首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the mid 1970s, the fishery catch of postlarval Japanese anchovy (Engraulis japonica) in a shelf region of the Enshu‐nada Sea, off the central Pacific coast of Japan, started to decline corresponding to a rapid increase of postlarval sardine (Sardinops melanostictus). In late 1980s, sardine started to decline, and it was replaced by anchovy in the 1990s. This alternating dominance of postlarval sardine and anchovy corresponded to the alternation in egg abundance of these two species in the spawning habitat of this sea. It was also noteworthy that during the period of sardine decline, sardine spawning occurred in April–May, a delay of two months compared with spawning in the late 1970s. The implication of oceanographic changes in the spawning habitat for the alternating dominance of sardine and anchovy eggs was explored using time‐series data obtained in 1975–1998, focusing on the effect of the Kuroshio meander. Large meanders of the Kuroshio may have enhanced the onshore intrusion of the warm water into the shelf region and contributed to an increase in temperature in the spawning habitat. This might favour sardine, because its egg abundance in the shelf region was more dependent on the temperature in early spring than was that of anchovy. In addition, enhanced onshore intrusion could contribute to transport of sardine larvae from upstream spawning grounds of the Kuroshio region. On the other hand, anchovy egg abundance was more closely related to lower transparency at the shelf edge, which may indicate the prevalence and prolonged residence of the coastal water, and therefore higher food availability, frequently accompanying non‐meandering Kuroshio. The expansion/shrinkage of the spawning habitat of sardine and anchovy in the shelf region, apparently responding to the change in the Kuroshio, possibly makes the alternation in dominance of postlarval sardine and anchovy most prominent in the Enshu‐nada Sea, in combination with changes in the abundance of spawning adults, which occurred almost simultaneously in the overall Kuroshio region. The implication of this rather regional feature for the alternating dominance of sardine and anchovy populations on a larger spatial scale is also discussed.  相似文献   

2.
Gonosomatic indices and egg and larval densities observed from 1986 to 2001 suggest that the peak spawning season of the Australian anchovy (Engraulis australis) in South Australia occurs during January to March (summer and autumn). This coincides with the spawning season of sardine (Sardinops sagax) and the period when productivity in shelf waters is enhanced by upwelling. Anchovy eggs were abundant throughout gulf and shelf waters, but the highest densities occurred in the northern parts of Spencer Gulf and Gulf St Vincent where sea surface temperatures (SST) were 24–26°C. In contrast, larvae >10 mm total length (TL) were found mainly in shelf waters near upwelling zones where SSTs were relatively low (<20°C) and levels of chlorophyll a (chl a) relatively high. Larvae >15 mm TL were collected only from shelf waters near upwelling zones. The high levels of larval abundance in the upwelling zones may reflect higher levels of recruitment to later stages in these areas compared with the gulfs. The sardine spawns mainly in shelf waters; few eggs and no larvae were collected from the northern gulfs. The abundance of anchovy eggs and larvae in shelf waters increased when sardine abundance was reduced by large‐scale mortality events, and decreased as the sardine numbers subsequently recovered. We hypothesize that the upwelling zones provide optimal conditions for the survival of larval anchovy in South Australia, but that anchovy can only utilize these zones effectively when the sardine population is low. At other times, northern gulf waters of South Australia may provide a refuge for the anchovy that the sardine cannot utilize.  相似文献   

3.
Most reports on the distribution of spawning areas of sardine (Sardinops sagax) in the northern Benguela originate from the 1970s and 1980s. The northern Benguela system was in a high upwelling regime during those decades. Since the early 1990s upwelling favourable winds have decreased and a trend of increasing sea surface temperature (SST) has been observed. Changes in the structure of sardine stock in the northern Benguela have been observed and it has been suggested that a reduced biomass and changes in stock structure has led to decreased spawning in the favourable southern locations, thus preventing a recovery of the sardine stock. The present paper on the contrary shows that there has been a shift in spawning location from the less favourable northern areas in the early 1980s to spawning areas further south in the 2000s. Thus, the failure of the northern Benguela sardine stock to recover since its collapse in the late 1960s cannot be explained by spawning in less favourable areas. The shift in preferred spawning location to more southern areas since the 1980s was to be expected with a general warming of the northern Benguela system. Alternative explanations for the failure of the sardine stock to recover such as a reduction in average length as well as length at 50% maturity, leading to a reduction in reproductive output, increased predation pressure, and increased low oxygen waters are proposed.  相似文献   

