首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The spider crab Maja brachydactyla is overexploited on the NW coast of Spain. Aquaculture of this species can be the solution to the problem, and consequently, several attempts of intensive larval rearing have been conducted. However, most of the studies already published do not provide enough zoo technical data, especially in terms of larval and prey densities or the nutritional quality of diets used for rearing.Three experiments were carried out to evaluate the conditions for intensive larval rearing of M. brachydactyla. Larval stocking density (10, 50 and 100 larvae L− 1), prey:larva ratio (15, 30 and 60 enriched Artemia larva− 1) and diet (enriched Artemia, non-enriched Artemia and polychaete supplement) effects on growth and survival of this species were studied. For larval culture nine, 35 L, 150 μm mesh-bottomed PVC cylinders (triplicates for each treatment and larval stage) connected to a recirculation unit, were used. Temperature and salinity were kept constant at 18 °C and 36‰ respectively. A 12 to 18 day trial was conducted for each experiment and samples of larvae were collected at each larval stage (zoea I, zoea II, megalopa) in the inter-molt phase and at first juvenile. Survival, carapace length and width, dry weight (DW), and proximate biochemical content (protein, carbohydrates and total lipid) as well as lipid class composition were determined.Stocking densities of 100 larvae L− 1 resulted in higher growth in DW and higher content in lipids and protein for zoea I (ZI) and zoea II (ZII) than 10 larvae L− 1. However, survival decreased with increasing stocking density.The use of 60 preys larva− 1 produced larvae with significantly higher DW and protein content, especially at ZII stage, than lower prey densities. Survival rate obtained feeding 60 preys larva− 1 up to the megalopa stage was almost two-fold (42.2%) the rate obtained using 15 preys larva− 1 (24.8%).Larvae fed on enriched Artemia (EA) showed an increase in weight up to megalopa (518.9 ± 26.5 μg) in contrast to larvae fed on non-enriched prey (A) (467.9 ± 6.9 μg). Variation in DW correlated with the total lipid content (L) of the larvae (LEA = 70.1 ± 37.5 μg ind− 1; L= 28.9 ± 3.2 μg ind− 1) especially in terms of neutral lipids. The use of an initial density of at least 50 larvae L− 1 and 60 enriched Artemia larva− 1 can be considered the most adequate rearing parameters in order to obtain good results in growth and survival of M. brachydactyla.  相似文献   

2.
The present study was undertaken to investigate the distribution of Listonella anguillarum in a Japanese flounder (Paralichthys olivaceus) hatchery. A total of 2704 isolates were obtained from the developing fish, live diets and artificial feeds of Japanese flounder and their rearing water, 439 of which were identified as L. anguillarum by the combining incubation on thiosulfate-citrate-bile salt-sucrose (TCBS) agar at 35 °C overnight with polymerase chain reaction (PCR) detection for the VAH1 hemolysin gene. L. anguillarum was detected in all seven rotifer samples, with densities of 2.5 × 103 to 4.6 × 106 colony forming units (CFU) g− 1. Both the analyzed samples of Nannochloropsis oculata contained this bacterium at densities of 1.6 × 104 to 1.4 × 105 CFU g− 1. L. anguillarum was detected in only one of four samples of Artemia nauplii with a density of 4.8 × 105 CFU g− 1 (35%) and it was not detected in the two analyzed artificial feed samples. L. anguillarum was detected in 11 of 18 specimens of larval and juvenile Japanese flounder at densities of 5.0 × 101 to 7.4 × 105 CFU g− 1, while it was not detected in the two analyzed egg specimens of Japanese flounder. These results indicate that L. anguillarum associated with the developing Japanese flounder is likely derived from rearing water and live diets such as rotifers. Further, it is strongly suggested that L. anguillarum is a transient bacterium of the intestinal microflora for the Japanese flounder but is a permanently indigenous one for the Japanese flounder hatcheries.  相似文献   

