首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
真姬菇多糖超声波辅助提取工艺及抗氧化活性研究   总被引:1,自引:0,他引:1  
为探讨真姬菇多糖的提取和抗氧化活性,通过单因素试验设计和正交设计对真姬菇多糖的超声波辅助提取工艺进行研究,采用自由基体外清除试验对真姬菇多糖的体外抗氧化活性进行探讨。结果表明,在超声功率为200 W、料液比1 g∶40 mL、提取温度60℃、提取时间60 min的条件下,真姬菇多糖提取得率可达5.68%;真姬菇粗多糖对DPPH·自由基和ABTS·+自由基均表现出较好的体外清除效果,当浓度为1.0 mg/mL时,其自由基清除能力与浓度为80μmol/L的维生素C相当。  相似文献   

2.
从清除1,1-二苯基-2-苦苯肼自由基(DPPH·)、羟基自由基(·OH)和超氧阴离子(O2^-·)三个方面,探讨纯化方法对龙眼多糖清除自由基活性的影响.以抗坏血酸为对照,利用分光光度法分别测定龙眼粗多糖(CLPS)、Sevag法脱蛋白制得的龙眼粗多糖半纯品(SLPS)、TEA法脱蛋白制得的龙眼粗多糖半纯品(TLPS)、经DEAE-Cellulose52离子交换柱层析纯化得到的龙眼多糖纯品(LPS-2)对DPPH·OH和O2^-·的清除能力.结果显示:多糖纯度越高,清除DPPH·活性也越强,其清除活性由强到弱依次为:LPS-2〉TLPS〉SLPS〉ELPS;对于·OH和O2^-·,SLPS清除活性最强,ITS-2清除活性最弱,说明杂蛋白质抑制了多糖清除·OH、O2^-·活性,而糖蛋白中的蛋白质则起到促进作用.  相似文献   

3.
[目的]优化金花葵多糖的提取工艺,考察金花葵多糖的抗氧化活性,为金花葵多糖的研究和利用提供参考依据.[方法]以金花葵多糖提取率为评价指标,在单因素试验基础上,采用k(3s)正交试验优化超声辅助提取工艺,通过对DPPH自由基和羟基自由基(·OH)清除能力的考察评价金花葵多糖的体外抗氧化活性.[结果]影响超声辅助提取金花葵多糖效果的因素排序为:超声时间>料液比>超声温度,其最佳提取工艺条件为:料液比1∶50、超声时间30min、超声温度50℃,在此条件下金花葵多糖的提取率为22.32%.自由基清除试验结果表明,金花葵多糖对DPPH自由基和·OH的清除率呈现剂量依赖性.[结论]优化得到的金花葵多糖提取工艺操作简单可行,提取的金花葵多糖具有较强抗氧化活性,该工艺可在金花葵多糖的提取研究和开发利用中应用.  相似文献   

4.
水提醇沉法提取百尾参多糖,以多糖得率为指标,考察提取时间、提取温度、料液比、提取次数对多糖提取量的影响,在单因素试验基础上以正交试验优化提取工艺参数。通过测定百尾参多糖清除1,1-二苯基-2-苦基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基和·OH自由基能力、还原力及螯合力来评价其抗氧化活性。结果表明,百尾参多糖水提取的最佳工艺条件为提取温度100℃、提取时间4 h、料液比1 g∶50 m L、提取次数4次,在此条件下,百尾参多糖的提取率为15.68%,以正交试验极差分析得出,温度对百尾参粗多糖提取影响最大。百尾参多糖清除DPPH自由基和·OH自由基、还原力及螯合力的IC50值分别是4.8、1.8、3.9、0.24 mg/m L,百尾参多糖具有显著体外抗氧化活性。  相似文献   