4.
Previous studies have suggested that sardine, Sardinops sagax, off eastern Australia spawns across its entire range when habitat conditions are suitable. However, recent studies have suggested that separate sub‐populations and spawning groups may occur in the region. Spawning patterns off eastern Australia were investigated using data collected during nine ichthyoplankton surveys conducted between 1997–2015, and adult reproductive data obtained from ad hoc commercial sampling off New South Wales (NSW). The egg surveys covered the known distribution of sardine off eastern Australia and included year‐round sampling in the northern and southern parts of this range. Egg distributions and analysis of gonadosomatic indices identified two spatio‐temporally separate spawning groups; one occurring off southern Queensland to northern NSW during late winter and early spring, and a smaller group off eastern Tasmania to southern NSW during summer. Most eggs were collected from waters 50–90 m deep, with sea surface temperatures of 18–23°C. Additive modelling indicated depth was the most significant factor driving selection of spawning habitat, followed by the interaction of month and latitude. Low egg densities were recorded in waters between 34–37°S, despite conditions within the ranges suitable for spawning. The presence of two spawning groups of sardine off eastern Australia supports recent findings that two sub‐populations occur in the region. Findings of this study will help to optimise the spatio‐temporal extent of future egg surveys and further confirm the need to coordinate future management of each sub‐population among relevant jurisdictions.  相似文献   

5.
The spawning ground of the Japanese sardine, Sardinops melanostictus (Schlegel), was distributed over the oceanic waters as well as the coastal waters along the Pacific coasts of western and eastern Japan during 1978–1992. The area of the spawning ground in the coastal waters on the continental shelf has ranged from 95 000 km2 in 1992 to 143 000 km2 in 1988, constituting 44–77% of the total area of the spawning ground. The area of the coastal spawning ground was relatively constant in spite of the large fluctuations in egg abundance, i.e. size of the spawning population, from 88 trillion (1987) to 668 trillion (1989) in the waters. Spawning adults seemed to extend over the coastal waters irrespective of the size of the spawning population. In contrast to the coastal waters, the spawning area in the oceanic waters offshore of the continental shelf increased from 31 000 km2 in 1978 to 183 000 km2 in 1988 and then shrank to 83 000 km2 in 1992, as a function of the spawning population size. The egg distribution density in the coastal waters stayed less than 6000 m−2 mo−1, but it reached as high as 27 400 m−2 mo−1 in the expanded spawning ground in the oceanic waters. The oceanic waters seemed to function as a reserve spawning ground for the sardine in years of extremely high spawning population.  相似文献   

6.
Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) eggs exhibited different spatial structure on the scale of 0.75–2.5 km in two egg patches sampled in the Southern California Bight in April 2000. Plankton samples were collected at 4‐min intervals with a Continuous Underway Fish Egg Sampler (CUFES) on 5 × 5 km grids centered on surface drifters. Variograms were calculated for sardine and anchovy eggs in Lagrangian coordinates, using abundances of individual developmental stages grouped into daily cohorts. Model variograms for sardine eggs have a low nugget effect, about 10% of the total variance, indicating high autocorrelation between adjacent samples. In contrast, model variograms for anchovy eggs have a high nugget effect of 50–100%, indicating that most of the variance at the scales sampled is spatially unstructured. The difference between observed spatial patterns of sardine and anchovy eggs on this scale may reflect the behavior of the spawning adults: larger, faster, more abundant fish may organize into larger schools with greater structure and mobility that create smoother egg distributions. Size and mobility vary with population size in clupeoids. The current high abundance of sardines and low abundance of anchovy off California agree with the greater autocorrelation of sardine egg samples and the observed tendency for locations of anchovy spawning to be more persistent on the temporal scale of days to weeks. Thus the spatial pattern of eggs and the persistence of spawning areas are suggested to depend on species, population size and age structure, spawning intensity and characteristic physical scales of the spawning habitat.  相似文献   