3.
Atlantic salmon with body weight of 493 g were fed 6 graded levels of methionine in diets based on plant proteins for a period of 85 days with the aim to test whether methionine intake affected growth, nutrient accretion and hepatic sulphur metabolism. A negative control based on a mixture of plant proteins with low fish meal inclusion (5%) containing 1.64 g methionine 16 g− 1 N was added five levels of dl-methionine resulting in dose levels from 1.64 to 2.98 g methionine 16 g− 1 N. A control feed based on fish meal (26%) and plant proteins (44.9%) containing 2.30 g methionine 16 g− 1 N was used as a control for growth performance. Feed intake and thus growth was generally lower in fish fed the plant protein based diets, while digestibility of amino acids was higher in fish fed the test diets as compared to those fed the fish meal based positive control diet. However, no significant differences in either feed intake or growth were present in fish fed either of the test diets containing graded levels of methionine. Neither carcass protein or lipid retention was affected by methionine intake as confirmed by the unaffected mRNA levels of growth hormone-insulin-like growth factor in hepatic and muscle tissues. Hepatic size as well as transsulfuration was significantly affected by methionine intake. Thus it is concluded that nutrient accretion was not the main effect of methionine intake (ranging from 35 to 90 mg fish− 1 day− 1). Rather methionine is essential to secure high synthesis of activated methyl groups for methylation reactions ensuring a healthy fish not developing increased liver size. Intakes exceeding 60 to 70 mg methionine daily in the fast growing seawater period results in increased transsulfuration analysed as increased hepatic taurine production keeping the hepatic free methionine constant at all intakes.  相似文献   

4.
The red seaweed Asparagopsis armata (Harvey; Rhodophytae, Bonnemaisoniaceae) produces biologically active secondary metabolites that are valuable natural ingredients for cosmetics and medicine and its cultivation may therefore be a profitable venture. The tetrasporophyte of this species (“Falkenbergia rufolanosa”) was successfully tank-cultivated as a continuous biofilter for the effluent of a commercial fish farm in southern Portugal. Optimal stocking density for highest biomass yield and a low level of other algal species in winter and late spring was 5×g centrifuged fresh weight l− 1. The effect of total ammonia nitrogen supply (TAN flux) on biofiltration and biomass yield was investigated in winter and spring. Results revealed that A. armata is currently the seaweed-biofilter with the highest TAN removal of up to 90 μmol l− 1 h− 1 at a TAN flux of about 500 μmol l− 1 h− 1. In the tanks used, this is equivalent to a removal of up to 14.5 g TAN m− 2 day− 1. At a lower TAN flux of about 40 μmol l− 1 h− 1, TAN removal by A. armata is more than double to what is reported at this flux for another successful seaweed biofilter, the genus Ulva. Monthly variation of A. armata biomass yield peaked in May and was lowest in January. At TAN fluxes between 300 and 400 μmol l− 1 h− 1, an average water temperature of 21.7 °C and a total daily photon flux density of 47 Mol m− 2, seaweed yield was over 100 g DW m− 2 day− 1 with a recorded maximum of 119 g. During spring, autumn and early summer, the biomass of A. armata within the experimental tanks doubled every week. A model for the up scaling of this finfish integrated aquaculture of A. armata varies the investment in biofilter surface area and estimates the return in biofiltration and biomass yield. Highest TAN removal efficiencies will only be possible at low TAN fluxes and a very large biofilter area, resulting in a low production of biomass per unit area. To remove 50% of TAN from the effluent (1 mt Sparus aurata; 21 °C), 28 m2 of biofilter, designed to support a water turnover rate of 0.8 Vol h− 1 would be necessary. This system produces 6.1 kg FW (1.5 kg DW) of A. armata per day and has the potential to turn biofiltration into an economically sustained, beneficial side effect.  相似文献   

5.
The current study investigated acute toxicity to ammonia of the South African abalone, Haliotis midae, from three size classes relevant to mariculture operations, and the chronic impact of sub-lethal ammonia levels on growth of juvenile abalone.Results showed that tolerance to ammonia (at pH 7.8 and Ta = 15 °C) increases with body size (i.e. age) as indicated by 36 h LC50 values: juvenile abalone (1-2.5 cm shell length) had the lowest LC50 of 9.8 μg l− 1 FAN, whereas LC50 was 12.9 μg l− 1 FAN in “cocktail”-size abalone (5-8 cm shell length). The highest LC50 of 16.4 μg l− 1 FAN was observed in “brood stock”-size animals (10-15 cm). When “cocktail”-size abalone were allowed to acclimatize to sub-lethal ammonia levels for 48 h, their ammonia tolerance increased compared with non-acclimatized abalone of the same size: LC50 was 2.0 μg l− 1 FAN higher at 14.8 μg l− 1 FAN.Growth of juvenile abalone (1-2.5 cm shell length) during chronic exposure to sub-lethal FAN levels is inhibited: specific growth rate (SGR) is significantly reduced by 58.7% to 0.10 ± 0.03% d− 1 (weight) compared with 0.24 ± 0.06% d− 1 of abalone of a control group (no ammonia).The results demonstrate the negative effects of ammonia not only on survival but also on growth of farmed abalone, both impair profitability of the farming operation. The information from the present study will be helpful in determining water quality requirements in South African abalone farms.  相似文献   

