首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
Intensive rice farming in aerobic soil, referred to herein as aerobic rice, can greatly reduce the water input compared to that of flooded rice cultivation. The objective of this study was to compare the potential productivity of aerobic rice and flooded rice using high-yielding varieties at two locations in Japan in two successive years. In aerobic fields, the total amount of water supplied (irrigation plus rainfall) was 800–1300 mm. The soil water potential at 20-cm depth averaged between −15 and −30 kPa each growing season, but frequently reached −60 kPa. The average yield under aerobic conditions was similar to or even higher than that achieved with flooded conditions (7.9 t ha−1 in 2007 and 9.4 t ha−1 in 2008 for aerobic versus 8.2 t ha−1 for flooded). The average water productivity under aerobic conditions was 0.8–1.0 kg grain m−3 water, slightly higher than common values in the literature. The super-high-yielding cultivar Takanari achieved yields greater than 10 t ha−1 with no yield penalty under aerobic conditions in 3 out of 4 experiments. The favorable agronomic characteristic of Takanari was its ample sink capacity (grain number × grain weight). In conclusion, high-productivity rice cultivation in aerobic soil is a promising technology for water conservation. With continued breeding, future aerobic rice varieties will possess large numbers of spikelets and sufficient adaptation to aerobic conditions such that they will consistently achieve yields comparable to the potential yield of flooded rice.  相似文献   

2.
Early vigor and rapid canopy development are important characteristics in aerobic rice culture, where they are highly susceptible to soil water deficits. To elucidate the response of rice's vegetative growth to water management regimes, we evaluated the leaf growth and the concomitant nitrogen (N) utilization of nine cultivars grown in flooded and aerobic culture in 2 years. In aerobic culture, the soil water potential at a depth of 20 cm frequently reached −60 kPa in 2007, but remained above −30 kPa in 2008. The average leaf area index (LAI) in the middle of the vegetative growth stage, N uptake and leaf N content per unit leaf area (specific leaf N; SLN) in aerobic culture were comparable to those in flooded culture. However, there was a significant cultivar × water regime interaction in LAI: cultivars with higher LAI during the vegetative growth stage achieved higher yield in aerobic rice culture. IR72 and Takanari (high-yielding cultivars of flood-irrigated rice) showed poor leaf growth as well as lower N uptake and higher SLN in aerobic culture compared with flooded culture. Our results show that early vigor is closely associated with yield stability to the soil moisture fluctuations in aerobic rice culture, even if weeds are properly controlled. Greater N uptake from aerobic soil and better balancing between the N demand for leaf growth and the N supply to the leaves under fluctuating soil moisture would be, at least in part, relevant to a rice cultivar's adaptation to aerobic conditions.  相似文献   

3.
Aerobic rice culture is a new technology designed to reduce water use, but the vulnerability of rice to aerobic condition has limited its development. The objective of this study was to characterize the root growth and stomatal behaviour of four rice cultivars grown in flooded and aerobic culture for 2 years. In aerobic culture, where the soil water potential at 20-cm depth averaged between −15 and −30 kPa, total root biomass was significantly lower than in flooded culture for the whole growth period, owing to a reduction in root biomass in the surface layer. Dry-matter partitioning to roots decreased, but the ratio of deep root biomass to total root biomass tended to be higher in aerobic culture than in flooded culture. The low root-to-shoot ratio and poor root growth in the surface layer in aerobic culture are attributable to the considerable reduction in adventitious root number. As a result, the varietal difference in total root biomass was due largely to individual root growth in aerobic culture. Stomatal closure was distinct at the vegetative stage in aerobic culture, even when the soil water potential was near field capacity, partly because of the poor rooting vigour. When the soil water potential at 20-cm depth was below −50 kPa, the stomatal behaviour reflected the root growth in the subsurface layer. These results suggest the role of vigorous root growth in soil water uptake and hence, in maintaining transpiration in aerobic rice culture.  相似文献   

