy mildews could be potentially useful for basic and applied research work on downy mildews in tropical Asia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Downy mildew (Pseudoperonospora cubensis) is the most devastating disease in muskmelon (Cucumis melo). A generation mean analysis study was designed to determine the types of gene action and estimate the heritability for resistance to downy mildew in four selected crosses of muskmelon. Generation mean analysis revealed that genetic dominance may be of greater importance for expression of resistance to downy mildew in both greenhouse and field experiments and in all the crosses. The F1 mean was significantly lesser than the mid-parent value and skewed towards resistant parent in all the crosses. Negative sign associated with gene effects indicated, in those crosses, that disease level could be decreased in relation to midparent. All the crosses expressed significant and positive additive (d) gene effects. Dominance (h) and dominance × dominance (l) gene effects had opposite sign in all crosses and both experiments, which implied duplicate type of gene action. High mid-parent heterosis in all the crosses indicated strong dominance effects (as combination of parental alleles) for resistance to downy mildew. In all the crosses, both resistant and susceptible parent contributed one or more dominant/partially dominant factors for resistance. Estimates of broad-sense heritability were high and relatively consistent in both experiments. The two different screening experiments showed that fixable gene effects (d + i) were lower than the non-fixable gene effects (h + l) in all the crosses indicating greater role of non-additive effects in the inheritance of resistance to downy mildew. Resistance to downy appeared to be controlled mainly by dominance effects, therefore the inbred lines IIHR 121 and IIHR 122 could be used strategically to exploit heterotic effects.  相似文献   

7.
Y. Bougot    J. Lemoine    M.T. Pavoine    H. Guyomar'ch    V. Gautier    H. Muranty    D. Barloy 《Plant Breeding》2006,125(6):550-556
Powdery mildew is one of the major diseases of wheat in regions with a maritime or semi‐continental climate which can strongly affect grain yield. The objective of the study was to identify and compare quantitative resistance to powdery mildew of line RE9001 at the adult plant and vernalized seedling stages. RE9001 has no known Pm gene and shows a high level of adult plant resistance in the field. Using 104 recombinant inbred lines (RILs) of an RE9001 × ‘Courtot’ F8 population, a genetic map was developed with 363 markers distributed over 26 linkage groups and covering 3825 cM. The global map density was 1 locus/10.3 cM. RILs were assessed under field and tunnel greenhouse conditions for 2 years in two locations. Eleven quantitative trait loci (QTL) were detected at the adult stage and they explained 63% of the variation, depending on the environment. Three QTLs were found, at least, in the two environments. One QTL from RE9001, mapped on chromosome 2B, was stable in each environment. This QTL, QPm.inra.2B, explained 10.3–36.6% of the variation and could be mapped in the vicinity of the Pm6 gene. At the vernalized seedling stage, one QTL detected by the isolate 93‐27 could be an allele of the Pm3g gene present in ‘Courtot’. No residual effect of the Pm3g gene was detected at either stage. Markers flanking the QTL 2B could be useful tools to combine resistance to powdery mildew in wheat cultivars.  相似文献   

8.
玉米霜霉病的分子遗传学研究进展   总被引:1,自引:0,他引:1  
玉米霜霉病是一种重要病害,特别是在热带、亚热带地区,常常造成玉米生产的重大损失。笔者从玉米霜霉病抗性的遗传表现、抗性基因的QTL定位、QTL效应及QTL与环境的互作、抗性的分子标记及抗性遗传多态性变异等方面对其分子遗传研究进展情况进行了概述。并就加强玉米霜霉病抗性基因克隆、近等基因系构建及分子标记辅助育种体系建立等研究工作进行了展望  相似文献   