5.
采用水提醇沉法提取矮冷水花多糖,以多糖得率为指标,考察提取时间、提取温度、料液比及提取次数对多糖提取率的影响,在单因素试验基础上采用正交试验优化提取工艺参数。通过测定矮冷水花多糖清除·OH自由基能力,1,1-二苯基-2-苦基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基及螯合力来评价其抗氧化活性。结果表明,矮冷水花多糖水提取的最佳工艺条件为提取温度100℃、提取时间4 h、料液比1∶40(g/m L)、提取次数4次,在该条件下,矮冷水花多糖的提取率为1.19%,以正交试验极差分析得出温度对矮冷水花粗多糖提取影响最大。矮冷水花多糖清除DPPH自由基、·OH自由基及金属螯合力均随多糖浓度的增加而上升;1.28 mg/m L的多糖对DPPH自由基的清除率达70.7%,对羟基自由基的清除率为41.1%,1.28 mg/m L多糖的金属螯合力在562 nm下吸光值为0.98。因此,矮冷水花多糖有较强的抗氧化能力。  相似文献   

6.
微波辅助大蒜多糖的提取及其抗氧化活性的研究   总被引:2,自引:0,他引:2  
研究了微波辅助大蒜多糖的提取工艺及抗氧化活性。结果表明:最佳功率为300 W,提取温度为65℃,提取时间为8 min,料液比1∶7(g·mL-1);大蒜多糖有一定的清除DPPH和OH·自由基的作用,与VC相比,大蒜多糖对DPPH和OH·自由基的清除效果要差;但大蒜多糖对菜籽油的抗氧化能力较VC强,能够有效抑制菜籽油的氧化。  相似文献   

7.
采用Sevage试剂和蛋白酶分别对怀山药及其零余子多糖提取溶液除蛋白,经过浓缩、醇沉得到四种多糖,采用体外抗氧化实验研究四种多糖的还原能力以及对二苯代苦味酰基自由基(DPPH·)、超氧阴离子自由基((O-2·)和羟基自由基(·OH)的清除能力.结果表明:不同方法提取的怀山药及其零余子多糖均具有还原能力和抗氧化活性,但存在差异,采用Sevage试剂脱蛋白得到的零余子多糖的抗氧化活性最强,采用蛋白酶法除蛋白得到的怀山药多糖的抗氧化活性最弱。与怀山药多糖抗氧化活性比较,怀山药零余子多糖抗氧化活性更强,为进一步利用零余子提供了理论依据。[1]  相似文献   

8.
本试验以桃金娘果为材料,研究其多糖的提取工艺,在单因素试验的基础上,选用L9(34)正交试验的方法,优化其多糖的提取工艺,并测定分析桃金娘多糖的抗氧化能力。试验结果表明:桃金娘多糖提取最佳条件为温度80℃,提取时间6h,料液比1∶30 (g·m L-1),多糖提取率2. 40%。抗氧化活性结果表明:桃金娘多糖对DPPH、羟基自由基均具有显著的清除活性,且其清除能力与多糖浓度呈正相关性,其IC50分别为0. 15mg·m L-1、0. 5mg·m L-1,多糖总体抗氧化活性弱于维生素C的抗氧化能力。  相似文献   

9.
本文主要探究两种灵芝粗多糖提取及抗氧化活性的比较。采用超声波提取,然后,选用苯酚——硫酸法检测两种灵芝粗多糖得率。其中紫芝为2.2%,赤芝为2.8%。另外,还选取了铁氰化钾还原法来检测比较两种灵芝粗多糖的自身还原能力,同时对二者清除羟基自由基(-OH)效果进行了比较,以及对清除DPPH的效果进行比较,结果表明:赤灵芝粗多糖清除羟基自由基的能力、还原能力均比紫灵芝粗多糖强,但是对于DPPH的清除能力比紫芝粗多糖稍弱,而且紫芝、赤芝的抗氧化活性均与其粗多糖含量的浓度成正比。  相似文献   

10.
[目的]制备辣木叶粗多糖并研究其单糖组成和抗氧化活性.[方法]以华南地区辣木叶为原料,水提醇沉法、Sevage法、过氧化氢(H2O2)法提取辣木叶粗多糖,水解衍生化分析单糖组成,并通过DPPH自由基清除能力、羟基自由基清除能力、超氧阴离子自由基清除能力、还原力等指标评价辣木叶粗多糖体外抗氧化活性.[结果]该试验所制备的辣木叶粗多糖提取率为7.16%,测得纯度为84.33%.辣木叶粗多糖的单糖组成有甘露糖、鼠李糖、葡萄糖、半乳糖和木糖,各占56.88%、14.44%、10.54%、9.45%和4.13%.另外,试验表明辣木叶粗多糖具有良好的自由基清除能力,抗氧化活性较好且与浓度呈正相关.[结论]该研究为辣木叶多糖的深入研究和开发利用提供科学依据.  相似文献   

