首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用B型超声波诊断仪,对繁殖季节和非繁殖季节母马卵泡发育过程进行连续观察,揭示母马卵泡生长发育的动态模式。在繁殖季节的5—7月随机选取5匹空怀和4匹排卵后配种妊娠的伊犁马为监测对象,在非繁殖季节的8—10月随机选取8匹空怀伊犁马为监测对象,用B型超声波诊断仪每日或隔日扫描两侧卵巢1次,记录卵泡数量并测量卵泡直径,分别持续观测一个发情周期和40 d。结果表明,母马在繁殖季节的一个发情周期内有1~2个卵泡波;在非繁殖季节,马卵巢也有卵泡波的变化;母马不是严格的季节性发情动物。  相似文献   

2.
The study was aimed to assess the influence that short‐term progesterone treatments have on follicular dynamics, oestrus and ovulation in sheep. The treatment was tested thereafter in a field trial to assess its fertility after AI with fresh semen. In a first experiment, 12 ewes without CL were grouped to receive a new (n = 6) or used CIDR (n = 6) for 7 days and blood samples were obtained to follow plasma progesterone profiles. In a second experiment, 39 cycling ewes were synchronized by a 7‐day P4+PGF2α protocol using a new (n = 20) or a 7‐day used CIDR (n = 19). Half of both groups received 400 IU eCG and half remained untreated as controls. Ultrasound ovarian examination and oestrous detection were used to compare follicular dynamics, oestrus and ovulation in both groups. In a third experiment, 288 ewes in 3 farms were synchronized by the short‐term P4+PGF2α+eCG protocol and ewes were AI with fresh semen 24 h after oestrous detection. Lambing performance was used to test the fertility of the treatment. In Experiment 1, ewes with new inserts presented higher P4 concentration than ewes with used inserts throughout the sampling period (p < 0.05) and exhibited a P4 peak at days 1‐2 of the treatment that was not observed in ewes with used inserts. In Experiment 2, ewes treated with new and used inserts show similar ovarian and behavioral traits (p > 0.10). However, ewes treated with eCG show shorter interval to oestrus (p = 0.004) and tend to have larger mature CL (p = 0.06). In Experiment 3, oestrous presentation and lambing performance after AI with fresh semen was considered normal compared to published results. Results suggest that the oestrous synchronization protocol based on P4+PGF2α allows little control of follicular dynamics without compromising fertility after AI with fresh semen provided that eCG is added at the end of the treatment.  相似文献   

3.
The aims of this study were to evaluate the chronology of periovulatory events (oestrus behaviour, LH surge and ovulation) in 16 superovulated Manchega sheep and to determine whether follicular status at start of the FSH supply might affect their occurrence. Mean timing for onset of oestrus behaviour was detected at 28.1 +/- 0.7 h after sponge withdrawal; the preovulatory LH surge and ovulation started at 37.2 +/- 0.7 h and 65.4 +/- 0.7 h after progestagen withdrawal, respectively. The intervals between oestrus, LH surge and ovulation were affected by a high individual variability, which might be the cause for reported decreased efficiency in embryo production. Current results also addressed the role of follicular status at start of the superovulatory treatment on the preovulatory LH surge and the ovulation. The interval LH surge-ovulation was increased in ewes with a growing dominant follicle at starting the FSH treatment (32.3 +/- 0.9 vs 28.6 +/- 0.5 h, p < 0.05). The developmental stage of the largest follicle at starting the superovulatory treatment also affected occurrence of LH surge and ovulation; follicles in growing phase advanced the occurrence of the LH surge and ovulation when compared to decreasing follicles (33.0 +/- 1.0 vs 43.5 +/- 1.1 h, p < 0.05, for LH peak and 60.7 +/- 1.1 vs 72.8 +/- 1.2 h, p < 0.05, for ovulation). Thus, only ewes with growing follicles ovulated prior to 55 h after sponge withdrawal; conversely, no sheep with decreasing follicles ovulated earlier than 67 h, when an 85.7% of the ewes bearing growing follicles has ovulated at 63 h.  相似文献   