4.
Water shortage in the Huai River Basin prompts farmers to adopt water-saving technologies such as direct-seeded nonflooded or aerobic rice. Different cultivation practices impact on tiller growth and development. Improved insight into tiller dynamics is needed to increase yield in these production systems. We conducted field experiments with four direct-seeded rice varieties under flooded and nonflooded conditions in Mengcheng county, Anhui province, in 2005–2006. The soil water content in the nonflooded treatment varied between saturation and field capacity. Yields in nonflooded soil ranged from 3.6 to 4.7 t ha−1, and did not differ significantly from yields in flooded soil that ranged from 3.6 to 5.1 t ha−1. Variety had a significant effect on biomass, yield, panicle number, spikelet number, grain weight, and grain filling percentage. Panicle number was the main factor limiting yield, resulting from a low tiller emergence frequency and a low fraction of productive tillers in both the flooded and the nonflooded soils. On average, the panicle number was 159–232 m−2, including 34–167 productive tillers per m2 for all the varieties under the two water regimes. The contribution of productive tillers to yield varied between 7% and 47%. There were two peaks of tillers that contributed to yield, one at the low (4th or 5th) and one at the high (10th or 11th) phytomer orders. Frequencies of tiller emergence at most phytomer orders were higher in the flooded soil than in the nonflooded soil. There were no significant differences in frequencies of productive tiller emergence and contributions to yield from tillers between the soil water regimes for three of the four tested varieties. To increase yield in direct-seeded nonflooded rice production systems, both the tiller emergence frequency and the fraction of productive tillers should increase through breeding, improved crop management, or a combination.  相似文献   

5.
The concept of aerobic culture is to save water resource while maintaining high productivity in irrigated rice ecosystem. This study compared nitrogen (N) accumulation and radiation use efficiency (RUE) in the biomass production of rice crops in aerobic and flooded cultures. The total water input was 800–1300 mm and 1500–3500 mm in aerobic culture and flooded culture, respectively, and four high-yielding rice cultivars were grown with a high rate of N application (180 kg N ha−1) at two sites (Tokyo and Osaka) in Japan in 2007 and 2008. The aboveground biomass and N accumulation at maturity were significantly higher in aerobic culture (17.2–18.5 t ha−1 and 194–233  kg N ha−1, respectively) than in flooded culture (14.7–15.8 t ha−1 and 142–173 kg N ha−1) except in Tokyo in 2007, where the surface soil moisture content frequently declined. The crop maintained higher N uptake in aerobic culture than in flooded culture, because in aerobic culture there was a higher N accumulation rate in the reproductive stage. RUE in aerobic culture was comparable to, or higher than, that in flooded culture (1.27–1.50 g MJ−1 vs. 1.20–1.37 g MJ−1), except in Tokyo in 2007 (1.30 g MJ−1 vs. 1.37 g MJ−1). These results suggest that higher biomass production in aerobic culture was attributable to greater N accumulation, leading to higher N concentration (N%) than in flooded culture. Cultivar differences in response to water regimes were thought to reflect differences in mainly (1) early vigor and RUE under temporary declines in soil moisture in aerobic culture and (2) the ability to maintain high N% in flooded culture.  相似文献   

6.
ABSTRACT

To enhance the yield potential of rice by breeding, it is important to reveal the genetic factors affecting yield components in high-yielding cultivars. Quantitative trait loci (QTL) analysis for panicle structure and spikelet weight as an index of grain filling was conducted using recombinant inbred lines (RILs) derived from a cross between an indica-dominant high-yielding cultivar, Takanari, and a japonica-dominant high-yielding cultivar, Momiroman in 2012 and 2013 in eastern Japan. The grain-filling ability of Takanari is reported to be better than that of Momiroman. Since grain filling is generally better near the tip of the panicle and decreases as the number of branches from the rachis increases, we classified whole panicles into upper and lower side panicles and spikelets into primary, secondary, and tertiary spikelets according to the number of branches from the rachis. On chromosomes 1, 4, and 6, QTLs regulating the number of spikelets per panicle and panicle structure were detected and were most likely identical to GN1a, SPIKE, and APO1, respectively, which has been previously reported as QTLs regulating the number of spikelets per panicle. Takanari produced much heavier secondary and tertiary spikelets than Momiroman on the lower side panicle. On chromosome 5, novel QTLs regulating spikelet weight were detected. The Takanari allele enhanced secondary and tertiary spikelet weight on the lower side panicle. These results indicate that it may be possible to enhance sink capacity and translocation of source with a combination of novel QTLs detected on chromosome 5 and GN1, APO1, and SPIKE.  相似文献   