11.
为充分开发利用辣木茶资源,以辣木茶为原料,优化辣木茶多糖的提取工艺,并考察其体外抗氧化活性。通过单因素和正交试验研究料液比、浸提时间、浸提温度对辣木茶多糖提取率的影响,优化最佳提取工艺条件;考察辣木茶多糖清除·OH自由基、·O-2自由基、DPPH自由基的效果。结果表明,最优提取工艺参数为料液比1∶60,浸提时间105 min,浸提温度80℃,此时提取率最大为145.14 mg·g-1;辣木茶多糖对·OH、·O-2、DPPH具有较好的清除作用。  相似文献   

12.
4种珍稀食用菌粗多糖的抗氧化活性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
用DPPH自由基清除法、羟基自由基清除法、铁离子鳌合能力和还原能力等方法对4种野生珍稀食用菌美味牛肝菌、羊肚菌、松茸和印度块菌的粗多糖进行了抗氧化活性评价。结果显示,4种真菌粗多糖均不同程度地具有抗氧化活性。印度块菌对DPPH自由基的清除活性和铁离子螯合能力最高,其EC50值分别为0.86 mg.mL-1和0.63 mg.mL-1;羊肚菌对羟基自由基的清除活性最高,其EC50值为0.38 mg.mL-1;美味牛肝菌的还原力最高,其EC50值为0.85 mg.mL-1;松茸清除DPPH及羟基自由基的能力最低,铁离子螯合能力也较低。  相似文献   

13.
竹黄多糖的提取工艺及清除自由基活性研究   总被引:1,自引:0,他引:1  
通过L9(33)正交试验,得出竹黄多糖的最佳提取工艺条件为:提取温度90℃,料液比1∶20,提取时间5 h。并通过体外化学模拟,研究竹黄多糖的抗氧化活性。试验表明,竹黄多糖对.OH和.DPPH 2种自由基具有较显著的清除能力,对O2-.自由基的清除能力较弱。  相似文献   

14.
利用超声波提取法从黄芪(Radix astragali)中提取多糖,应用正交试验法优化提取条件,并采用超氧阴离子和DPPH自由基体系对黄芪多糖的抗氧化活性进行研究。结果表明,黄芪多糖提取的最佳条件为固液比1∶20、超声提取时间12 min、超声功率65 W、超声提取温度60℃,在此条件下,黄芪多糖提取率为8.75%。抗氧化活性试验结果表明,黄芪多糖具有较高的清除DPPH自由基和超氧阴离子自由基的活性。  相似文献   

15.
黑牛肝菌多糖超声提取工艺优化及抗氧化研究   总被引:1,自引:0,他引:1  
以云南大理黑牛肝菌为材料,使用超声辅助萃取及水提醇沉法提取多糖,采用单因素试验及正交试验对黑牛肝菌多糖提取工艺进行优化,并对黑牛肝菌多糖进行了提取;对所得多糖进行DPPH自由基、ABTS自由基清除能力及铁氰化钾还原能力试验,对其抗氧化活性进行比较研究.结果表明,黑牛肝菌多糖最佳提取工艺为料液比1:25(g:mL)、醇沉浓度80%、超声时间70 min、超声功率90%,在此条件下多糖含量为79.41 mg/g.醇沉浓度为80%时,多糖提取物抗氧化活性最强,多糖对DPPH、ABTS自由基清除率及总还原力吸光度分别为97.92%、99.80%和0.789;醇沉浓度为50%时,所得多糖对DPPH、ABTS自由基清除率及总还原力吸光度分别为85.79%、88.23%和0.713,抗氧化活性最低;表明黑牛肝菌多糖对自由基有较好的清除效果及还原作用.  相似文献   