4.
Synchronization of oestrus and/or ovulation can reduce workload in heifer reproductive management. The objective of this study was to compare two protocols to synchronize oestrus and/or ovulation using GnRH and prostaglandin F2α (PGF2α) in dairy heifers concerning their effect on follicular dynamics and reproductive performance. Four trials were carried out. In trial 1, 282 heifers were treated with GnRH and PGF2α 7 days apart (GP protocol). One group was inseminated on detection of oestrus (IDO 1), and the other group received two timed artificial inseminations (AI) 48 and 72 h after PGF2α administration (TAI 1). In trial 2, 98 heifers were synchronized with the same GP protocol. Heifers in IDO 2 were treated as in IDO 1, heifers in TAI 2 received two TAI 48 and 78 h after PGF2α administration. In trial 3, heifers in IDO 3 (n = 71) were again treated as in IDO 1. Heifers in TAI 3 (n = 166) received a second dose of GnRH 48 h after PGF2α (GPG protocol) and TAI together with this treatment and 24 h later. Trial 4 compared the timing of ovulation after the GP and the GPG protocol, using a subgroup of the heifers from trials 1 to 3. The ovaries of the heifers were scanned via ultrasound at 48, 56, 72, 80, 96 and 104 h after PGF2α administration. Timing of ovulation and size of the ovulatory follicles were compared between the two groups. In trials 1 to 3, conception rates to first service were between 49 and 66%. They did not differ significantly between IDO and TAI groups within or between trials. Pregnancy rates per synchronization were numerically higher in the TAI groups, but the difference was not significant. Conception rates to breeding on spontaneous oestrus in heifers returning to oestrus were higher than that after synchronized oestrus. In trial 4, more heifers ovulated before the end of the observation period in GPG than in GP (96.5% vs 74.7%; p < 0.001). Overall, ovulatory follicles were smaller in GPG (13.1 ± 1.9 mm vs 14.3 ± 1.9 mm; p < 0.001).  相似文献   

5.
The effect of GnRH administration on superovulatory response of ewes treated with equine chorionic gonadotrophin (eCG) in breeding and nonbreeding seasons and the contribution of laparoscopic insemination to the improvement of fertilization and embryo recovery were investigated. Twenty-four nonpregnant Awassi ewes of 3–4 years of age were randomly allocated into two groups (n = 12). Each ewe was treated with a progesterone impregnated intravaginal sponge for 12 days. The following superovulation treatment was used: ewes of group 1 received 1,200 IU of eCG once as an intramuscular injection 48 h prior to sponge withdrawal; ewes of group 2 also received 1,200 IU of eCG once as an intramuscular injection, 48 h prior to sponge withdrawal and after 24 h of sponge removal. Ewes were injected with 80 μg of GnRH. Ewes of groups 1 and 2 were further subdivided into four equal groups (n = 6). Subgroups A and C (superovulated with eCG and eCG plus GnRH, respectively) were mated naturally at least two times with Awassi rams of proven fertility at 8-h intervals. Subgroups B and D (same as A and C) had intrauterine insemination at 44–46 h after sponge removal, under laparoscopic visualization of uterine horns, depositing 1 ml of diluted semen containing 100 × 106 motile sperm in the distal portion of each uterine horn. Ovarian response was assessed by determining the number of corpora lutea by laparoscopy at day 6 after mating. Embryo recovery was performed by using a semi-laparoscopic flushing procedure in both uterine horns. Results of the present study showed that ewes treated in breeding season with eCG plus GnRH has a higher number (P < 0.05) of corpora lutea than eCG alone as 7.33 ± 0.54 and 4.33 ± 0.39, respectively. There was no significant difference in the number of corpora lutea in nonbreeding season when ewes treated with eCG and eCG plus GnRH. The number of unovulated follicles was significantly higher (P < 0.05) in eCG treated ewes than in ewes treated with eCG plus GnRH, both in the breeding and nonbreeding seasons. The number of recovered embryos from ewes treated with eCG plus GnRH and eCG differ significantly (P < 0.05) as 4.32 ± 0.56 and 1.06 ± 0.26, respectively, in the breeding seasons. No significant difference was observed when these hormones used for superovulation in the nonbreeding season. A higher number of unfertilized ova (P < 0.05) was observed in ewes when naturally inseminated than in ewes inseminated using the intrauterine laparoscopic technique. Higher rate of embryo recovery (P < 0.05) was achieved when ewes were inseminated via intrauterine (4.66 ± 0.66) compared with ewes naturally mated (2.16 ± 0.74). The fertilization rate in ewes inseminated intrauterine using laparoscopic techniques and naturally mated were 91.5% and 44.8%, respectively. Fertilization failure in ewes inseminated intrauterine using laparoscopic techniques and naturally mated were 8.4% and 55.2%, respectively. It could be concluded that administration of GnRH 24 h after sponge removal increased ovulation rate of Awassi ewes treated with eCG for superovulation in the breeding season. The use of eCG to induce superovulation in Awassi ewes combined with laparoscopic intrauterine insemination increases the fertilization rate.  相似文献   