7.
Sardine fisheries in the Iberian Atlantic shelf (36°N–44.5°N) show decadal‐scale cycles. In the late 1990s, a positive phase in sardine stock was expected; on the contrary, catches have declined until now. Regime shifts in climatic and oceanographic variables on different scales (as forcing factor) and shifts in sardine stock (as result) have been used with the aim of identifying the physical variables that explain most of the sardine population variance in the region. Circa 1998, when last sardine regime shift was detected, the main patterns of large‐scale atmospheric circulation in the Northern Hemisphere with influence in the study area namely Northern Atlantic Oscillation (NAO) and East Atlantic (EA) pattern changed and coupled in a combination that led to a rise in sea surface temperature and a decline in the coastal upwelling intensity. Several years with a downwelling situation in average in the main spawning and feeding Iberian sardine areas would have affected the stock abundance, averting the return to the projected positive regime. The sardine negative regime shift was detected first in the regions of the study located further north. The regional variable latent heat flux that groups a set of environmental processes related to the ocean–atmosphere heat exchanges and so with the turbulence manages to explain the 72% of sardine recruitment.  相似文献   

8.
Long‐term synchronous trends in small pelagic fisheries catches around the world suggest that fish populations are governed by the same global climate forcings. Recent findings regarding the population dynamics of zooplankton during the lunar cycle in sub‐tropical waters may shed light on the influence of the lunar cycle on fish spawning and mortality. Here I hypothesize that, in the short‐term, observed changes in zooplankton abundance during the lunar cycle promote periods of enhanced feeding by adult fish and lower mortality (and increased growth) in their early planktonic stages. Furthermore, a striking 9‐year periodicity in sardine and anchovy mortality was inferred in four major upwelling areas, coinciding with the long‐term variability in lunar illumination. It is suggested that both short‐ and long‐term changes in lunar illumination should be considered when modelling the effect of climate on the natural variability of fisheries.  相似文献   

9.
Generalized additive models (GAMs) were fitted to sardine (Sardina pilchardus) egg distribution data from three daily egg production method surveys. The results showed that the area of egg cover off Portugal decreased significantly from 11 800 km2 in 1988 to 7000 km2 in 1997 and 7400 km2 in 1999. This is because of a significant reduction in sardine egg presence off northern Portugal, GAM estimated areas being similar or higher in the late 1990s for southwestern and southern Portugal. The distributional area covered by larvae was not estimated for 1988 (larval distribution extended beyond the survey area), although it was probably higher than the 9600 km2 for 1997 and 5500 km2 for 1999. In 1997 and 1999, the Gulf of Cadiz was also sampled, indicating extensive areas with sardine eggs and larvae (more than 50% of the total area of distribution off Portugal). Standardized data from 15 ichthyoplankton surveys between 1985 and 2000 show a decline in the mean probability of egg presence within the Portuguese continental shelf from the mid‐1980s to the late‐1990s, because of a marked reduction in egg presence off northern Portugal. Sardine larval data from the same surveys suggest that the reduction in mean probability of presence in the north is less marked than for eggs (although this comparison ignores the presence of sardine larvae beyond the continental shelf in the 1980s). Similar changes off northern Portugal and western Galicia are observed in commercial sardine catches and the acoustically estimated area of fish distribution. It is possible that the observed decline in spawning area off northwestern Iberia during the 1990s is indirectly reflecting the prevalence of environmental conditions detrimental to sardine recruitment (northerly winds during winter that favour coastal upwelling and offshore transport), which have reduced the spawning contribution of young fish in that area.  相似文献   