7.
This study aimed to investigate the possible causes for inconsistent performances of upland New Rice for Africa (NERICA) varieties in uplands and lowlands, while identifying important determinants in grain yield under deficient soil moisture. We compared the growth and yield of NERICA 1 and NERICA 5 to those of Yumenohatamochi, a Japanese upland variety, and Hinohikari, a Japanese lowland variety, subjected to different water management regimes (continually flooded, supplementary irrigation, and non-irrigation). Under conditions of deficient soil moisture, panicle number per square meter, spikelet number per panicle, and 1000-grain weight of NERICAs decreased, whereas the panicle number of the Japanese varieties experienced little change. In contrast, the grain filling ratio was unaffected by water management, irrespective of variety. The primary source of yield reduction under low soil water conditions was a decrease in spikelet number per panicle, and water stress intensity was the primary factor for the degree of this reduction. Variation in the abortion of secondary rachis-branches caused differences between NERICAs in their spikelet number response to soil moisture deficiency. The inconsistency in NERICA performance across uplands vs. lowlands can be partially attributed to variation in yield response to low soil water conditions. Moreover, water stress intensity and the presence of a water gradient along the vertical soil profile may combine to affect the fluctuation in NERICA performance under upland conditions.  相似文献   

8.
Water scarcity threatens sustainable rice production in many irrigated areas around the world. To cope with the scarcity, aerobic rice culture has been proposed as a promising water-saving technology. The objective was to elucidate the physiological attributes behind the performance of rice introgression lines in water-saving culture. We evaluated yield potential and physiological adaptation traits to water deficit of BC3-derived lines with the genetic background of an elite indica cultivar, IR64, in the field and in pot experiments. One line, YTH183, had 26% higher yield than IR64 under non-stress conditions (895 vs. 712 g m−2 on average). This was attributed to enlarged sink capacity due to large grain size, which contributed to more efficient use of assimilates and hence a higher harvest index. YTH183 also showed better dehydration avoidance under intermittent soil drying, due to the adaptive response of deep rooting to water deficiency. The grain yield of YTH183 exceeded that of IR64 by 92-102% under moderate water deficit caused by limited irrigation in aerobic rice culture (143 vs. 72 g m−2). Two introgressed segments on chromosomes 5 and 6 might, at least in part, confer the higher yield potential and greater dehydration avoidance in YTH183 simultaneously. Advanced backcross breeding combined with molecular genetics and physiological characterization of introgressed segments would be effective for developing new rice cultivars with high yield potential and drought adaptation traits.  相似文献   