6.
A non‐classical biomanipulation experiment was carried out in Gonghu Bay of Lake Taihu in 2009. Silver and bighead carp were stocked in a large fish enclosure to control cyanobacterial blooms. Water quality, plankton abundance, and the intracellular and extracellular microcystins (MCs) in lake water were investigated monthly in 2009. The concentrations of nitrogen nutrients were significantly lower in the fish enclosure than in the surrounding lake, while phosphorus (especially total phosphorus) concentration was higher in fish enclosure. During the blooming period, Cyanophyta contributed to more than 90% of the phytoplankton in the surrounding lake, whereas it represented only 40–80% in the fish enclosure. The phytoplankton and crustacean zooplankton biomasses and the zooplankton/phytoplankton ratios were all significantly lower in the fish enclosure than in the lake. This result suggested that silver and bighead carp can effectively suppress the phytoplankton biomass with the initial stocking density of 7.5 g m?3 for silver carp and 1.1 g m?3 for bighead carp, despite a simultaneous decrease in the grazing pressure of the zooplankton on the phytoplankton. During the blooming period, the intracellular and extracellular MCs in the fish enclosure were reduced by 93.8% and 69.8% compared with the surrounding lake. MCs content varied from 0.34 to 18.8 ng (mean 4.8 ng) MC‐LReqg?1 wet weight in the muscle sample of silver and bighead carp in the experimental enclosure, which suggested that these fish were safe to consume for human. However, the long‐term effects of MCs on aquatic ecosystem and on public health cannot be overlooked.  相似文献   

7.
African catfish (Clarias gariepinus) (initial body weight: 34.8 ± 4.8 g) and vundu catfish (Heterobranchus longifilis) (initial body weight: 39.1 ± 8.2 g) fingerlings were stocked at densities of 4, 6 or 8 fish m− 3 in traditional fish ponds (whedos) constructed in the floodplain of the Oueme River (South Benin, West Africa), for 70 days from March to June 2005. Fish were fed twice a day with 34% crude protein feed formulated with locally available ingredients. The effects of stocking density were evaluated in growth responses, gross production and body composition. Water quality variables were similar (p > 0.05) in all compartments. Temperature and pH were at the optimum level for fish. Dissolved oxygen ranged from 0.9 to 1.2 mg l− 1 during the experiment and secchi disc transparency was low (< 14 cm). In both species, growth responses increased with the increasing density, significantly in African catfish stocked at density of 8 fish m− 3 compared to the other densities (4 and 6 fish m− 3) but not significantly in vundu catfish. Production data ranged from 3.1 ± 0.5 to 22.8 ± 4.5 t ha− 1 year− 1 in African catfish and from 6.1 ± 1.2 to 15.1 ± 3.1 t ha− 1 year− 1 in vundu catfish. Production increased with increasing stocking densities but only significantly (p < 0.05) between the density of 8 fish m− 3 and the other densities. In both species, carcass fat increased with increasing density (p < 0.05) while carcass protein and moisture decreased (p > 0.05). These results are important because they indicate that, as far as growth rate and production are concerned, African catfish is more profitable than vundu catfish for culture at high density in whedo.  相似文献   

8.
The effects of dietary α-lipoic acid (LA) and vitamin C on the fatty acid (FA) composition in the brain and muscle and vitamins E and C levels in the brain were studied in the fish Piaractus mesopotamicus. A two-factorial design, where diets were devoid or supplemented with ascorbate (500 mg AA kg− 1) and/or lipoic acid (1000 mg kg− 1), was used. The levels of eicosapentaenoic acid (20:5n − 3, EPA) increased (P < 0.01) in muscle polar lipids (PL) in LA groups (6.93% ± 0.43 vs. 5.83% ± 0.40 and 6.68% ± 0.53 vs. 6.00% ± 0.39), and the same trend was also seen in the brain, however not significant. These changes are suggested to be caused by a change in lipid metabolism rather than being a direct effect of protection by LA against lipid peroxidation. No interaction of vitamin C and LA neither effects of LA on vitamin E (15.1-19.2 mg α-tocopherol g− 1 tissue) or vitamin C (total AA, 41.7-89.8 μg g− 1 tissue) in brain was detected.  相似文献   