10.
Spawning habitats of two eastern Mediterranean sardine, Sardina pilchardus (Walbaum, 1792), stocks (coastal waters of central Aegean and Ionian Seas) are characterized from daily egg production method (DEPM) surveys conducted during the peak of the spawning period. The latter occurs earlier in the Aegean Sea (December) than in the less‐productive Ionian Sea (February). Single‐parameter quotient analysis showed that the preferred bottom depth for spawning was 40–90 m in both areas but sardine selected sites of increased zooplankton in the Aegean Sea during December and increased fluorescence in the Ionian Sea during February. Estimates of daily egg production (P) and spawning stock biomass (B) were about four times lower for the Ionian Sea (P = 7.81 eggs m?2, B = 3652 tonnes) than the Aegean Sea (P = 27.52 eggs m?2, B = 16 174 tonnes). We suggest that zooplankton biomass might not be sufficient to support sardine reproduction in the highly oligotrophic Ionian Sea where the very small sardine stock may rely on the late‐winter phytoplankton bloom. Actively selecting sites with increased zooplankton or phytoplankton and feeding plasticity (the well‐known switching from selective particle feeding to non‐selective filter feeding in sardines) are interpreted as adaptations to grow and reproduce optimally at varying prey conditions. Despite differences in temperature and productivity regimes, reproductive performance of sardine in the Ionian Sea was very similar to that in the Aegean Sea during the peak of the spawning period. In comparing adult parameters from DEPM applications to Sardina and Sardinops stocks around the world, a highly significant linear relation emerged between mean batch fecundity (F) and mean weight of mature female (W, g) (F = 0.364W, r2 = 0.98). The latter implies that, during the peak of the spawning period, mean relative batch fecundity (eggs g?1) of sardine is fairly constant in contrasting ecosystems around the world.  相似文献   

11.
We examined the interannual variation in Neocalanus copepod biomass in the Oyashio waters in spring and summer from 1972 to 1999. In the mid‐1970s, mesozooplankton biomass in spring was high; however, it decreased significantly in the late 1970s. The timing of the decrease in mesozooplankton biomass corresponded to the 1976/77 climatic regime shift. The biomass of N. flemingeri, which dominated the Neocalanus community, was roughly constant from 1980 to 1999. Although species‐level estimates of Neocalanus biomass were not available for the 1970s, a previous study reported that Neocalanus copepods were the predominant mesozooplankton in the Oyashio waters in spring during the 1970s. Neocalanus copepods dominated the mesozooplankton community throughout the 1970s, and their biomass decreased in the late 1970s. Springtime net community production, an index of new production, also decreased in the late 1970s. We suggest that the reduction in new production negatively affected Neocalanus food availability, resulting decreased copepod biomass. New production may have been limited by a combination of subsurface iron supplies, increased vertical density gradient, and reduced vertical water mixing in winter, which resulted in diminished iron entrainment in winter. In summer, mesozooplankton biomass significantly decreased and increased synchronously with the 1976/77 and 1988/89 climatic regime shifts. The biomass of N. plumchrus, which dominated the Neocalanus community, was low in the 1980s and increased in the early 1990s. The biomass of the second‐most dominant copepod, N. cristatus, also increased in the early 1990s. Neocalanus copepods were reported to be a dominant component of the mesozooplankton community in the 1970s; Neocalanus biomass was high in the mid‐1970s and decreased in the late 1970s. Japanese sardine (Sardinops melanostictus), an important predator of Neocalanus copepods, exhibited interannual variation in standing stock that was inversely related to mesozooplankton biomass. At their peak in 1984, sardines consumed 32–138% of the daily Neocalanus production during summer. Therefore, predation pressure on Neocalanus by Japanese sardine is likely to affect interannual variation in mesozooplankton biomass during the summer.  相似文献   

