首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A mapping population of 114 lines from Bala × Azucena was grown under drought stress at two field sites with contrasting soil physical properties. Drought was imposed between 35 and 65 days after sowing (DAS) and root density at 35 cm depth was measured 70 DAS. Leaf rolling, leaf drying and relative water content were recorded as indicators of drought avoidance. Root density correlated with indicators of drought avoidance. Two significant and two putative quantitative trait loci (QTLs) for root density and 28 QTLs for drought avoidance were identified. Most QTLs did not agree between sites. There was also reasonable agreement between leaf-drying QTLs and previously reported root-growth QTLs detected under controlled conditions (in contrast to a previous screen on soil with a higher penetration resistance). These data also reveal QTL × environment interaction, which will need to be understood more clearly if progress towards breeding for drought resistance via alterations of root morphology is to be achieved.  相似文献   

2.
Root growth at soil depths below 30 cm may provide access to critical soil water reserves during drought in rainfed lowland rice. In this study, the OryzaSNP panel, a set of 20 lines representing genetic diversity in rice used for the discovery of DNA sequence polymorphisms, was evaluated for root characteristics in the field over three seasons varying in drought severity. Root length density (RLD) at a depth of 30–45 cm varied up to 74–92% among genotypes under drought stress (2008–2009 dry seasons), ranging from 0.024 to 0.23 cm cm−3 in 2008 and from 0.19 to 0.81 cm cm−3 in 2009. Real-time monitoring of soil moisture profiles revealed significant differences among genotypes, and these differences were correlated with RLD at those soil depths. Among the lines evaluated, the Aus isozyme group, particularly the genotype Dular, showed greater drought resistance associated with deep root growth and the highest drought response index (less reduction in yield by drought stress). Since the set of genotypes used in this study has been completely sequenced for SNP markers, the phenotypic information on root growth and drought avoidance responses presented here could be used in initial analysis of the genetic basis of dehydration avoidance traits and in facilitating improvement in drought resistance in rice.  相似文献   

3.
Identification and selection of plant genotypes with survival, recovery and sustainable performance during drought periods is one of the main objectives of plant improvement for arid and semi‐arid regions. This study aimed to evaluate root traits and recovery of tall fescue genotypes after a period of drought stress. A total of twenty four tall fescue genotypes were selected from a wide polycross population and assessed for field drought tolerance based on stress tolerance index (STI) and recovery during 2010–2013. The genotypes were classified as tolerant, moderately tolerant and susceptible based on STI. Then, in 2014, genotypes were assessed in a pot experiment for root characteristics under two levels of moisture environments (control and intense drought stress). In both moisture environments, root length (RL), root area (RA), root volume (RV) and root weight (RW) were negatively correlated with days to recovery (DR). Genotypes that recovered from drought had greater RL, RA, RV and RW than the genotypes unable to recover. Principle component analysis (PCA) was performed to identify genotypes with superior root characteristics, stress tolerance and recovery potential that can be used for future breeding programmes. Results indicated that selection based on combining STI, recovery and extensive root system might improve drought tolerance of tall fescue.  相似文献   

4.
为明确大豆地上和地下部分对干旱胁迫的响应及对产量的影响,以用于大豆抗旱改良,利用耐旱型品种 辽豆14与干旱敏感型品种辽豆21进行相互嫁接,采用盆栽试验,在结荚期进行水分胁迫处理(土壤含水量保持在 田间持水量的50%)13 d后,测定大豆叶片相关生理指标和各器官生物量。结果表明,水分胁迫使辽豆21自身嫁接 植株叶片的叶色值、叶面积、PSII 系统光化学量子产量Y(II),调节性能量热耗散Y(NPQ)、最大电子传递速率 ETRmax、半饱和光强下最小饱和光强Ik显著降低,非调节性能量热耗散Y(NO)显著提高。无论以哪个品种为砧木, 与辽豆21相比,辽豆14作为接穗始终具有较高的叶色值、叶面积、Y(II),Y(NPQ)、ETRmax和Ik,从而获得较高的植 株生物量。另外,干旱条件下,辽豆14作为砧木具有较高的根系活力,能使辽豆21接穗的叶面积、Y(II),Y(NPQ)、 ETRmax和Ik显著提高,最终获得荚重的增加。由此说明,大豆PSII性能和物质生产能力主要由地上部叶片特性决 定,但干旱下大豆的生长也会受到根系生理活性的影响。  相似文献   