9.
Hatchery broodstock conditioning and nursery culture of the Chilean flat oyster Ostrea chilensis have been hampered by the poor performance of oysters fed typical microalgal hatchery diets. To determine the feeding capabilities of this species the selective removal and consumption of natural planktonic assemblages and artificial inert particles (polystyrene beads) by juvenile and adult oysters were examined experimentally. The arrangement of the eulaterofrontal cirri of the ctenidia was also examined to infer their potential efficiency of particle selection for feeding. Polystyrene beads of 45 and 15 μm in diameter had high rates of removal from suspensions by both juvenile (45 μm = 70%, 15 μm = 73%) and adult (45 μm = 88%, 15 μm = 87%) oysters. In contrast, beads of 6 μm diameter had lower rates of removal (adults = 68%, juveniles = 53%), while 1 μm beads were not removed at all. Both adult and juvenile oysters feeding upon natural plankton assemblages removed only microphytoplankton (20-75 μm in size) despite the presence of nanophytoplankton (2-20 μm), picophytoplankton (< 2 μm), cyanobacterium Synechoccocus spp. (< 2 μm), and bacterial cells (< 75 μm) in the experimental suspensions. Eulaterofrontal cirri of both juvenile (15.2 μm ± 0.9 SE) and adult oysters (18.9 μm ± 0.3 SE) are the shortest that have been reported for any ostreid species which helps to explain the inability of this species to retain small food particles. The clearance rates for oysters feeding on microphytoplankton only were 1.49 (± 0.05 SE) and 7.1 (± 1.2 SE) l h− 1g− 1 for juveniles and adults respectively. These values are much higher than previously reported for this species being fed smaller sized cultured microalgae. Our results strongly suggest that the difficulties in the nursery and broodstock hatchery culture of this oyster may be due to inappropriate phytoplankton diets. We recommend the provision of cultured microalgae of 20-75 μm in diameter for improving the performance of hatchery maintained juvenile and adult O. chilensis.  相似文献   

10.
The integrated aquaculture of the tetrasporophyte of Asparagopsis armata Harvey (Falkenbergia rufolanosa) using fish farm effluents may be viable due to the species high capacity of removing nutrients and its content of halogenated organic compounds with applications on the pharmaceutical and chemical industries. In order to optimize the integrated aquaculture of F. rufolanosa, we followed the daily variation of the potential quantum yield (Fv/Fm) of PSII on plants cultivated at different biomass densities and different total ammonia nitrogen (TAN) fluxes to check if they are photoinhibited at any time of the day. Moreover, the photoinhibition under continuous exposure to highly saturating irradiance and its potential for subsequent recovery in the shade was assessed. The potential for year round cultivation was evaluated by measuring rates of O2 evolution of plants acclimated at temperatures ranging from 15 to 29 °C, the temperature range of a fish farm effluent in southern Portugal where an integrated aquaculture system of F. rufolanosa was constructed.Photoinhibition does not seem to be a major constrain for the integrated aquaculture of F. rufolanosa. Only when cultivated at a very low density of 1.5 g fresh weight (FW) l− 1 that there was a midday decrease in maximal quantum yield (Fv/Fm). At densities higher than 4 g FW l− 1, no photoinhibition was observed. When exposed to full solar irradiance for 1 h, F. rufolanosa showed a 33% decrease in Fv/Fm, recovering to 86% of the initial value after 2 h in the shade. A midday decline of the F. rufolanosa Fv/Fm was also observed under the lowest TAN flux tested (∼6 μM h− 1), suggesting that this fast and easy measurement of fluorescence may be used as a convenient diagnostic tool to detect nutrient-starved unbalance conditions of the cultures. Maximum net photosynthesis peaked at 15 °C with 9.7 mg O2 g dry weight (DW)− 1 h− 1 and remained high until 24 °C. At 29 °C, the net oxygen production was significantly reduced due to a dramatic increase of respiration, suggesting this to be the species' lethal temperature threshold.Results indicate that F. rufolanosa has a considerable photosynthetic plasticity and confirm it as a good candidate for integrated aquaculture at temperatures up to 24° C and cultivation densities of at least 5 g FW l− 1. When cultivated at these densities, light does not penetrate below the first few centimetres of the surface zone. Plants circulate within the tanks, spending around 10% of the time in the first few centimetres where they are able to use efficiently the saturating light levels without damaging their photosynthetic apparatus.  相似文献   