12.
Non-stationary driver-response relationships are increasingly being recognized by scientists, underlining that a paradigm shift out of conventional stationary relationships is crucial. Japanese sardine (Sardinops melanostictus, Clupeidae) is a typical small pelagic fish in the northwestern Pacific with considerable fluctuations in productivity, bringing about great economic and ecological concerns. Numerous studies suggest that the population dynamics of Japanese sardine is an integrated process affected by multiple density-dependent, fishing and climatic drivers. However, little has hitherto been done to incorporate the non-stationary effects of multiple drivers, impeding progresses in understanding the population dynamics and in developing management strategies. In this study, we adopted variable coefficients generalized additive models to reveal the non-stationary effects of density dependence, fishing pressure and climatic conditions on the population dynamics of Japanese sardine. Results suggest that the dynamics of Japanese sardine from 1976 to 2018 could be divided into four periods: the 1980s when suitable climatic conditions from strong Siberian High pressure system sustained high abundance; the 1990s when negative density-dependent effects and degrading climatic conditions due to temperature increase led to population collapse; the 2000s when negative triple effects, particularly high fishing pressure, restricted the population increase; and the 2010s when favourable climatic conditions with re-strengthening Siberian High pressure system accompanied by low fishing pressure contributed to the population recovery. The study highlights that precise identifications of population status and climatic conditions are helpful to achieve good trade-offs between resource exploitation and protection and to facilitate ecosystem-based management for Japanese sardine fisheries.  相似文献   

13.
Identification of the potential habitat of European anchovy (Engraulis encrasicolus) at different life stages in relation to environmental conditions is an interesting subject from both ecological and management points of view. For this purpose, acoustic data from different seasons and different parts of the Mediterranean Sea along with satellite environmental and bathymetry data were modelled using generalized additive models. Similarly, egg distribution data from summer ichthyoplankton surveys were used to model potential spawning habitat. Selected models were used to produce maps presenting the probability of anchovy presence (adults, juveniles and eggs) in the entire Mediterranean basin, as a measure of habitat adequacy. Bottom depth and sea surface chlorophyll concentration were the variables found important in all models. Potential anchovy habitats were located over the continental shelf for all life stages examined. An expansion of the potential habitat from the peak spawning (early summer) to the late spawning season (early autumn) was observed. However, the most suitable areas for the presence of anchovy spawners seem to maintain the same size between seasons. Potential juvenile habitats were associated with highly productive inshore waters, being less extended and closer to coast during winter than late autumn. Potential spawning habitat in June and July based on ichthyoplankton surveys overlapped but were wider in extent compared with adult potential habitat from acoustics in the same season. Similarities and dissimilarities between the anchovy habitats as well as comparisons with sardine habitats in the oligotrophic Mediterranean Sea and other ecosystems with higher productivity are discussed.  相似文献   

14.
The spatial pattern of sardine spawning as revealed by the presence of sardine eggs is examined in relation to sea surface temperature (SST) and mean volume backscatter strength (MVBS) measured by a 150 kHz acoustic Doppler current profiler (ADCP) during four spring surveys off central and southern California in 1996–99. Studies in other regions have shown that MVBS provides an excellent measure of zooplankton distribution and density. Zooplankton biomass as measured by survey net tows correlates well with concurrently measured MVBS. The high along‐track resolution of egg counts provided by the Continuous Underway Fish Egg Sampler (CUFES) is a good match to the ADCP‐based data. Large interannual differences in the pattern and density of sardine eggs are clearly related to the concurrently observed patterns of surface temperature and MVBS. The strong spatial relationship between sardine eggs and MVBS is particularly evident because of the large contrast in zooplankton biomass between the 1998 El Niño and 1999 La Niña. The inshore distribution of sardine spawning appears to be limited by the low temperatures of freshly upwelled waters, although the value of the limiting temperature varies between years. Often there is an abrupt offshore decrease in MVBS that is coincident with the offshore boundary of sardine eggs. Possible reasons for this association of sardine eggs and high zooplankton biomass include an evolved strategy that promotes improved opportunity of an adequate food supply for subsequent larval development, and/or adult nutrient requirements for serial spawning. Hence, the distribution of these parameters can be used as an aid for delineating the boundaries of sardine spawning habitat.  相似文献   