9.
Summary Since June 1973 Pseudoperonospora cubensis (Berk & Curt) Rost., which causes downy mildew in cucumber, occurs in the Netherlands. The resistance against this disease appears to be based on one recessive gene in linkage with the dominant gene D for dull green fruit skin colour. It is demonstrated that this recessive gene is also linked with one of the genes for resistance to powdery mildew present in the variety Ashley.The powdery mildew resistant lines tested are also resistant against downy mildew, the linkage with the gene D having been broken.Stationed at Breeding Station Pannevis B.V., De Lier, the Netherlands.  相似文献   

10.
【研究目的】本试验研究玉米耐旱生理特性,为玉米耐旱品种选育提供依据。【方法】试验以玉米品种正大619、农大108为材料,分别在间隔4天、8天、12天、16天灌一次水的不同水分处理条件下,分析玉米叶片叶绿素、脯氨酸(Pro)、丙二醛(MDA)的含量及超氧化物歧化酶(SOD)和过氧化物酶(POD)的活性。【结果】结果表明:随着水分胁迫程度加大,玉米叶片脯氨酸的含量、MDA含量和POD活性呈现不同程度的增加,而叶绿素含量和SOD活性则随着水分胁迫程度加大而降低。且敏感型品种农大108的变化明显强于抗旱型的正大619。【结论】脯氨酸(Pro)、丙二醛(MDA)的含量及超氧化物歧化酶(SOD)和过氧化物酶(POD)的活性可以作为玉米耐旱品种选育参考。  相似文献   

11.
Summary The Pl6 locus in the inbred sunflower (Helianthus annuus L.) line HA335 giving resistance to French races of downy mildew (Plasmopara halstedii (Farl.) Berl. & de Toni. was localized by molecular techniques. A bulked segregant analysis was made on the F2 progeny from a cross between this line and H52, a downy mildew susceptible line. The resistance gene in HA335 was found to have the same linked RFLP marker loci as those determined for Pl1 (resistance to race 1 in the line RHA266) on linkage group 1 of the consensus RFLP map of the cultivated sunflower. Pl1 and Pl6 thus appear either to be allelic or closely linked. The implications for sunflower breeding are discussed.  相似文献   

12.
Sunflower lines RHA‐274, HA‐61 and RHA‐325 were studied for their resistance to race 330 of downy mildew (Plasmopara halstedii). The same inbred line, with normal (HA‐89) or sterile cytoplasm (cmsHA‐89) was used in all the crosses as susceptible parent, and, in each cross, only one genotype of the resistant parent was studied. The resistant‐to‐susceptible ratios obtained in the BC1 and F2 progenies from the crosses of the lines RHA‐274 and HA‐61 to cmsHA‐89 and HA‐89, respectively, suggested that, in each resistant line, two dominant genes are responsible for resistance to this downy mildew race. One of the genes (A) is epistatic to the other (B), and the recessive allele b in homozygosity is also epistatic to aa, with plants carrying aabb genotypes being resistant. Resistance to race 330 seemed to be controlled by two complementary genes in the sunflower inbred line RHA‐325, the dominant allele of one of them being present in cmsHA‐89. In the genotypes HA‐89 or cmsHA‐89, the existence of genes that modify the expected segregations following the crosses with resistant parents is proposed. It is concluded that, although major genes have been described as responsible for monogenic resistance to downy mildew, other types of regulation of this character, such as complementarity and epistatic relationships, do occur.  相似文献   

13.
Peroxidase isozyme patterns of five downy mildew (DM) resistant inbred lines (PIB-57-1, PIB-1248, PIB-1356, PIB-1364 and PIB-1440), five susceptible lines (PIB-1335-1-1, PIB-1314-2-2, PIB-2231-1, 7042 and PIB-1530-1-1) and DM free plants from the susceptible lines of pearl millet were studied. The results suggested a possible involvement of an isoperoxidase (C9) in imparting the resistance. The involvement of two other isozymes (C5 and C6) was also indicated in the1 resistance mechanism. The specific differentiation m particular isozyme pattern can be a useful criterion for characterization of resistance to downy mildew.  相似文献   