6.
A novel method for oestrus-ovulation synchronization in sheep followed by fixed time insemination is presented herewith. Mature dry ewes (n = 28) of Karagouniko breed being at an unknown stage of the oestrous cycle, were used during the middle of breeding season. The treatment protocol consisted of an initial administration of a GnRH analogue followed 5 days later by a prostaglandin F2alpha injection. Thirty-six hours later a second GnRH injection was administered to synchronize ovulation, and laparoscopic intrauterine insemination was performed 12-14 h later. Three days after insemination, fertile rams were introduced into the flock twice daily and oestrus-mating detection was carried out. For progesterone (P(4)) determination, blood samples were collected on alternate days, starting 2 days before the first GnRH injection and continuing for 17 days after insemination. An additional sample was taken on the day of insemination. Pregnancy diagnosis was carried out by trans-abdominal ultrasonography. Fourteen ewes (50%) conceived at insemination and maintained pregnancy; from the remainder 14 ewes 10 became pregnant at natural service, while four, although they mated at least two to three times, failed to conceive. In response to the first GnRH, P(4) concentration increased at higher levels in ewes that conceived at AI compared with those that failed to conceive (47.54 and 22.44%, respectively; p < 0.05). Significant differences (p < 0.05) in mean P(4) concentration between pregnant and non-pregnant animals were detected 1 day before AI (0.17 +/- 0.06 and 0.26 +/- 0.14 ng/ml, respectively) on the day of AI (0.15 +/- 0.04 and 0.24 +/- 0.08 ng/ml, respectively) as well as 9 and 11 days thereafter (0.48 +/- 0.12 and 0.38 +/- 0.12 ng/ml; 0.68 +/- 0.14 and 0.50 +/- 0.18 ng/ml, respectively). These results indicate that using the proposed protocol, an acceptable conception rate can be achieved which could be further improved by modifying the time intervals between interventions.  相似文献   

7.
The aim of the study was to assess the effects of superovulatory treatment (multiple FSH‐dose vs single‐shot FSH treatment) and seasonality on embryo yields in fine‐wool Merino ewes. Treatment based on multiple FSH‐dose consisted of 200 mg of FSH (Folltropin®) administered in seven decreasing doses. Single‐shot treatment consisted of a single dose of 70 mg of FSH + eCG. In ewes treated with multiple FSH doses, number of recovered embryos was higher (6.0 ± 0.5 vs 3.5 ± 1.0), while non‐fertilization rate was lower (12.8 ± 3.9 vs 40.3 ± 9.5) during the breeding season when compared to the non‐breeding season (p < 0.05); although similar values of recovered Grades 1–2 embryos were observed between seasons. During the breeding season, proportion of responding ewes (98.1 vs 57.1%), ovulation rate (13.9 ± 0.8 vs 3.2 ± 1.2), recovered structures (7.9 ± 0.6 vs 1.7 ± 0.7), total recovered embryos (6.0 ± 0.5 vs 1.2 ± 0.6) and good‐quality embryos (5.1 ± 0.5 vs 0.9 ± 0.6) were higher for the multiple FSH‐dose treatment than for the single‐shot protocol. In a similar way, in the non‐breeding season, ovulation rate (11.3 ± 1.8 vs 6.0 ± 1.1) and recovered structures (6.6 ± 1.2 vs 2.7 ± 0.6) were higher for the multiple FSH injections protocol than those for the single‐shot treatment, resulting in higher recovered Grades 1–2 embryos (3.2 ± 0.9 vs 1.4 ± 0.5). Current results indicate that seasonal anestrus affected embryo yields when applying multiple FSH‐dose superovulatory treatment in Merino ewes, by decreasing the number of recovered embryos although the number of recovered good‐quality embryos was not affected. During both seasons, multiple FSH injections produced higher ovarian response and number of viable embryos than the single‐shot treatment.  相似文献   

8.
This study examined the reproductive endocrine profile under natural and artificial photoperiods in Magang goose ganders. Group 1 ganders (n=8) served as non-treated controls and were exposed to natural photoperiod throughout the experiment from 13th January to 17th December 2004. Group 2 ganders (n=8) were exposed to 18 h long daily photoperiod for 60 days from 13 January till 15 March 2004 and again to 16 h photoperiod for 75 days till 10th October 2004, and the 11h short photoperiod in the remainder periods of the experiment. In control ganders, plasma LH concentrations were high in normal breeding seasons (August-March) and decreased to low levels in non-breeding season from April to July. Testosterone concentrations changed similarly to that of LH throughout the seasons. Seasonal pattern of PRL concentrations was opposite to those of LH and testosterone, with low values in breeding season and high values in non-breeding season. In artificial photoperiod treated ganders, increasing photoperiod increased PRL and decreased LH and testosterone concentrations, while decreasing photoperiod reversed these changes. There were no seasonal or photoperiod caused changes in plasma T3 concentrations in both control ganders and artificial photoperiod treated ganders. These results demonstrated that in Magang goose ganders that long photoperiod stimulates PRL secretion and decreases LH secretion, which terminates reproductive season in spring and early summer, and short photoperiod stimulates LH secretion and inhibits PRL secretion rendering ganders enter into reproductive season.  相似文献   