9.
【目的】旨在阐明氮肥和灌溉方式对水稻产量、籽粒灌浆及生理特性的影响。【方法】以大穗型品种甬优2640和中穗型品种淮稻5号为供试材料进行盆钵试验,大田育秧移栽后设置3种氮肥水平,即0 N(不施氮)、MN(2 g N/盆)、HN(4 g N/盆);抽穗至成熟期设置3种灌溉方式,即CI(保持水层灌溉)、WMD(轻干湿交替灌溉,土壤水势-15 k Pa时复水)、WSD(重干湿交替灌溉,土壤水势-30 k Pa时复水)。【结果】在CI下,两个品种产量均以MN水平最高;WMD处理下,两个品种产量均以HN水平最高,但与MN下差异不显著,WSD处理下两个品种产量均以HN最高;而在籽粒灌浆上,两个品种强势粒的灌浆速率和最终粒重在各个水氮处理间无显著差异,弱势粒的灌浆速率和最终粒重在良好水势条件CI和轻度水分胁迫WMD下,分别在0 N和MN水平下表现较优;但在重度水分胁迫WSD下,0N水平表现最低,HN最高,但与MN差异不显著。以上都表明产量与弱势粒的灌浆在水氮间存在着明显的交互作用。在品种间,大穗型籼粳杂交稻甬优2640弱势粒灌浆速率及粒重都低于中穗型常规粳稻淮稻5号,其产量优势主要源自较高的每穗粒数。最后,WMD+MN处理下有较高的氮肥利用率,较少的施氮量获得较高的产量,达到节水节氮增产的效果,其次也增加了根系生理活性和叶片光合性能,非结构性碳水化合物(NSC)转运率,促进了地上部的生长发育,同时也加强了物质运转,促进了灌浆中后期弱势粒籽粒的充实,最终达到产量增加的目的,成为本研究最佳水氮运筹方式。  相似文献   

10.
【目的】旨在阐明氮肥和灌溉方式对水稻产量、籽粒灌浆及生理特性的影响。  相似文献   

11.
《Plant Production Science》2013,16(3):198-202
Summary

A rice husk restricts the grain development physically. We examined the correlation of the total husk volume on a panicle, a parameter of yield capacity, with the nitrogen concentration (per dry weight) and the dry weight of the above-ground part of the plant, using single-stem-trained japonica rice (cv. Nipponbare) plants. The growth of rice plants was regulated by shading at two levels and nitrogen application at three levels from about 40 days before the heading (about 10 days before the panicle initiation). The number of spikelets per dry weight of the above-ground part of the plant at the end of the spikelet differentiation stage was linearly correlated with the nitrogen concentration at that time. The ratio of the spikelet dry weight at heading to the dry weight of the above-ground part of the plant at the end of the spikelet differentiation stage increased as the nitrogen concentration increased at a low nitrogen concentration, but the increase of the ratio slowed down at a nitrogen concentration of 2%. Decrease in dry weight of the spikelet resulted in a decrease of lemma size. Therefore, the ratio of the total husk volume on a panicle to the plant dry weight at the end of spikelet differentiation stage also increased as the nitrogen concentration increased at a low nitrogen concentration, but the increase stopped at a nitrogen concentration of 2% in contrast to the ratio of the spikelet number to the dry weight of the plant. These results suggest that, to increase the total husk volume on a panicle by nitrogen application, dry-matter production must be increased by the nitrogen application.  相似文献   

12.
Crop physiological traits of Liangyoupeijiu, a “super” hybrid rice variety recently bred in China, were compared with those of Takanari and Nipponbare in 2003 and 2004 in Kyoto, Japan. Liangyoupeijiu showed a significantly higher grain yield than Nipponbare in both years, and achieved a grain yield of 11.8 t ha−1 in 2004, which is the highest yield observed under environmental conditions in Kyoto. Liangyoupeijiu had longer growth duration and larger leaf area duration (LAD) before heading, causing larger biomass accumulation before heading than the other two varieties. Liangyoupeijiu had a large number of grains and translocated a large amount of carbohydrates from the vegetative organ to the panicle during the grain filling period. The three yield components measured were panicle weight at heading (P0), the amount of carbohydrates translocated from the leaf and stem to the panicle during the grain filling period (ΔT), and the newly assimilated carbohydrates during grain filling (ΔW). It was found that the sum of P0 and ΔT were strongly correlated with grain yield when all the data (n = 8) were combined (r = 0.876**). However, there was no significant difference in the radiation use efficiency (RUE) of the whole growth period between Liangyoupeijiu and Nipponbare for both years. Even though the growth duration was shorter, Takanari, an indica/japonica cross-bred variety, showed a similar yield to Liangyoupeijiu in both years. The mean RUE of the whole growth period was significantly higher in Takanari, 1.60 and 1.64 g MJ−1 in 2003 and 2004, respectively, than in Liangyoupeijiu, which had a RUE of 1.46 and 1.52 g MJ−1 in 2003 and 2004, respectively. The high grain yield of Takanari was mainly due to its high RUE compared with Liangyoupeijiu and its large P0 and ΔT. Our result showed that the high grain yield of Liangyoupeijiu was due to its large biomass accumulation before heading, which resulted from its large LAD rather than its RUE.  相似文献   