5.
不同基因型玉米萌芽期的抗旱性研究   总被引:1,自引:0,他引:1  
郝楠  吴玉群  姜敏  孔菲 《杂粮作物》2007,27(4):292-295
对4个玉米杂交种辽单24、丹413、沈丹16、沈农87进行了萌芽期的抗旱性研究。结果表明水分胁迫降低了杂交种的发芽势和发芽率,阻碍了胚根和胚芽的生长,也降低了叶片的蒸腾速率和光合速率。但不同杂交种在抗旱性上存在明显差异,在水分胁迫下,抗旱性强的杂交种仍然保持较高的发芽势和发芽率。水分胁迫下,玉米种子的吸水速率减小,但吸水速率与抗旱性间相关性不明显。各品种在20%PEG水分胁迫处理下的萌动吸水伤害率间差异明显,可以作为一个抗旱鉴定指标。研究表明,利用室内高渗溶液萌发法通过对玉米萌芽期抗旱性高度相关的性状的测定得出的萌芽期抗旱性鉴定结果与田间直接鉴定的结果基本相符,说明室内高渗溶液萌发法是鉴定玉米萌芽期抗旱性的一种快速、简便、准确的方法。  相似文献   

6.
《Field Crops Research》1995,40(2):67-86
Drought is a major problem for rice grown under rainfed lowland and upland conditions, but progress in breeding to improve drought resistance has been slow. This paper describes patterns of water-stress development in rice fields, reviews genetic variation in physio-morphological traits for drought resistance in rice, and suggests how knowledge of stress physiology can contribute to plant breeding programmes that aim to increase yield in water-limiting environments. To provide a basis for integrating physiological research with plant-breeding objectives we define drought resistance in terms of relative yield of genotypes. Therefore, a drought-resistant genotype will be one which has a higher grain yield than others when all genotypes are exposed to the same level of water stress.A major reason for the slow progress in breeding for drought resistance in rice is the complexity of the drought environment, which often results in the lack of clear identification of the target environment(s). There is a need to identify the relative importance of the three common drought types; early-season drought which often causes delay in transplanting, mild intermittent stress which can have a severe cumulative effect, and late stress which affects particularly late-maturing genotypes. In addition, in rainfed lowland rice, flooded and non-flooded soil conditions may alternate during the growing season, and affect nutrient availability or cause toxicity.Several drought-resistance mechanisms, and putative traits which contribute to them, have been identified for rice; important among these being drought escape via appropriate phenology, root characteristics, specific dehydration avoidance and tolerance mechanisms, and drought recovery. Some of these mechanisms/traits have been shown to confer drought resistance and others show potential to do so in rice. The most important is the appropriate phenology which matches crop growth and development with the water environment. A deep root system, with high root length density at depth is useful in extracting water thoroughly in upland conditions, but does not appear to offer much scope for improving drought resistance in rainfed lowland rice where the development of a hard pan may prevent deep root penetration. Under water-limiting environments, genotypes which maintain the highest leaf water potential generally grow best, but it is not known if genotypic variation in leaf water potential is solely caused by root factors. Osmotic adjustment is promising, because it can potentially counteract the effects of a rapid decline in leaf water potential and there is large genetic variation for this trait. There is genotypic variation in expression of green leaf retention which appears to be a useful character for prolonged droughts, but it is affected by plant size which complicates its use as a selection criterion for drought resistance.There is a general lack of drought related research for rice in rainfed lowland conditions. This needs to be rectified, particularly considering their importance relative to upland conditions in Asian countries. We suggest that focussing physiological-genetic research efforts onto clearly defined, major target environments should provide a basis for increasing the relevance of stress physiology and the efficiency of breeding programmes for development of drought-resistant genotypes.  相似文献   