9.
An ostrich breeding flock, joined as individual breeding pairs (n = 136 pairs), was used to investigate the possibility of diagnostic ultrasonography as a method to predict the reproductive performance of ostrich females during a breeding season. Follicular activity was easily detected and quantified by using diagnostic ultrasonography. One to 8 follicles were recorded in 25% of females scanned at the beginning of the 9-month breeding season. At the end of the breeding season, 1-3 follicles were observed in 28.7% females. Females in which follicular activity was observed came into production earlier than those in which no follicles were observed, with the mean (+/- SE) number of days to the production of the 1st egg being 22.3 +/- 12.5 and 87.4 +/- 7.2 days, respectively. Females in which follicular activity was observed at the beginning of the breeding season, produced on average 181% more eggs during the 1st month of the breeding season (P < 0.01) than females in which no follicular activity was observed (6.67 +/- 0.70 vs 2.37 +/- 0.41 eggs). Egg production over the first 2 months of breeding and over the entire breeding season were similarly affected (P < 0.01), with the mean number of eggs produced over the first 2 months of the breeding season being 14.7 +/- 1.5 for females with observed follicular activity and 7.4 +/- 0.9 eggs for females with no observed follicular activity. Females in which follicular activity was observed at the end of the breeding season produced on average 108% more eggs (P < 0.01) during the last month of the breeding season than females in which no follicular activity was observed (2.77 +/- 0.43 vs. 1.33 +/- 0.27 eggs). There was a tendency (P = 0.06) for egg production over the last 2 months to be similarly affected (6.10 +/- 0.85 vs 4.19 +/- 0.54 eggs). No relationship with egg production over the entire breeding season was found for the end-of-the-breeding-season observations. Diagnostic ultrasonography can thus be used as a management tool to identify reproductively healthy ostrich females and also females with a higher egg production potential over a period of 2 months after or prior to assessment. Future studies should focus on the development of the technique to predict reproductive performance over entire breeding seasons for selection purposes.  相似文献   

10.
The aim of this study was to assess the ultrasonographic characteristics of ovulatory follicles in cyclic Western White Face ewes (December) that had received intravaginal sponges containing medroxyprogesterone acetate (MAP; 60 mg) for 12 days, with or without an injection of 500 IU of equine chorionic gonadotropin (eCG) at sponge removal. We hypothesized that quantitative echotextural attributes of the follicles in ewes treated only with MAP would differ from those in MAP/eCG-treated ewes, reflecting the increased antral follicular growth and secretory function under eCG influence. Digital images of ovulatory follicles obtained at 0 and 24 h after MAP sponge removal and at 24 h before ovulation in the eCG-treated (five ewes, 13 follicles) and control (six ewes, 9 follicles) animals, were subjected to computerized analyses. The mean diameter of ovulatory follicles increased (p < 0.001) 24 h after eCG treatment. The mean pixel intensity and heterogeneity of the follicular antrum (p < 0.001), as well as mean pixel intensity of the follicular wall and perifollicular ovarian stroma (p < 0.05), were greater in eCG-treated animals compared with control ewes 24 h after sponge removal and at 24 h before ovulation. Mean serum concentrations of oestradiol-17beta tended to increase (p = 0.06) 24 h after eCG treatment and the eCG-treated ewes exceeded (p < 0.05) control animals in progesterone concentrations from days 9-15 after ovulation. Our results support the hypothesis that large antral follicles in eCG-treated ewes exhibit distinctive echotextural characteristics. Follicular image attributes in eCG-treated ewes appear to be indicative of the changes in follicular morphology and secretory activity caused by the administration of the exogenous gonadotropin, which has both FSH- and LH-like activities.  相似文献   