13.
Labour and water scarcity in north west India are driving researchers and farmers to find alternative management strategies that will increase water productivity and reduce labour requirement while maintaining or increasing land productivity. A field experiment was done in Punjab, India, in 2008 and 2009 to compare water balance components and water productivity of dry seeded rice (DSR) and puddled transplanted rice (PTR). There were four irrigation schedules based on soil water tension (SWT) ranging from saturation (daily irrigation) to alternate wetting drying (AWD) with irrigation thresholds of 20, 40 and 70 kPa at 18–20 cm soil depth. There were large and significant declines in irrigation water input with AWD compared to daily irrigation in both establishment methods. The irrigation water savings were mainly due to reduced deep drainage, seepage and runoff, and to reduced ET in DSR. Within each irrigation treatment, deep drainage was much higher in DSR than in PTR, and more so in the second year (i.e. after 2 years without puddling). The irrigation input to daily irrigated DSR was similar to or higher than to daily irrigated PTR. However, within each AWD treatment, the irrigation input to DSR was less than to PTR, due to reduced seepage and runoff, mainly because all PTR treatments were continuously flooded for 2 weeks after transplanting. There was 30–50% irrigation water saving in DSR-20 kPa compared with PTR-20 kPa due to reduced seepage and runoff, which more than compensated for the increased deep drainage in DSR. Yields of PTR and DSR with daily irrigation and a 20 kPa irrigation threshold were similar each year. Thus irrigation and input water productivities (WPI and WPI+R) were highest with the 20 kPa irrigation threshold, and WPI of DSR-20 kPa was 30–50% higher than of PTR-20 kPa. There was a consistent trend for declining ET with decreasing frequency of irrigation, but there was no effect of establishment method on ET apart from higher ET in DSR than PTR with daily irrigation. Water productivity with respect to ET (WPET) was highest with a 20 kPa irrigation threshold, with similar values for DSR and PTR. An irrigation threshold of 20 kPa was the optimum in terms of maximising grain yield, WPI and WPI+R for both PTR and DSR. Dry seeded rice with the 20 kPa threshold outperformed PTR-20 kPa in terms of WPI through maintaining yield while reducing irrigation input by 30–50%.  相似文献   

14.
Increasing water scarcity has necessitated the development of irrigated rice systems that require less water than the traditional flooded rice. The cultivation of aerobic rice is an effort to save water in response to growing worldwide water scarcity with the pressure to reduce water use and increase water productivity. An accurate estimation of different water balance components at the aerobic rice fields is essential to achieve effective use of limited water supplies. Some field water balance components, such as percolation, capillary rise and evapotranspiration, can not be easily measured; therefore a soil water balance model is required to develop and to test water management strategies. This paper presents results of a study to quantify time varying water balance under a critical soil water tension based irrigation criteria for the cultivation of non-ponded “aerobic rice” fields along the lower parts of the Yellow River. Based on the analysis and integration of existing field information on the hydrologic processes in an aerobic rice field, this paper outlines the general components of the water balance using a conceptual model approach. The time varying water balance is then analyzed using the feedback relations among the hydrologic processes in a commercial dynamic modeling environment, Vensim. The model simulates various water balance components such as actual evapotranspiration, deep percolation, surface runoff, and capillary rise in the aerobic rice field on a daily basis. The model parameters are validated with the observed experimental field data from the Huibei Irrigation Experiment Station, Kaifeng, China. The validated model is used to analyze irrigation application soil water tension trigger under wet, dry and average climate conditions using daily time steps. The scenario analysis show that to conserve scarce water resources during the average climate years the irrigation scheduling criteria can be set as −30 kPa average root zone soil water tension; whereas it can be set at −70 kPa during the dry years, however, the associated yields may reduce. Compared with the flooded lowland rice and other upland crops, with these two alternatives irrigation event triggers, aerobic rice cultivation can lead to significant water savings.  相似文献   