15.
The brown shrimp, Crangon crangon, is the most important target of the coastal crustacean fisheries in the German Bight. In order to evaluate the relation between the abundance of ovigerous females and larvae in spring and the recruitment success in autumn, we first analysed the seasonal appearance of ovigerous females and larvae from weekly samples throughout 2012. The spawning season in the German Bight extends over several months comprising multiple unsynchronized spawning events. The minimum shares of ovigerous females appeared in early autumn, and the highest shares in late winter bearing mostly early egg stages. We defined the putative start of the reproductive cycle for November when the frequency of ovigerous females started to increase. There was no distinct separation between winter and summer eggs, but a continuous transition between large eggs spawned in winter (the early spawning season) and batches of smaller eggs in spring and summer. Larval densities peaked in April/May. Consequently, regular annual larval surveys from 2013 to 2016 were scheduled for April/May and extended to six transects covering the inner German Bight. Ovigerous females were most abundant in shallow waters above the 20‐m isobaths, which also explained regional differences in abundance between the regions off North Frisia and East Frisia. No relation was obvious between the number of larvae in spring and recruited stock in autumn. Due to the short lifespan of C. crangon, the combination of various abiotic factors and predator presence seems to be the principal parameters controlling stock size.  相似文献   

16.
The sustainable use of marine resources requires understanding the surrounding ecosystem and elucidating mechanisms of variation. However, we still lack a comprehensive understanding of environmental variation in the spawning and nursery grounds of important fisheries species Japanese sardine (Sardinops melanostictus) and mackerels (Scomber japonicus and Scomber australasicus) in the northwest Pacific. Here, we investigate detailed physical, chemical, and biological environment variations in the spawning and nursery grounds along the Kuroshio and Kuroshio Extension area from intensive investigation in spawning season (April) of 2013. We found similar water mass property and copepod community in the egg‐rich Kuroshio area and the larvae‐rich downstream Kuroshio Extension area, indicating environmental variability is small during transportation and development processes. The egg‐rich northern Izu Islands region showed high copepod abundance, although low nutrient and chlorophyll concentrations were observed. Eggs were scarce or absent in the second survey 10 days after abundant eggs were observed in the region, along with differences in water property and copepod community. This indicates that not only the location but also the specific water characteristic and copepod community are a determining factor for spawning. Indicator communities of copepod found in our study (indicator community of transportation process from spawning ground, of non‐spawning ground, and of reproductive area in the Kuroshio Extension area) would be a key factor for recruitment prediction.  相似文献   

17.
Distribution and abundance of ovigerous female red king crabs (Paralithodes camtschaticus) in the southeast Bering Sea from 1975 to 2001 were investigated using data collected during National Marine Fisheries Service annual trawl surveys. Peak abundance of ∼140 million crabs was observed in 1978, and declined rapidly to a low of just over 6 million in 1986. Abundance fluctuated from ∼6 to 22 million from the late 1980s through 2001, with a single strong recruitment event that resulted in ∼35 million ovigerous females observed in 1998. Changes in abundance were accompanied by changes in distribution. During the late 1970s the population was typified by high abundance to the southwest, along the northern shore of Unimak Island and the Alaska Peninsula. By the mid-1980s the population's average center of abundance shifted substantially to the northeast and was found in central Bristol Bay. The distribution remained similar throughout the 1990s. Changes in distribution during the late 1970s and early 1980s coincided with changes in early summer near-bottom temperature. The 1970s were typified by a pool of very cold water (<1°C) within central Bristol Bay. This retreated in ∼1978, and was not observed in consecutive summers during the remainder of the time series. The northeastward shift in the population, measured as the distance between Unimak Pass and the average center of abundance, showed a negative correlation with the geographic extent the cold-pool. Abundance calculated for smaller spatial strata indicate that changes in distribution were not simply the result of relative abundance phenomena or solely generated by mortality in southwestern Bristol Bay, but also reflected regional increases in absolute abundance. Total broodstock abundance declined after 1978, but abundance in the western and northern areas of the region increased until at least 1982. The fact that distribution patterns change over time may have implications for population dynamics and fishery management. Changes in spatial population structure may affect recruitment patterns via changes in larval dynamics, and management might benefit if the causes of geographic displacement can be identified and predicted.  相似文献   