11.
AIM: To evaluate the efficacy of a programme using oestradiol benzoate, progesterone and the prostaglandin-F2 (PG) analogue, cloprostenol, to synchronise oestrus and ovulation in dairy cows, compared with a programme using a gonadotropinreleasing hormone (GnRH) agonist, buserelin, and cloprostenol. METHODS: Twenty non-lactating dairy cows, at random stages of the oestrus cycle, were randomly assigned to 1 of 2 treatments. In Treatment 1 ( OPPG; n=10), cows were injected with 2 mg oestradiol benzoate intramuscularly (IM) plus 200 mg progesterone subcutaneously (SC) on Day 0, followed by 500 microg cloprostenol IM on Day 9 and 1 mg oestradiol benzoate on Day 10. In Treatment 2 (GPG; n=10), cows were injected with 10 microg buserelin IM on Day 0, 500 microg cloprostenol IM on Day 7 and 10 microg buserelin on Day 9. The ovaries of all cows were examined by ultrasonography, using an 8 MHz probe, from 5 days before the initial treatment until ovulation. Cows were observed for oestrus 3 times daily for 7 days after cloprostenol treatment. Blood samples were collected daily for determination of progesterone, and 6-hourly for 36 h after the second oestradiol or buserelin injection for the determination of follicle stimulating hormone (FSH) and luteinising hormone (LH) concentrations. RESULTS: The percentage of cows observed in oestrus was higher in the OPPG group than in the GPG group (100% vs 55.6%, p=0.018). Treatment with either short-acting progesterone plus oestradiol benzoate or buserelin was followed by atresia or ovulation of the dominant follicle. Emergence of a new follicular wave occurred earlier (p>0.001) in the GPG group (2.2+/-0.2 days) than in the OPPG group (3.6+/-0.2 days). There was no significant difference between treatment groups in the variation of time of follicular wave emergence or size of the largest follicles at either the time of initial treatment (10.8+/-1.4 mm vs 11.1+/-0.8 mm), cloprostenol treatment (13.8+/-0.7 mm vs 14.0+/-1.3 mm) or of ovulation (15.4+/-0.7 mm vs 17.6+/-1.1 mm; p=0.10). The LH surge occurred sooner after the second injection of buserelin (4.0+/-1.0 h) than after the second injection of oestradiol benzoate (22.8+/-1.2 h; p>0.001). The interval between the second injection of oestradiol benzoate or buserelin and ovulation did not differ significantly between treatment groups (1.7+/-0.3 days vs 1.6+/-0.2 days; p=0.69). CONCLUSIONS: The use of short-term progesterone treatment, combined with oestradiol benzoate for follicular wave synchronisation, and cloprostenol to cause lysis of residual luteal tissue, is a promising alternative to established methods of oestrus synchronisation in cows.  相似文献   

12.
Breeding records of 48 Thoroughbred and Standardbred mares treated with native GnRH (500μg im, bid) during February—April, 1999 or 2000, on 7 farms in central Kentucky were retrospectively examined. Treated mares were classified as being in anestrus or early transition (n=42; if no signs of estrus occurred within 31/2 weeks and the largest follicle remained ≤25 mm in diameter or the first larger follicle(s) of the season regressed without ovulating), or were classified as being in late transition (n=6; if follicular growth achieved 30-40 mm diameter but ovulation had not yet occurred during the breeding season). Thirty-eight mares (38/48; 79%) ovulated in 13.7 ± 7.4 days. Interval to ovulation was negatively associated with size of follicles at onset of native GnRH therapy (P < 0.01). Per cycle pregnancy rate was 53% (19/36 mares bred). Ovulation inducing drugs were administered to 32 of the native GnRH treated mares (2500 units hCG intravenously, n = 20; deslorelin implant [Ovuplant™] subcutaneously, n=12), while 6 mares were not administered any additional drugs to induce ovulation. Per cycle pregnancy rate did not differ among mares treated only with native GnRH (2/5 mares bred; 40% PR), mares treated with native GnRH plus hCG (12/19 mares bred; 63% PR), or mares treated with native GnRH plus Ovuplant™ (5/12 mares bred; 42% PR) (P > 0.10). Additional treatment with either hCG or Ovuplant™ did not alter mean follicle size at ovulation or interovulatory interval (P > 0.10). The proportion of interovulatory intervals > 25 days was not different between mares receiving no additional treatment to induce ovulation (0/4; 0%) compared to mares receiving hCG to induce ovulation (3/8; 38%) (P > 0.10), but the proportion of interovulatory intervals > 25 days was greater for mares receiving Ovuplant™ to induce ovulation (5/7; 71%) compared to mares receiving no additional treatment to induce ovulation (P < 0.05). The proportion of mares with extended interovulatory intervals (i.e., > 25 days) did not differ between mares with follicles < 15 mm diameter (4/8, 50%) and those with follicles > 15 mm diameter (3/11, 27%) at onset of native GnRH treatment (P > 0.10). While concurrent untreated controls were not used in this study, the 79% response rate to twice daily administration of native GnRH is in agreement with other reports using pulsatile or constant infusion as methods of administration, confirming therapy can hasten follicular development and first ovulation of the breeding season. As with previous reports, follicle size at onset of treatment is an important determinant of interval from onset of native GnRH therapy to ovulation. Use of hCG or Ovuplant™ did not enhance ovulatory response in native GnRH treated mares. Use of Ovuplant™ during native GnRH therapy may increase the incidence of post-treatment anestrus in mares not becoming pregnant.  相似文献   