15.
Improving maize (Zea mays L.) growing conditions near flowering by applying nitrogen (N) could affect both kernel number per unit area (KN) and potential kernel weight (KW). Potential kernel weight can be estimated with maximum kernel water content (MKWC), as final kernel weight and kernel water relations are strongly associated in maize. At the crop level, the product of KN per unit area and MKWC could provide an appropriate index of potential sink capacity. The main objective of this study was to determine if the decrease in potential sink capacity (i.e. the product of MKWC and KN), under N deficit and with a late planting date, is due to MKWC or KN reductions. Additionally, we evaluated sink growth rate per unit area (i.e. the product of KN and kernel growth rate) during grain fill period as related to potential sink capacity. Three N rates under optimal and late planting dates and two hybrids were evaluated in experiments carried out at Paraná, Argentina (31°50′S; 60°31′W) during 2002–2003 and 2003–2004 growing seasons (seasons 1 and 2, respectively). Except for the late planting date during season 1, there was a significant positive response on grain yield, KN, KW, and MKWC to N supply. Experiments explored a broad range of KN, from 1645 to 5066 kernel m−2. MKWC and KN were positively correlated for DK682. Nitrogen increased the potential sink capacity and sink growth rate only as KN increases from a particular threshold in both hybrids. The sink growth rate was largely related to potential sink capacity, as MKWC was highly correlated with KGR across all treatments. Our analytical approach, considering potential sink capacity as a product of KN and MKWC, is integrative of sink demand both for individual kernel and crop levels. This work highlights the role of early establishment of potential sink capacity on yield determination under a wide range of N conditions.  相似文献   

16.
To clarify the optimal water management in large-scale fields under high temperatures at the ripening period, effective water managements during this period for improvement of yield, appearance quality and palatability were investigated. Compared with intermittent irrigation and flooded irrigation, the soil temperature with saturated irrigation remained low throughout the day, and the decrease rate of the bleeding rate of hills was the lowest. These results suggested that the saturated irrigation maintained root activity. For the three irrigation types, the number of spikelets per m2 and 1000-grain weight were similar, however, saturated irrigation resulted in significantly higher rice yield due to improvement in the percentage of ripened grains. The saturated irrigation produced a high percentage of perfect rice grains and thicker brown rice grain, furthermore, the palatability of cooked rice was excellent because protein content and hardness/adhesion ratio were both low. Thus, under high-temperature ripening conditions, soil temperature was lowered and root activity was maintained when applying saturated irrigation after heading time. The results indicated that saturated irrigation is an effective countermeasure against high-temperature ripening damage.  相似文献   