7.
Competition for soil resources plays a key role in the outcome of intercropping systems. In cereal–legume intercrops, competition for soil nitrogen during the vegetative phase greatly influences the final performance of the intercropped species. However, there is a lack of knowledge on the main factors involved in interspecific soil N competitive interactions between species. The dominance of cereals over legumes is often attributed to their faster growing rooting system. Nevertheless, using only field experimental approaches makes it difficult to isolate the effect of one factor because of the strong interactions between processes and the environment. Given the complexity of intercropping systems, dynamic simulation models can be especially helpful for testing hypotheses about the key factors driving competition between species. The present work was designed to investigate, under non-limiting water conditions, through an experimental and modelling approach, whether differences in root depth penetration among pea and barley grown together determined competition for soil N and dry matter accumulation (DM) by each species during the vegetative phase. This hypothesis was tested through several simulated scenarios generated using the STICS crop model. The model was first used to compare competition for soil N according to differences in root depth penetration rates between species. This rooting depth penetration effect was then studied at three levels of soil N supply leading to different degrees of N demand and N stress. A field experiment carried out in 2003 including pea–barley intercrops grown either with 130 kg N ha−1 or without any fertilizer was used to test the model. Experimental results of aboveground biomass, nitrogen accumulation, N2 fixation and rooting depth monitored regularly during the crop cycle were compared to simulated results. The simulated responses of the intercrops were in agreement with the observations from the experimental dataset. Using the model, it is clear that faster root growth in barley gives it access to more soil nitrogen than pea during the vegetative phase. However, this advantage, which is limited to the vegetative phase, only affects the outcome of the intercrop when soil N supply is low. With higher soil N supplies, soil N sharing is not affected by the differences in rooting depth penetration between species. It appears that with higher N supplies, the differences in N demand between species have more influence on species dominance than differences in rooting depth.  相似文献   

8.
The development of near-isogenic-lines (NILs) is a very important tool for both genetic and physiological dissection of drought resistance in rice. Two pairs of NILs differing for grain yield under drought stress were isolated and characterized for yield, yield related traits, and several physiological traits in a range of contrasting environments. In replicated field trials both NIL pairs differed significantly for grain yield under drought stress but showed similar yield potential, phenology, and yield component traits under non-stress conditions. A polymorphism analysis study with 491 SSRs revealed that both NIL pairs are at least 96% genetically similar. These NILs show that small genetic differences can cause large difference in grain yield under drought stress in rice. In both pairs the drought-tolerant NILs showed a significantly higher assimilation rate at later stages both under stress and non-stress conditions. They also had a higher transpiration rate under non-stress condition. The most tolerant NIL (IR77298-14-1-2-B-10) had significantly higher transpiration rate and stomatal conductance in severe stress conditions. In one pair the tolerant NIL had constitutively deeper roots than the susceptible NIL. In the second pair, which had higher mean root length than the first pair, the tolerant NIL had more roots, greater root thickness, and greater root dry weight than the susceptible NIL. Deeper root length may allow tolerant NILs to extract more water at deeper soil layers. It is concluded that enhanced rooting depth is an important strategy for dehydration avoidance and rice adaptation to drought stress, but root architecture might not be the only mechanism causing the significant yield increase we observed in lowland drought stress environments. To further dissect the drought avoidance mechanisms in rice, analysis of root hydraulic properties may be necessary.  相似文献   

9.
干旱胁迫下不同苎麻品种的形态解剖特征研究   总被引:3,自引:0,他引:3  
抗旱性强的苎麻品种,在正常水分条件下叶面茸毛多、叶着生角度小、比叶重大,而在干旱胁迫下叶片衰老慢,根冠比大、根活跃吸收面积大、萝卜根数量多且直径大,纤维细胞直径和胞壁厚度降低幅度小。抗旱性强的苎麻品种正常水分及干旱条件下叶片气孔密度以及茎导管和根系维管束均较大。  相似文献   

10.
干旱胁迫对大麦幼苗根系的影响   总被引:1,自引:0,他引:1  
为了解干旱胁迫对大麦幼苗根系生长的影响,采用盆栽称重控制土壤含水量的方法,测定了土壤含水量为田间持水量的85%、55%、45%和35%等4个处理下, 4个抗旱性不同的大麦品种的幼苗根系形态和根系吸收能力等相关指标。结果表明,随着土壤含水量的减少,大麦幼苗的最长种子根、根尖数、根组织含水量均呈下降趋势;根分支数和根冠比总体呈上升趋势;根鞘大小和根毛密度整体上呈先上升后下降的趋势;根系活力与根总吸收面积和根活性吸收面积之间存在一定的互补效应。抗旱性较强的大麦品种较抗旱性较弱的品种,在干旱胁迫下能够保持更庞大的根系、更大的根-土交互面和更高的根系吸收能力。幼苗根系形态可以作为大麦耐旱性的筛选指标。  相似文献   