13.
Background: Brucella is a zoonotic Gram-negative pathogen that causes abortion and infertility in ruminants and humans. TLR4 is the receptor for LPS which can recognize Brucella and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. Consequently, transgenic sheep over-expressing TLR4 are an suitable model to investigate the effects of TLR4 on preventing Brucellosis. In this study, we generated transgenic sheep overexpressing TLR4 and aimed to evaluate the effects of different seasons(breeding and non-breeding season) on superovulation and the imported exogenous gene on growth.Results: In total of 43 donor ewes and 166 recipient ewes in breeding season, 37 donor ewes and 144 recipient ewes in non-breeding season were selected for super-ovulation and injected embryo transfer to generate transgenic sheep.Our results indicated the no. of embryos recovered of donors and the rate of pronuclear embryos did not show any significant difference between breeding and non-breeding seasons(P 0.05). The positive rate of exogenous TLR4 tested were 21.21 % and 22.58 % in breeding and non-breeding season by Southern blot. The expression level of TLR4 in the transgenic sheep was 1.5 times higher than in the non-transgenic group(P 0.05). The lambs overexpressing TLR4 had similar growth performance with non-transgenic lambs, and the blood physiological parameters of transgenic and non-transgenic were both in the normal range and did not show any difference.Conclusions: Here we establish an efficient platform for the production of transgenic sheep by the microinjection of pronuclear embryos during the whole year. The over-expression of TLR4 had no adverse effect on the growth of the sheep.  相似文献   

14.
Forty-six adult merino ewes were immunised against oestradiol-17 beta-6 carbomethyloxime:human serum albumin and 48 comparable ewes were used as controls in an experiment to study the effects of gonadotrophin releasing hormone (GnRH) on ovulatory responses after treatment with pregnant mare's serum gonadotrophin (PMSG). All the ewes were treated with progestogen sponges for 14 days and received 1500 iu PMSG on the 12th day. Twenty-four control and 24 immunised ewes received 25 micrograms GnRH 21.5 hours and 23 hours after the sponges were withdrawn. Plasma samples were collected between 17 and 50 hours after the sponges were withdrawn and assayed for luteinising hormone (LH). Immunisation reduced the proportion of ewes which ovulated and their rate of ovulation. Injection of GnRH increased the proportion of immunised ewes ovulating (P less than 0.0005) and their rate of ovulation (P less than 0.0001). More unovulated follicles were observed in immunised ewes regardless of GnRH treatment (P less than 0.0001). The rate of recovery of eggs was reduced after immunisation. Treatment with GnRH produced a surge of LH of equal magnitude in the control and immunised ewes although not as many immunised ewes ovulated.  相似文献   