14.
Association mapping relies on the variation and extent of linkage disequilibrium within a species to identify genes of interest; this is an alternative to linkage mapping in traditional biparental population, which exploits only the variation in the two parents of the mapping population. This study was designed to identify association between 48 SSR markers and downy mildew (DM) resistance using a set of 60 public and private maize inbred lines in Thailand. Genetic diversity and population structure in the set were calculated. A total of 489 alleles with an average gene diversity of 0.70 revealed two subpopulations among the 60 maize inbred lines. Analysis of variance resulted in significant effects of phenotypic values of tested entries, with significant effects of inbred lines, locations, and their interaction. In addition, the analysis of variance for broad sense heritability also indicated high heritability (0.97), and association analysis revealed three significant SSR-trait associations (P < 0.05). These three significant SSR loci have not been reported in previous linkage mapping studies. Our results suggest that new allelic variants associated with DM resistance in these germplasm collections should be useful to help identify new lines carrying alleles for DM resistance in breeding marker-assisted selection programs.  相似文献   

15.
G. Backes    G. Schwarz    G. Wenzel  A. Jahoor 《Plant Breeding》1996,115(5):419-421
A quantitative trait loci (QTL) analysis of quantitative powdery mildew resistance was performed on 216 doubled haploid lines derived from a cross between the winter-barley varieties ‘Igri’ and ‘Danilo’ using 67 RFLP loci. Resistance to powdery mildew was determined in the field with natural infection and on detached primary leaves with a specific isolate. The major QTL found in both sets of analysis mapped to the same chromosomal region. No further QTL could be found in the analysis based on detached leaves and one additional minor QTL was found in the analysis based on field data.  相似文献   

16.
R. S. Pan  T. A. More 《Euphytica》1996,88(2):125-128
Summary Melon germplasm was screened for cucumber green mottle mosaic virus (CGMMV), powdery mildew (Sphaerotheca fuliginea), downy mildew (Pseudoperonospora cubensis) and Fusarium wilt (Fusarium oxysporum f. sp. melonis) resistance under artificial conditions except downy mildew for which screening was done under natural epiphytotic conditions. High level resistance to all the four diseases was not recorded in any of the collections tested. Nevertheless, ertheless, resistance to three diseases was located in three germplasm. Wild Cucumis species C. figarei exhibited absolute resistance to CGMMV and Fusarium wilt and high level resistance to downy mildew. Phoot or snapmelon (Cucumis melo var. momordica) — a non-dessert from of Indian origin—was highly resistant to downy mildew and resistant to CGMMV and medium resistant to Fusarium wilt. Iroquois was resistant to powdery mildew and medium resistant to downy mildew and CGMMV.  相似文献   

17.
A population of 103 recombinant inbred lines (RILs, F9-derived lines) developed from the two-row spring barley cross L94 × ‘Vada’ was evaluated under field conditions for resistance against powdery mildew (Blumeria graminis f.sp. hordei) and scald (Rhynchosporium secalis). Apart from the major resistance gene mlo on chromosome 4 (4H), three QTLs (Rbgq1, Rbgq2 and Rbgq3) for resistance against powdery mildew were detected on chromosomes 2 (2H), 3 (3H), and 7 (5H), respectively. Rbgq1 and Rbgq2 have not been reported before, and did not map to a chromosome region where a major gene for powdery mildew had been reported. Four QTLs (Rrsq1, Rrsq2, Rrsq3 and Rrsq4) for resistance against scald were detected on chromosomes 3 (3H), 4 (4H) and 6 (6H). All four mapped to places where QTLs for scald resistance had been reported before in different populations.  相似文献   