11.
大豆抗旱性是复杂的数量性状,由于土壤含水量较难控制,精准的抗旱性表型较难获得。通过在田间放置不同直径集水槽研究大豆生长及田间环境的变化情况,进而探索利用该方法进行大豆抗旱性鉴定的效果。结果表明:随着集水槽直径的增加,大豆株高、主茎节数、单株粒数和单株产量显著降低,但大豆植株分枝数、结荚高度差异不显著。不同直径集水槽对土壤温度和重量含水率均有一定影响,尤其对14∶00土壤5 cm处温度有显著影响;放置集水槽对0~10 cm土壤重量含水量影响较大。上述结果表明,大豆行间放置集水槽能降低土壤重量含水量,不同直径集水槽处理间大豆植株的株高、主茎节数、单株粒数及单株产量等与抗旱性相关性状存在显著差异。以不放置集水槽的普通管理模式作对照,用田间放置直径为25 cm的集水槽可以对大豆抗旱性进行评价。  相似文献   

12.
Water stress during the vegetative development normally is not detrimental and sometimes actually increases yield of peanut (Arachis hypogaea L.). Root growth might play an important role in response to early season drought in peanut and might result in an increase in yield. Information on the response of root characters of diverse peanut genotypes to these conditions will provide useful information for explaining mechanisms and improving peanut genotypes for exploiting positive interaction for pod yield under pre-flowering drought. The aim of this study, therefore, was to investigate the root dry weight and root length density of peanut genotypes with different yield responses to pre-flowering drought stress and their relationships with pod yield. Field experiments were conducted at the Field Crop Research Station of Khon Kaen University, Khon Kaen, Thailand during February to July 2007 and during February to July 2009. A split-plot experiment in a randomized complete block design was used. Two water management treatments were assigned as the main plots, i.e. field capacity and pre-flowering stress, and six peanut genotypes as the sub-plots. Total crop dry matter, root dry weight and root length density were recorded at 25 DAE, R5 and R7. Top dry weight and pod yield were measured at harvest and pod harvest index (PHI) was computed using the data on pod yield and biomass. Peanut genotypes were categorized into three groups based on their responses to drought for pod yield, e.g. increasing, decreasing and non-responsive groups. The genotypes of each group showed a differential response for root quantity and distribution. The increasing pod yield group had more root dry weight and root length density in the deeper soil layers during pre-flowering stress compared to the non-stress treatment. The non-responsive group showed no root response under pre-flowering drought conditions compared to the non-stress treatment. A larger root system alone without considering distribution may not contribute much to pod yield but a higher RLD at deeper layers may allow plants to mine more available water in the sub-soil. However, as yield is a complex trait, several mechanisms may be involved. The increasing pod yield group also had the ability to maintain a high PHI.  相似文献   

13.
《Plant Production Science》2013,16(4):451-459
Abstract

Soil compaction often creates combined physical stresses of drought, anaerobiosis, and mechanical impedance in field soil. This paper aims to analyze the effect of combined and independent soil physical stresses on crop root growth to find out the species-specific response to the physical stresses, which has not been reported before. Drying stress without the increase of mechanical impedance was evaluated in a very loose pot soil environment. This drying stress did not modify the root elongation rates of rice and pea by the 48 h exposure to the stress environment. For maize and cotton, however, mild drying stress (?80 kPa Ψw) enhanced root elongation by 17-18%, but severe drying stress (?900 kPa Ψw) reduced it by 17-21% as compared with the control environment (?10 kPa Ψw). The combined stress of drying and mechanical impedance nearly stopped the root elongation in all the species, while that of anaerobiosis and mechanical impedance did not stop the elongation of rice and cotton; cotton elongated about 32% of control environment. In maize, root diameter was reduced by the severe drying stress due to the reduction in the number of cortical cell layer and diameters of both central cylinder and xylem vessel. In contrast, cotton showed a significant increment of cortex diameter, although overall diameter was not statistically increased by the severe drying stress. The ability of cotton to continue elongation under anaerobiosis and mechanical stress implied the higher penetration ability to the hard pan layer under the anaerobic condition just after the heavy rainfall.  相似文献   

14.

Background

Root architectural and anatomical phenotypes are important for adaptation to drought. Many rice-growing regions face increasing water scarcity. This study describes drought responses of 11 Egyptian rice cultivars with emphasis on plastic root responses that may enhance drought adaptation.