15.
Two trials were conducted with ewes to determine the effects of prostaglandin F2 alpha (PGF) administration during the first week of gestation. In trial 1, ewes (n = 134) were checked for breeding activity once daily and half of them received 10 mg PGF im at either 0, 24, 48, 72, 96, 120 or 144 h after detection of a breeding mark. The other half served as uninjected controls. In trial 2, ewes (n = 153) were checked for breeding activity twice daily. Two-thirds of the ewes received 10 mg PGF at either 24, 36, 48, 60, 72, 84, 96, 108, 120 and 132 h following detection of a breeding mark. The other one-third of the ewes served as uninjected controls corresponding to treatment times of 24, 48, 72, 96 or 120 h. In trial 1, the percentage of ewes lambing as a result of first service decreased as time of administration of PGF increased. The first-service pregnancy rate was 87.5% for ewes given PGF at 0 h and 0% for ewes given PGF at 144 h. Fewer (P less than .05) ewes given PGF at 96, 120 or 144 h after first mating lambed than control ewes. Similarly in trial 2, fewer (P less than .05) ewes given PGF at 96, 108, 120 or 132 h after first mating lambed than did controls. The total number of ewes lambing as a result of the entire breeding season did not differ (P greater than .05) between treated and control ewes in trial 1 (88.2 vs 87.3%) or trial 2 (85.7 vs 83.3%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The administration of melatonin via intravaginal sponges is an effective method of advancing the breeding season in ewes. In the present study the fertility of melatonin-treated ewes has been compared with that of ewes induced to ovulate by conventional treatment. On June 25, 15, 15-month-old ewes (group 1) were given intravaginal implants containing melatonin in silastic tubing. On August 8, 13 similar ewes (group 2) were given Veramix sponges which were removed 12 days later, when they were given 500 iu pregnant mare's serum gonadotrophin (PMSG). Two intact raddled rams were introduced to the combined groups on August 21. The mean date of mating was September 3 +/- 1.5 for group 1 and August 21 +/- 0.2 for group 2 ewes. All the ewes in group 1 and 10 in group 2 (77 per cent) were mated. All the ewes were slaughtered approximately 50 days after mating and their reproductive tracts removed. The mean ovulation rates were 2.1 and 2.3 in groups 1 and 2, respectively. The results indicate that conception rates of 87 per cent and 61.5 per cent of ewes put to the ram were obtained in the melatonin-treated and PMSG-treated groups, respectively. At slaughter the melatonin-treated group were found to have a mean of 1.47 live fetuses per ewe put to the ram and the PMSG-treated group a mean of 1.08. It can therefore be concluded that melatonin implantation is an effective method for the advancement of seasonal breeding in anoestrous sheep, and that the fertility achieved is at least as good as that given by conventional progestogen-PMSG treatment.  相似文献   

17.
The aim of the present study was to compare three methods of estrus synchronization in ewes during the non-breeding season. Forty-two ewes were randomly grouped for three treatments with different intravaginal devices for 12 days: Group A) CIDR, Group B) Self-made P sponge, Group C) MAP (medroxyprogesterone acetate) cream sponge. Furthermore, all groups were divided into two treatments with (R) or without ram presence to examine the "ram effect". Blood was collected from all treated ewes, and progesterone (P(4)), estradiol 17-beta (E(2)) and luteinizing hormone (LH) concentrations were measured by enzyme-immunoassay. All ewes showed estrus behavior between Day 0 to 3 after device removal, and the mean onset times of their estrus were 23.0, 33.0 and 21.0 h for Groups AR, BR and CR, respectively. On Day 5 as examined by laparoscopy, the ovulation rates (and number of ovulated ewes) were 1.45 (11/11), 1.25 (12/14) and 1.21 (14/14) for Groups A, B and C, respectively. In Group C, the time to LH surge was significantly (P<0.05) later (32.4 h) than those in Groups A (27.0 h) and B (25.5 h). Ram presence did not affect the number of ovulated ewes, ovulation rate or time to LH surge. The ram introduction group had significantly (P<0.05) lower E(2) concentrations during the period from 0 h to 36 h than the groups without ram presence. These results suggest that the self-made P sponge or MAP cream sponge was effective as well as CIDR, and ram introduction was not necessary, for induction of estrus and ovulation during the non-breeding season.  相似文献   

18.
Previous research indicated that the size of the ovulatory follicle at the time of insemination significantly influenced pregnancy rates and embryonic/fetal mortality after fixed-timed AI in postpartum cows, but no effect on pregnancy rates was detected when cows ovulated spontaneously. Our objective was to evaluate relationships of fertility and embryonic/fetal mortality with preovulatory follicle size and circulating concentrations of estradiol after induced or spontaneous ovulation in beef heifers. Heifers were inseminated in 1 of 2 breeding groups: (1) timed insemination after an estrous synchronization and induced ovulation protocol (TAI n = 98); or (2) AI approximately 12 h after detection in standing estrus by electronic mount detectors during a 23-d breeding season (spontaneous ovulation; n = 110). Ovulatory follicle size at time of AI and pregnancy status 27, 41, 55, and 68 d after timed AI (d 0) were determined by transrectal ultrasonography. Only 6 heifers experienced late embryonic or early fetal mortality. Interactions between breeding groups and follicle size did not affect pregnancy rate (P = 0.13). Pooled across breeding groups, logistic regression of pregnancy rate on follicle size was curvilinear (P < 0.01) and indicated a predicted maximum pregnancy rate of 68.0 +/- 4.9% at a follicle size of 12.8 mm. Ovulation of follicles < 10.7 mm or > 15.7 mm was less likely (P < 0.05) to support pregnancy than follicles that were 12.8 mm. Ovulatory follicles < 10.7 mm were more prevalent (28% of heifers) than ovulatory follicles > 15.7 mm (4%). Heifers exhibiting standing estrus within 24 h of timed AI had greater (P < 0.01) follicle diameter (12.2 +/- 0.2 mm vs. 11.1 +/- 0.3 mm) and concentrations of estradiol (9.9 +/- 0.6 vs. 6.6 +/- 0.7) and pregnancy rates (63% vs. 20%) than contemporaries that did not exhibit behavioral estrus. However, when differences in ovulatory follicle size were accounted for, pregnancy rates were independent of expression of behavioral estrus or circulating concentration of estradiol. Therefore, the effects of serum concentrations of estradiol and behavioral estrus on pregnancy rate appear to be mediated through ovulatory follicle size, and management practices that optimize ovulatory follicle size may improve fertility.  相似文献   