11.
South African abalone, Haliotis midae, were exposed to air at 12 °C for 36 h to simulate the extent and rate mass loss experienced by animals during long distance live exports. Animals lost 15.1 ± 0.94% of their mass during the 36 h air exposure, an approximation of the highest mass losses sustained by industry.The total mass loss was attributed to water loss, as the contribution of dry mass to the total mass remained constant under all conditions. Water content decreased from 64.8% of the body mass (Mb) under control conditions to 58.8% Mb after 36 h in air. In real terms, however, animals had lost 22% of the body water pool.Abalone exhibited a typically high water turnover rate when in water (125 μL g− 1 h− 1), which decreased markedly during air exposure (2.2 μL g− 1 h− 1). Haemolymph volume decreased from 43% Mb in water to 14% Mb in air. The concomitant decrease in haemolymph pressure probably limited the first step in urine formation (ultra-filtration through the pericardium). Thus we observed that while urine flow represented about 26% of the total water loss when the animals were in water, urine flow ceased during air exposure.The decrease in haemolymph volume in air represents a redistribution of water to the tissues and not a bulk loss of haemolymph. This is supported by the concentration of haemolymph ions by a factor of 1.2 during aerial exposure, which was predicted based on the 22% decrease in water content. Under the same conditions, evaporation from water containers with similar surface to volume dimensions as abalone, accounted for only an 8.25% mass loss. As all other water loss routes were accounted for, we measured pedal mucus production rates of abalone in water and air. During 36 h aerial exposure, the pedal mucus production represented a loss of 6.8% Mb. We conclude that water loss during 36 h air exposure is attributable to evaporation (8.25% Mb) and pedal mucus production (6.8% Mb). This paves the way for directed research into mitigating water loss during the live export process.  相似文献   

12.
An 8 weeks growth experiment was conducted to determine the effects of dietary vitamin C on the survival, growth, tissue ascorbic acid contents and immunity of large yellow croaker (Pseudosciaena crocea) with initial weight of 17.82 ± 0.68 g. Seven practical diets were formulated to contain 0.1, 12.2, 23.8, 47.6, 89.7, 188.5 and 489.0 mg ascorbic acid equivalent kg− 1 diet, supplied as l-ascorbyl-2-polyphosphate (LAPP). Each diet was fed to triplicate groups of fish in seawater floating cages (1.5 × 1.5 × 2.0 m), and each cage was stocked with 120 fish. Fish were fed twice daily (05:00 and 17:00) to apparent satiation for 8 weeks. The water temperature fluctuated from 19.5 to 25.5 °C, the salinity from 25 to 28‰ and dissolved oxygen content was approximately 7 mg l− 1 during the experimental period. Results showed that the specific growth rate (SGR) (from 1.80 to 1.96% d− 1) had an increasing trend with the increase of dietary vitamin C, but no significant difference was observed among dietary treatments. No gross deficiency signs were observed in any of the experimental fish. Survival rate, however, significantly increased with increasing dietary vitamin C (P < 0.05). The vitamin C contents in liver and muscle correlated positively with the vitamin C in diets. The vitamin C requirement was estimated to be 28.2 mg kg− 1 based on survival, and 87.0 mg kg− 1 on liver content of vitamin C. The activities of serum lysozyme and alternative complement pathway (ACP), phagocytosis percentage (PP) and respiratory burst activity of head kidney significantly increased with increasing dietary vitamin C. The challenge experiment with Vibrio harveyi showed that fish fed the diets with supplementation of vitamin C had significantly lower cumulative mortality compared to the control group (66.7%), and the cumulative mortality (16.7%) in fish with 489.0 mg kg− 1 ascorbic acid was significantly lower than that (41.7%) in fish with 23.8 mg kg− 1 ascorbic acid. These results suggested that vitamin C significantly influenced the immune response and disease resistance of large yellow croaker.  相似文献   