18.
D. M. Tucker    C. A. Griffey    S. Liu    M. A. Saghai Maroof   《Plant Breeding》2006,125(5):430-436
Three quantitative trait loci (QTL) associated with adult plant resistance (APR) to powdery mildew (Blumeria graminis) in wheat (Triticum aestivum) cultivar ‘Massey’ were mapped in a previous study. The three QTL were located on chromosomes 2A, 2B and 1B, and explained 50% of the total phenotypic variation. A 293 recombinant inbred line (RIL) breeding population (UJ) derived from the cross of ‘USG 3209’, a derivative of ‘Massey’, and ‘Jaypee’ was used to evaluate the potential effectiveness of marker‐assisted selection (MAS) for APR. Powdery mildew severities of the 293 UJ RILs were evaluated in 2002 (F5 : 6) and 2003 (F6 : 7) under natural disease pressure in the field. The 293 RILs were also evaluated for disease severity in a 2004 (F7 : 8) greenhouse experiment using a composite of five different isolates of B. graminis. Selection of RILs possessing the QTL on chromosome 2A, and to a lesser extent, the one on chromosome 1B was effective in identifying powdery mildew resistance in both greenhouse and field experiments. Overall, selecting RILs with QTL on chromosomes 2A and 2B was most successful in identifying highly resistant RILs, which had mean mildew severities of 4.4% and 3.2% in 2002 and 2003 field experiments, respectively. Breeders implementing MAS programs for APR to powdery mildew via selection of RILs containing the two QTL on chromosomes 2A and 2B likely will obtain RILs having high levels of resistance in the field, however combining all three QTL may ensure greater durability.  相似文献   

19.
Powdery mildew (PM, caused by Podosphaera fusca) and downy mildew (DM, caused by Pseudoperonospora cubensis) are important diseases of cucumber (Cucumis sativus). Breeding for resistance has been undertaken since the 1940s, but underlying resistance genes have not been functionally analysed yet. The published genome sequence of cucumber catalyses the search for such genes. Genetic studies have indicated that resistances to PM and DM in cucumber are often inherited recessively, which indicates the presence of susceptibility genes (S-genes). Therefore we analyzed the cucumber genome for homologs of functionally proven S-genes known from other plant species. We identified 13 MLO-like genes in cucumber, three of which cluster in Clade V, the clade that contains all known MLO-like susceptibility genes to powdery mildews in other dicots. The expression of one of these three genes, CsaMLO1, located on chromosome 1, was upregulated after PM inoculation. It co-localizes with a QTL for PM resistance previously identified. Also homologs of the susceptibility genes PMR4 and PMR5 are located at this QTL. The second MLO-like gene from Clade V (CsaMLO8) resides in a recessively inherited major QTL for PM resistance at the bottom of chromosome 5, together with a PMR6-like gene. Two major QTL for DM recessive resistance at the top of chromosome 5 co-localize with CsaDMR6-2, which is homologous to the DMR6 susceptibility gene in Arabidopsis. This study has identified several candidate genes for susceptibility to PM and DM in cucumber that may explain QTL for recessively inherited resistance, reported earlier.  相似文献   

20.
The Swedish winter wheat (Triticum aestivum L.) cultivar Folke has a long record of partial and race non-specific resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici) in the field. The aim of the present study was to map the main genetic factors behind the partial resistance in Folke and identify molecular markers for use in marker-assisted selection. A population of 130 recombinant inbred lines was developed from a cross between Folke and the moderately susceptible spring wheat line T2038. The population was tested for powdery mildew resistance over two years at two locations in Norway and genotyped with DArT and SSR markers. Composite interval mapping detected a total of eight quantitative trait loci (QTL) for powdery mildew resistance; six with resistance from Folke on 2BS, 2DL, 5AL, 5BS and 6BS and two with resistance from T2038 on 5BS and 7AL. None of the loci with resistance from Folke mapped to chromosomal regions with known race-specific resistance genes, which confirmed the race non-specific nature of the resistance in this cultivar. The molecular markers linked to the reported QTL will be useful as a tool for selecting partial and potentially durable resistance to powdery mildew based on the resistance in Folke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号