19.
Pregnant St. Croix White and Barbados Blackbelly hair sheep ewes were used to evaluate the effect of supplemental nutrition around the time of lambing on ewe and lamb performance during the dry and wet seasons on St. Croix. Beginning 14 d before expected day of lambing (d 0) and for 21 d postpartum, one group of ewes was fed a pelleted supplement in addition to grazing guinea grass pasture (FEED). Other ewes in the flock grazed pasture only (CONTROL). This study was conducted during the dry season (June through September; FEED n = 14 and CONTROL n = 15) and during the wet season the next year (October through January; FEED n = 11 and CONTROL n = 12). The 24-h milk production of each ewe was measured on d 7, 21, 35, 49, and 63. Ewes were exposed to sterile rams equipped with marking harnesses to detect estrus during the postpartum period. The FEED ewes lost less weight postpartum during both seasons (P < 0.0001) and had higher milk production (P < 0.009) than CONTROL ewes during the dry season. During the dry season, the time to the first postpartum estrus did not differ (P > 0.10) between FEED and CONTROL ewes (46.9 +/- 2.7 vs 52.9 +/- 2.6 d, respectively). During the wet season, the time to first postpartum estrus was less (P < 0.07) in FEED than in CONTROL ewes (33.0 +/- 3.1 vs 41.1 +/- 2.9 d, respectively). The FEED ewes had higher lamb birth weight (P < 0.04) and weaning weight (P < 0.05) than CONTROL ewes (3.2 +/- 0.1 and 12.2 +/- 0.5 vs 2.9 +/- 0.1 and 10.9 +/- 0.5 kg, respectively) during the dry season. In the wet season, lamb birth weight and weaning weight were similar (P > 0.10) between FEED and CONTROL (3.2 +/- 0.1 and 15.5 +/- 0.7 vs 3.1 +/- 0.1 and 15.3 +/- 0.6 kg, respectively). Lambs born during the wet season had higher (P < 0.0001) ADG than lambs born during the dry season (194.4 +/- 5.9 vs 127.7 +/- 4.7 g/d, respectively). Strategic nutritional supplementation of hair sheep ewes may provide a method for increasing the weight of lambs produced during the dry season in the tropics, but it does not seem to be beneficial during the wet season.  相似文献   

20.
In the autumn oestrus season, 20 Slovak Merino ewes were exposed to synchronization of oestrus, treated with the PGF2alfa at doses 125 micrograms (Oestrophan, inj. Spofa). followed by an injection of PMSG at doses 1000 IU (Antex Leo Denmark) and 50,000 IU of Vitamin A (Axerophtol Spofa). 23 anoestrus ewes were synchronized with an intravaginal sponges containing 20 mg of chlorsuperlutine (Agelin, Spofa) for 12 days and after sponge withdrawal, the ewes were injected with 750 and 1000 IU of PMSG (Antex Leo Denmark). Ovulatory response was observed and the possibility of ova recovered from the genital organs in ewes after synchronization of oestrus and superovulation in oestrus season. Higher values of the total follicular response (CFO), and the average number of ovulation (PO) after administering equal doses of PMSG were found out both in anoestrus ewes (CFO 6.62 +/- 4.24; PO 4.25 +/- 4.52) and in oestrus ewes (CFO 2.70 +/- 2.10; PO 2.60 +/- 1.74; resp. CFO 2.80 +/- 1.83; PO 3.4 +/- 3.0), if the ewes were treated with PMSG together with vitamin A. The average number of ova flushed was higher in anoestrus ewes (3.0-0.5) than in oestrus ewes (1.67-3.75). In both trials the equal ratio in the number of released ova was gained from ewes of experimental groups (83-88% of the total number). After ova flushing from the genital organs in ewes of the experimental groups most ovas were found in the isthmatal part of the uterine tube (36-60%). On the basis of gained results it was concluded, that synchronized oestrus ewes on receiving PMSG in anoestrus season the ovarial response was more significant than in autumn breeding season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号