18.
We investigated the effects of three sea surface oceanographic variables (temperature, salinity, and chlorophyll a) on the abundance of eggs and larvae of two summer‐spawning species in the NW Mediterranean Sea, the anchovy Engraulis encrasicolus and the round sardinella Sardinella aurita, based on data from ichthyoplankton surveys carried out in the 1980s, 2000s, and 2010s. The environmental data showed an increase in seawater temperature and salinity along time, coupled with a decrease in chlorophyll a (proxy for primary production). These long‐term directional changes in environmental conditions helped explain the important reduction observed in the abundance of eggs and larvae of anchovy, as well as shrinking of spawning habitat in this species. At the same time, the probability of occurrence of round sardinella has increased from practically zero in the 1980s to probabilities near 1 along the coastal area of the study region in the two decades of the 21st century. Given that the trends observed in the environmental variables along the three decades of study are expected to continue during the 21st century, as a consequence of climate change, the spawning habitat of anchovy is expected to continue decreasing, while round sardinella habitat can expand. Considering that anchovy is of high commercial importance in NW Mediterranean fisheries, while round sardinella has very low commercial interest, our results show that the viability of small pelagic fisheries in the area may be compromised.  相似文献   

19.
A paradigm of proportionality between spawning stock biomass (SSB) and total egg production (TEP) has been largely untested at multidecadal scales mainly because of difficulty in estimating annual TEP. Recently, this paradigm was directly tested for sardine (Sardinops melanostictus) and anchovy (Engraulis japonicus) at a multidecadal scale to reveal that SSB–TEP proportionality was partially distorted by intraspecific (sardine) and interspecific (anchovy) density dependence in total egg production per spawner individual (TEPPS) or unit weight (TEPPSW). In the present study, we demonstrate intraspecific density dependence in TEPPS/TEPPSW for chub mackerel (Scomber japonicus) in the Kuroshio Current system, using a proxy for TEPPS/TEPPSW, calculated from snapshot abundance data based on fishery‐independent egg surveys in combination with fishery‐dependent stock assessment data, at a multidecadal scale (38 years). TEPPS/TEPPSW exponentially declined with SSB, indicating a strong intraspecific density dependence in TEPPS/TEPPSW in chub mackerel. The observed phenomenon for chub mackerel was similar to that for sardine. Hence, intraspecific density dependence in TEPPS/TEPPSW may be a phenomenon that is generally applicable for species with a high maximum biomass and large population fluctuations. Lastly, we recommend the application of a TEP‐based framework to studies on recruitment mechanisms of fish.  相似文献   

20.
Understanding of density‐dependent effects is key to achieving sustainable management of self‐regulating biological resources such as fish stocks. Traditionally, density‐dependent effects on population abundance in fish have been considered to occur from hatching to recruitment, based on the paradigm of proportionality between spawning stock biomass and total egg production. Here, we demonstrate how the existence of intraspecific and interspecific density dependence in egg production changes the current understanding of density‐dependent processes in the life history of fish, by disentangling density‐dependent effects on egg production and survival from egg to recruitment, using sardine (Sardinops melanostictus, Clupeidae) and anchovy (Engraulis japonicus, Engraulidae) as model species. For sardine, strong intraspecific density‐dependent effects occurred in egg production, but no density‐dependent effects occurred or if any they were weak enough to be masked by environmental factors from hatching to recruitment. In contrast, for anchovy, interspecific density‐dependent effects occurred in egg production. In the survival after hatching, anchovy experienced stronger intraspecific density‐dependent effects than currently recognized. This analysis could overturn the current understanding of density‐dependent effects in the life history, highlighting contrasts between the effects on individual quality and population abundance and between the model species. We propose to reconsider the basis of fisheries management and recruitment studies based on the revised understanding of density‐dependent effects in the life history of the respective species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号