Results

Eleven Egyptian rice cultivars were phenotyped for root architectural and anatomical traits after 6 weeks growth in soil mesocosms under well-watered conditions. Four of these cultivars were more intensively phenotyped under progressive drought stress in mesocosms, using a system where more moisture was available at depth than near the surface. In response to drought stress, all cultivars significantly reduced nodal root number while increasing large lateral root branching density and total lateral root length in the deepest portions of the mesocosm, where moisture was available. Nodal root cross-sectional area, but not stele area, was reduced by drought stress, especially in the basal segments of the root, and the number of late metaxylem vessels was reduced in only one cultivar. Alterations in deposition of lignin were detected by UV illumination from laser ablation tomography, enhanced by digital staining, and confirmed with standard histochemical methods. In well-watered plants, the sclerenchyma and endodermis were heavily lignified, and lignin was also visible throughout the epidermis and cortex. Under drought stress, very little lignin was detected in the outer cell layers and none in the cortex of nodal roots, but lignin deposition was enhanced in the stele. Root anatomical phenes, including cross-section area and metaxylem vessel number and lignin deposition varied dramatically along large lateral root axes under drought stress, with increasing diameter and less lignification of the stele in successive samples taken from the base to the root apex.

Conclusions

Root architectural and anatomical traits varied significantly among a set of Egyptian cultivars. Most traits were plastic, i.e. changed significantly with drought treatment, and, in many cases, plasticity was cultivar-dependent. These phenotypic alterations may function to enhance water uptake efficiency. Increased large lateral root branching in the deep soil should maintain water acquisition, while water transport during drought should be secured with a more extensively lignified stele.
  相似文献   

15.
Cultivar × location interaction for lucerne forage yield across northern Italy is large, repeatable and associated with summer drought-stress level and soil type. The objectives of this study were: (i) to investigate the genotypic factors associated with cultivar adaptive responses to drought-stress and soil factors; (ii) to identify adaptive traits exploitable for selection of widely adapted or specifically adapted material. Aerial dry matter (DM) over 12 harvests and shoot traits of 13 landraces and four varieties were evaluated in four artificial environments created by the factorial combination of drought-stress level (almost nil or high) and soil type (sandy-loam or silty-clay) (Exp. 1). Aerial and root DM over four or five harvests were evaluated in metal containers 55 cm × 12 cm × 75 cm deep for the factorial combinations of three varieties by two drought-stress levels by two soil types (Exp. 2), or six landraces by two drought-stress levels (Exp. 3). Cultivar × environment interaction was detected for forage yield, plant mortality after the second summer, leaflet size and stem weight. The environments of Exp. 1 reproduced well the variety adaptive responses across agricultural environments. The relationship of cultivar forage yield with shoot traits was environment-specific, i.e.: (i) strictly negative with plant mortality, in no-stress environments (where mortality and plant competition were severe); (ii) positive with stem number per plant and autumn-winter growth, in stress environments; (iii) positive with stem dry weight, in ‘stress/sandy-loam soil’; and (iv) positive with leaflet size, in ‘no-stress/sandy-loam soil’. Cultivars specifically adapted to no-stress or sandy-loam conditions showed consistently greater root DM across three soil layers than material with opposite adaptive response. Entry yields tended to inverse genetic correlation between two environments which represented contrasting geographical subregions and were characterized by different combinations of traits associated with higher yield, i.e.: (i) higher root biomass, lower plant mortality and larger leaflets, for ‘no-stress/sandy-loam soil’; and (ii) more stems per plant and greater autumn-winter growth, for ‘stress/silty-clay soil’. The difficulty of yield-based selection for wide adaptation may hardly be overcome by selection based on adaptive traits. Adaptive trait-based selection for specific adaptation may be envisaged especially for ‘stress/silty-clay soil’ conditions, for which the relevant traits are inexpensive to record, not correlated, and not subject to cultivar × environment interaction.  相似文献   

16.
土壤水分胁迫对白芥根系发育的影响   总被引:5,自引:0,他引:5  
利用旱棚盆栽研究土壤分迫对白芥根系发育,根系活力,根组织水分状态和根冠比的影响。结果表明,土壤水分胁迫促使白芥的根幅,主根长度,末级支根数,根系活力等增加,抗旱品种的增加幅度较大。开花期和成熟期抗旱性强的品种BWC/FWC值和根冠比较大。  相似文献   

17.
土壤干旱胁迫对白芥光合器官发育及光合速率的影响   总被引:5,自引:1,他引:5  
利用旱棚盆栽研究了在土壤干旱胁迫下白芥抗旱和不抗旱品系的单叶面积,单株叶面积、出叶速度、叶绿素含量和和净光合速率。结果表明,在土壤干旱胁迫下不同白品系在不同生育时期的单叶面积、单株叶面积、出叶速度及净光合速率都下降,在一定土壤水分范围内,叶绿素含量随土壤水分的下降而增加,抗旱性强的品系受土壤干旱胁迫的影响较小。  相似文献   