13.
Participatory research was conducted with poorer farmers in two communities, Girai (G) and Bahagili (B) in NW Bangladesh to assess the production of Nile tilapia seed in irrigated spring rice-fields. All the selected households (G = 15; B = 4) had previous experience producing common carp (Cyprinus carpio) in the rice-fields allocated a separate plot in which a deeper area had been excavated for this trial. Mature GIFT strain Nile tilapia (12 female and 6 male; 121 ± 34 g and 158 ± 54 g size, respectively) were supplied to each household irrespective of the size of their trial plot (mean < 0.15 ha). The trial started in the spring rice season (boro) in February and ended at the end of main season (amon) in December 1999. Management practices, production and sales of fish were monitored weekly.The majority of farmers succeeded in producing fingerlings in their plots; 11% failed totally but around 70% produced more than 2000 fingerlings from a single plot. Production during boro and fallow period was much higher (> 90% total) than during the subsequent amon crop (< 10% total). Total production was highly variable among households but not different between the two study areas (G = 4092 ± 3277; B = 3730 ± 4232 fingerlings household− 1). Daily production of fingerlings per unit area was relatively low (< 1 fish m− 2 day− 1) but efficiency of production was high, averaging 17.3 fingerlings. kg− 1 female day− 1. Mean individual harvest weight was 21 g.Most fingerlings were sold (43%) and/or stocked for further culture in their own grow-out system (39%), but some were used directly for household consumption (17%).  相似文献   

14.
The Australian freshwater fish, silver and golden perch, are increasingly being used for aquaculture. Addition of salt to water is commonly used in commercial aquaculture to reduce stress attributed to high ammonia concentrations. The activities in gill homogenates of ouabain-sensitive Na+/K+-ATPase and NEM-sensitive ATPases (as a measure of H+-ATPases) of silver and golden perch were measured after maintaining the fish in water containing different salt and ammonia concentrations. Six treatments were applied in a 2 × 3 factorial design: two salt treatments, low salt (LS) of 2.5 g l− 1 and high salt (HS) 5 g l− 1, and three ammonia treatments, no added ammonia (NA), low ammonia (LA), 3 mg total ammonia nitrogen (TAN) l− 1 and high ammonia (HA), 5 mg TAN l− 1. In both species, activity of Na+/K+-ATPase was lowest in fish kept in the LSNA treatment (7.4 ± 0.4 μmol Pi mg protein− 1 h− 1 for silver perch and 3.1 ± 0.6 for golden perch) and highest in the HSHA treatment (15.2 ± 1.0 μmol Pi mg− 1 protein h− 1 for silver and 8.4 ± 1.2 for golden perch). In both species there was a significant increase (P < 0.001) in Na+/K+-ATPase activity with increase in salt concentration and with an increase in ammonia concentrations. A significant interaction (P < 0.036) between salt and ammonia on Na+/K+-ATPase activity was observed in silver but not in golden perch. In contrast, the lowest activity for NEM-sensitive ATPase was observed in the HSNA treatment (1.0 ± 0.2 μmol Pi mg− 1 protein h− 1 for silver and 1.5 ± 0.4 for golden perch) and highest in LSHA treatment (2.9 ± 0.4 μmol Pi mg− 1 protein h− 1 for silver and 3.6 ± 1.2 for golden perch). In both species there was a significant decrease in NEM-sensitive ATPase activity with increase in salt concentration and an increase in activity with increase in ammonia (P < 0.003). In silver perch, a significant interaction between the treatments was observed (P < 0.02). The results suggest that in these species of freshwater fish the Na+/K+-ATPase has a role in salt and ammonia homeostasis and that the NEM-sensitive ATPases are more active in fish kept in water with a lower salt content. It is possible that the increase in ammonia resistance when salt is added to the environmental water in commercial aquaculture systems may be due to the effects of salt on gill Na+/K+-ATPase activity rather than the NEM-sensitive ATPases.  相似文献   

15.
The objective of this study was to understand the microbial flora associated with the hatchery system of giant fresh water prawn, Macrobrachium rosenbergii during an entire rearing cycle. Bacteriological and physico-chemical analysis was done for different samples of water, larvae, and Artemia. The total bacterial load in well water, seawater and inlet water varied from 101 to 105 cfu ml− 1 with higher counts seen in larval rearing tank (LRT) water. The Vibrio count ranged between 101 to 103 cfu ml− 1. Larval samples harboured a bacterial load of 106 to 107 cfu/10 larvae. The bacterial load in Artemia hatching water ranged from 4.90 × 104 to 5.63 × 106 cfu ml− 1 while Artemia had a load ranging from 1.08 × 107 to 2.09 × 109 cfu g− 1. Vibrio count in the LRT water ranged from 101-103 cfu ml− 1 while the count in larvae ranged from 102 to 104 cfu/10 larvae. The bacterial genera were predominantly Gram-negative and comprised of Aeromonas spp., Pseudomonas spp., Vibrio spp. and Bacillus spp. and non-spore formers (NSF) were the dominant Gram-positive bacteria. This study documents the bacterial flora associated with Macrobrachium hatchery system during a regular normal run. Knowledge of the qualitative and quantitative aspects of bacterial flora in the hatchery would help to understand disturbances, if any, brought about during disease outbreaks.  相似文献   