16.
黄山栾树叶中具有清除自由基活性物质的分离和制备   总被引:4,自引:0,他引:4  
在一次大规模的植物提取物清除自由基活性物质筛选中,发现黄山栾树(Koelreuteria bipinnata Franch.var.integrifoliola(Morr.)T Chen)鲜叶的甲醇提取物具有很强的清除DPPH有机自由基的活性,其IC50为46.37μg·mL-1.用甲醇成功地提取出该活性成分,同时用色谱等方法对该活性成分进行了分离和制备,并用高效液相色谱法和DPPH薄层试验对其纯度及活性进行了检验,得到了一个清除自由基活性很强的纯化合物.该化合物对1 mmol·L-1DPPH自由基的IC50为23.84μg·mL-1,其清除自由基活性高于抗坏血酸纯品.  相似文献   

17.
牡丹多糖的提取及其对自由基和亚硝酸根离子的清除作用   总被引:1,自引:0,他引:1  
为探讨牡丹多糖抗氧化及其清除亚硝酸根离子的能力,对牡丹根进行脱脂、去蛋白等操作,建立了牡丹多糖的提取、纯化工艺,同时测定牡丹根中主要物质组成;通过检测不同质量浓度多糖溶液对DPPH自由基、O_2·和NO_2的清除率,评价牡丹多糖清除自由基和亚硝酸根离子的活性。结果表明,牡丹根的物质组成大致为:粗脂肪含量为6%,蛋白质含量为12%,多糖含量较为丰富,约为29%。确定了制备牡丹多糖的去蛋白最佳方案为:Sevage试剂中氯仿与正丁醇体积比为3∶1,多糖提取液与Sevage试剂添加量体积比为4∶1。牡丹多糖对2种自由基和NO_2均具有不同程度的清除能力,随着多糖质量浓度的逐渐增大,清除率变化趋势表现为先急剧增大,再缓慢升高,最后趋于稳定。对DPPH自由基、O_2·和NO_2达到较好清除效果的多糖质量浓度分别为2.5、2.5、1.0 g/L。牡丹多糖是一种良好的天然抗氧化剂。  相似文献   

18.
为探索管花肉苁蓉活性成分多糖的最佳提取方法,初步评价其抗氧化活性,分别采用超声-微波协同萃取、微波、水浴及超声波4种不同方法提取管花肉苁蓉中的粗多糖,并对其清除DPPH自由基的效果进行了初步研究.结果表明,超声-微波协同提取效果最佳,其次是微波、水浴和超声波.管花肉苁蓉粗多糖的最佳提取条件为:提取温度95℃,提取时间1...  相似文献   

19.
[目的]研究慈姑多糖的最佳提取工艺及慈姑多糖的抗氧化活性.[方法]考察料液比、提取温度、提取时间、提取次数对慈姑多糖含量的影响,在单因素试验的基础上,采用L9(34)正交试验优化提取工艺参数.通过测定慈姑多糖对DPPH自由基清除率、清除羟自由基活性和还原能力测定等体外抗氧化实验来评价慈姑多糖的体外抗氧化能力.[结果]慈姑多糖的最佳工艺条件为:料液比1:40(g/ml),提取温度90℃,提取时间4 h,提取次数3次.慈姑多糖的含量为29.32%.1.0 mg/ml慈姑多糖对DPPH自由基清除率为70.62%,对羟基自由基的清除率为35.82%,在还原力的测定中,1.0 mg/ml慈姑多糖在700 nm下吸光度值为0.4531.[结论]慈姑多糖有较强的抗氧化能力,对体外自由基有较好的清除作用.  相似文献   

20.
以维生素C作为阳性对照,采用羟自由基体系(·OH)、二苯代苦味酰基自由基体系(DPPH·)和超氧阴离子自由基体系(O-2·),对枳椇多糖的体外抗氧化活性进行研究。试验结果显示:枳椇粗多糖和精制多糖都具有一定的抗氧化活性,在一定浓度范围内,其抗氧化活性与浓度呈线性关系。总体上说,当浓度达到2.50 mg/mL时,枳椇粗多糖对羟自由基的清除率高达68.32%,精制多糖对羟自由基的清除率高达81.43%;当浓度达到1.00 mg/mL时,枳椇粗多糖和精制多糖对DPPH自由基清除率都较高,可达80%左右,与维生素C接近;对超氧阴离子自由基的清除能力较前两者小,当浓度达到1.00 mg/mL时,枳椇粗多糖的清除率为48.24%,精制多糖的清除率为14.79%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号