18.
干旱胁迫是影响植物生长和发育的一个重要因子,当植物受到干旱胁迫后,其自身也会作出一些适应性变化。本研究以贵州地区广泛种植的火龙果(Hylocereus undatus)品种‘紫红龙’为试验对象,通过对其茎和根系生长量、茎含水量、气孔运动、叶温变化及叶绿素合成等方面进行研究,并对其抗旱适应性进行评价。结果表明:干旱处理16周,土壤含水量下降到15%(严重缺水)时,火龙果茎中含水量仍有80%(轻度失水);干旱限制茎伸长和增粗生长,而促进根系萌发和伸长生长;干旱下,气孔开放率、气孔开放度、气孔密度和气孔大小均降低;火龙果新茎比老茎对于气温的升高或者降低更加敏感,而干旱处理的火龙果茎表温度比对照高;随着干旱程度的加深,光合色素显著降低,叶绿素荧光参数发生变化。火龙果茎具有很强的保水能力和耐干旱胁迫能力;干旱下,火龙果的水分优先提供根系促进根生长,维持茎伸长生长,而增粗生长受抑制;在轻度和中度水分胁迫下,火龙果茎光合能力不会明显下降,在重度水分胁迫时才会显著影响其光合效率。  相似文献   

19.
《Field Crops Research》2002,73(2-3):181-200
A series of experiments were conducted in drought-prone northeast Thailand to examine the magnitude of yield responses of diverse genotypes to drought stress environments and to identify traits that may confer drought resistance to rainfed lowland rice. One hundred and twenty eight genotypes were grown under non-stress and four different types of drought stress conditions.Under severe drought conditions, the maintenance of PWP of genotypes played a significant role in determining final grain yield. Because of their smaller plant size (lower total dry matter at anthesis) genotypes that extracted less soil water during the early stages of the drought period, tended to maintain higher PWP and had a higher fertile panicle percentage, filled grain percentage and final grain yield than other genotypes. PWP was correlated with delay in flowering (r=−0.387) indicating that the latter could be used as a measure of water potential under stress. Genotypes with well-developed root systems extracted water too rapidly and experienced severe water stress at flowering. RPR which showed smaller coefficient of variation was more useful than root mass density in identifying genotypes with large root system.Under less severe and prolonged drought conditions, genotypes that could achieve higher plant dry matter at anthesis were desirable. They had less delay in flowering, higher grain yield and higher drought response index, indicating the importance of ability to grow during the prolonged stress period.Other shoot characters (osmotic potential, leaf temperature, leaf rolling, leaf death) had little effect on grain yield under different drought conditions. This was associated with a lack of genetic variation and difficulty in estimating trait values precisely.Under mild stress conditions (yield loss less than 50%), there was no significant relationship between the measured drought characters and grain yield. Under these mild drought conditions, yield is determined more by yield potential and phenotype than by drought resistant mechanisms per se.  相似文献   

20.
花生苗期干旱处理后转录和代谢通路分析   总被引:2,自引:0,他引:2  
为解析花生耐旱性的调控基础,本研究通过对10个不同的花生材料苗期进行干旱-复水实验,结合转录组分析,探讨了干旱条件下不同花生材料抵御干旱胁迫的分子机制。研究结果显示,来源于非洲的花生材料Waliyar Tiga耐旱性最强,其次是kQ044抗青、中花16和早花生,干旱敏感的材料为狮头企、山花13、ICGV86745以及丰花2号;耐旱及干旱敏感材料的根冠比存在显著差异,耐旱材料的根冠比平均值为35.0%,干旱敏感材料的根冠比平均值为15.26%。早花生和中花16的根冠比最大。转录组结果表明抗感材料的差异表达基因主要富集在氧化磷酸化、光合作用和植物代谢途径;通过差异基因富集分析发现,耐旱材料在干旱条件下生长素应答途径基因的表达明显弱于敏感材料。生理和转录组的结果表明耐旱材料利用发达的根系系统、能量代谢的提升、次生代谢的加强和生长的抑制四个方面共同应对干旱胁迫。抗旱材料中花16和Waliyar Tiga在干旱条件下均具有较强的光合作用和氧化磷酸化的能力,中花16的根冠比显著大于Waliyar Tiga,但其耐旱性不及Waliyar Tiga,推测可能源于其较大的叶面积导致更多的叶面水分散失,从而使其耐旱能力低于Waliyar Tiga。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号