16.
A sustainable semi-intensive pond aquaculture technology including major carp species as cash-crop and small indigenous fish species (SIS) as food for the farmers' families is being optimized in Bangladesh. The inclusion of silver carp (Hypophthalmichthys molitrix), a cheap large species affordable by poor farmers, is now being considered. As part of a study on the effects of this filter feeder on polycultures including the large carps rohu (Labeo rohita), catla (Catla catla) and common carp (Cyprinus carpio) and the SIS punti (Puntius sophore) and mola (Amblypharyngodon mola), an experiment was carried out under farm conditions to test the effects of silver carp and of each SIS species on the growth, survival and yield of the large and small species and on pond ecology.The experiment was performed in 38 farmers' fishponds of different sizes, from 220 m2 to 1200 m2. The results show that the larger the fish pond the better rohu performance, the larger punti fry weight and the lower punti fry harvested biomass. Pond size did not affect other fish species. The addition of 250 mola and/or punti per 100 m2 fishponds affected rohu and catla and did not affect common and silver carps. The addition of mola alone reduced rohu's parameters by 15%. The addition of SIS in the three combinations tested (250 mola, 250 punti, 125 of each species) reduced catla's parameters by 20-24%. Punti fry were larger when both SIS were stocked and punti fry biomass was larger when only punti were present. Total mola harvested biomass and yield were larger when the entire SIS stocked were only mola.The addition of 10 silver carp over the 99 large carps stocked per 100 m2 fishponds negatively affected rohu and catla growth and yield by about 15-21% and 45-50% respectively but not their survival, did not affect common carp performance, did not affect punti and mola reproduction in the ponds, reduced punti yields by 25%, reduced mola performance by about 35%, and silver carp own biomass increased total yield and total income in about 12% each. These effects are explained and discussed considering fish interactions through the food web. The decreased income from selling the more expensive large carps is more than compensated by that obtained from silver carp, which allows the option to the farmer to sell part of the silver carp to complete the cash income that would have been obtained from large carps only if silver carp would not be stocked, and consume the rest with the family.  相似文献   

17.
A 12-week growth trial was conducted in a flow-through system to investigate the chronic toxic effect of dietary intake of cyanobacteria on growth, feed utilization and microcystins accumulation in Nile tilapia (Oreochromis niloticus L.) (initial body weight: 5.6 g). Six isonitrogenous and isocaloric diets were formulated to include different contents of cyanobacteria with the dietary microcystins increasing from 0 to 5460.06 ng/g diet. The results showed that dietary intake of cyanobacteria could increase the growth of tilapia while there are no impacts on feed conversion efficiency or mortality. Feeding rate was higher for the diets containing highest cyanobacteria. Microcystins were mostly accumulated in fish liver. The relationship between microcystins contents in muscle, liver, spleen and dietary intake could be described by quadratic equations.Microcystins content in the muscle of Nile tilapia in present study exceeded the upper limit of the tolerable daily intake (TDI) of microcystins suggested by the WHO (0.04 μg/kg body weight/d). It is suggested that Nile tilapia fed on toxic cyanobacteria is not suitable for human food.  相似文献   

18.
In this study, 120-l annular columns were used to cultivate Tetraselmis suecica outdoors. The mass transfer at different aeration rates and the influence of the harvest rate on productivity and biochemical composition were investigated. The potential of the system was evaluated by estimating productivity at full-scale. Two different arrangements to simulate a full-scale plant and determine the “overall areal productivity” (OAP) were experimented with. In August 2003, one experimental column (full-scale column) was placed between seven dummy columns. All the reactors were positioned at a distance of 0.8 m wall to wall and centred at the vertices of equilateral triangles. A second experimental column (isolated column) was placed in a separate area under full sunlight. In August 2004, the columns were placed side by side in an east-west oriented row at a distance of 0.24 m wall to wall.In the first experiment, the mean volumetric productivity of the full-scale column was not significantly lower than that achieved by the isolated column (0.46 against 0.49 g l− 1 day− 1) in spite of the shading by the dummy units. The average OAP and efficiency of conversion of visible solar radiation (PE) were 36.3 g m− 2 day− 1 and 9.4%, respectively. In the second experiment, the full-scale column attained a mean volumetric productivity of 0.42 g l− 1 day− 1. The OAP and the PE were 38.2 g m− 2 day− 1 and 9.3%, respectively.  相似文献   

19.
In three separate experiments, harpaticoid copepods Tisbe monozota (alive and dead) and a microparticulate microbound diet were evaluated as alternatives to live Artemia nauplii as food, beginning at either stage PZ2 or M1, in the larval culture of Litopenaeus vannamei. Larvae were cultured in 2 L round bottom flasks at a density of 150 L− 1 (Experiment 1) and 100 L− 1 ( 3.2 and 3.3) at 28 °C, 35‰ salinity and 12:12 LD photoperiod, and fed 4×/day- 1. Larvae were initially fed a mixture of phytoplankton to stages PZ2 or M1 and then fed either live Artemia, live or dead copepods, or a microparticulate microbound diet. The experiments were terminated and all larvae were harvested when more than 80% of larvae had molted to postlarvae 1 (PL1) within any flask representing any of the treatments. The comparative value of the different diets and feeding regimes was determined by mean survival, mean dry weight and total length of individual larva, and percentage of surviving larvae that were PL1. Trypsin activity of samples of larvae from each treatment was also determined. The microparticulate microbound diet effectively served as a complete substitute for Artemia nauplii when fed beginning at stage M1. When fed at the beginning of the PZ2 stage, survival was comparable to that of larvae fed Artemia, but mean dry weight, mean total length, and percent of surviving larvae that were PL1 generally were significantly less. Responses to the feeding of copepods, whether fed dead or live, as a substitute were generally significantly less than those of larvae fed either the Artemia nauplii or the microparticulate diet. Values of trypsin activity (10− 5 IU/μg- 1 dry weight) corresponded to the relative proportions of the different larval stages within a treatment, with higher activity being characteristic of early stages. Previously demonstrated successful results with another species of crustacean suggest that the microparticulate microbound diet has characteristics that should be effective in the culture of the carnivorous stages of other crustacean and fish larvae that are currently fed live Artemia nauplii.  相似文献   

20.
Growth and energy budget of juvenile cobia (initial body weight ∼ 22 g) at various temperatures (23, 27, 31 and 35 °C) were investigated in this study. Maximal ration level (RLmax, %/day) increased as temperature (T, °C) increased from 23 °C to 31 °C but decreased at 35 °C, described as a quadratic equation: RLmax = −0.023T2 + 1.495T − 17.52. Faecal production (f, mg g− 1 day− 1) increased with increased temperature (T, °C), described as a power function: lnf = 0.738lnT − 0.806. As temperature increased, feed absorption efficiency in dry weight (FAEd, %), protein (FAEp, %) and energy (FAEe, %) all increased first and then decreased, but the variation of feed absorption efficiency was small, with ranges of 89.59-91.08%, 92.91-94.71%, 93.92-95.32%, respectively. Specific growth rate in wet weight (SGRw, %/day), dry weight (SGRd, %/day), protein (SGRp, %/day) and energy (SGRe, %/day) showed a domed curve relative to temperature (T, °C), described as quadratic equations: SGRw = − 0.068T2 + 3.878T − 50.53, SGRd = − 0.079T2 + 4.536T −59.64, SGRp = − 0.084T2 + 4.783T − 63.08 and SGRe = − 0.082T2 + 4.654T − 60.99, and SGRw, SGRd, SGRp and SGRe maximized at 28.5 °C, 28.6 °C, 28.4 °C, 28.5 °C, respectively, as calculated from the regression equations. The relationships between feed conversion efficiency in wet weight (FCEw, %), dry weight (FCEd, %), protein (FCEp, %), energy (FCEe, %) and temperature (T, °C) also took on a domed curve described as quadratic equations: FCEw = − 0.726T2 + 39.71T − 473.8, FCEd = − 0.276T2 + 15.31T − 190.6, FCEp = − 0.397T2 + 22.05T − 277.9 and FCEe = − 0.350T2 + 19.39T − 239.9, and FCEw, FCEd, FCEp and FCEe maximized at 27.4 °C, 27.8 °C, 27.7 °C and 27.7 °C, respectively, as calculated from the regression equations. Energy budget of juvenile cobia fed satiation was 100C = 5F + 67(U + R) + 28G at water temperature 27 °C and 100C = 5F + 70(U + R) + 25G at water temperature 31 °C, where C is food energy, F is faeces energy, (U + R) is excretion energy and metabolism energy, and G is growth energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号