17.
《Plant Production Science》2013,16(3):365-380
Abstract

A high nitrogen-uptake capacity and effective use of absorbed nitrogen for dry matter and grain production are required to improve the production cost and environmental pollution. We characterized grain yield, dry matter production and nitrogen accumulation in six rice cultivars: Sekitori (released in 1848) and Aikoku (1882), referred to as SA cultivars hereafter; Koshihikari (1956); Nipponbare (1963) and Asanohikari (1987), referred to as NA cultivars hereafter; and Takanari (in 1990) as a high-yielding modern cultivar. The plants were grown with and without chemical fertilizer in a submerged paddy field. When plants were supplied with manure and chemical fertilizer, Takanari consistently produced the heaviest grain and dry matter, followed by the NA cultivars, and the SA cultivars the lightest. Dry matter production before heading was greater in Takanari and the NA cultivars due to the longer duration of vegetative growth. Dry matter production after heading was greatest in Takanari, with a larger crop growth rate (CGR), and smallest in the SA cultivars with a shorter ripening time. Greater dry matter production during ripening was accompanied by the greater accumulation of nitrogen by Takanari and NA cultivars. These plants developed a larger amount of roots. The smaller light extinction coefficient of the canopy was also attributed to the higher CGR in Takanari. When plants were grown without chemical fertilizer, Takanari also produced heavier grain and dry matter, followed by the NA cultivars. The heavier grain in these cultivars resulted from the greater dry matter production before heading, which was due to the longer period of vegetative growth. The greater dry matter production and nitrogen accumulation by Takanari and NA cultivars were evident when plants were grown with chemical fertilizer. Koshihikari was characterized by a higher CGR and greater nitrogen accumulation during ripening in the absence of chemical fertilizer which should be noted in efforts to decrease rates of nitrogen application.  相似文献   

18.
Sink strength plays an important role in grain filling of cereals but how it is related to the pre-anthesis non-structural carbohydrate (NSC) reserves is not clear. This study investigated if and how an increase in NSC reserves could enhance sink strength, and consequently improve grain filling of later-flowering inferior spikelets (in contrast to the earlier flowering superior spikelets) for rice varieties with large panicles. Two “super” rice varieties (the recently bred high-yielding rice) and two New Plant Type (NPT, named in IRRI for the extra-large panicle) rice lines were compared with two elite inbred varieties under field-grown conditions. Three nitrogen (N) treatments, applied at the stages of panicle initiation, spikelet differentiation or both, were adopted with no N application during the mid-season as control. Both super rice and NPT rice showed a greater yield capacity as a result of a larger panicle than the elite inbred rice. However, a lower percentage of filled grains limited the realization of higher yield potential in super rice and especially in NPT rice, due to their lower grain filling rate and the smaller grain weight of their inferior spikelets. The low grain filling rate and small grain weight of inferior spikelets are mainly attributed to a poor sink strength as a result of small sink size (small number of endosperm cells) and low sink activity, e.g. low activities of sucrose synthase (SuSase) and adenosine diphosphoglucose pyrophosphorylase (AGPase). The amounts of NSC in the stem and NSC per spikelet at the heading time are significantly and positively correlated with sink strength (number of endosperm cells and activities of SuSase and AGPase), grain filling rate, and grain weight of inferior spikelets. Nitrogen application at the spikelet differentiation stage significantly increased, whereas N application at the panicle initiation or at both panicle initiation and spikelet differentiation stages, significantly reduced, NSC per spikelet at the heading time, sink strength, grain filling rate, and grain weight of inferior spikelets in super rice. The results suggest that pre-anthesis NSC reserves in the stem are closely associated with the sink strength during grain filling of rice, and N application at the spikelet differentiation stage would be a good practice to increase pre-anthesis NSC reserves, and consequently to enhance sink strength for rice varieties with large panicles, such as super rice varieties.  相似文献   

19.
《Plant Production Science》2013,16(4):514-525
Abstract

We evaluated the genotypic differences in growth, grain yield, and water productivity of six rice (Oryza sativa L.) cultivars from different agricultural ecotypes under four cultivation conditions: continuously flooded paddy (CF), alternate wetting and drying system (AWD) in paddy field, and aerobic rice systems in which irrigation water was applied when soil moisture tension at 15 cm depth reached ?15 kPa (A15) and ?30 kPa (A30). In three of the sixcultivars, we also measured bleeding rate and predawn leaf water potential (LWP) to determine root activity and plant water status. Soil water potential (SWP) in the root zone averaged ?1.3 kPa at 15 cm in AWD, -5.5 and -6.6 kPa at 15 and 35 cm, respectively, in A15, and ?9.1 and ?7.6 kPa at 15 and 35 cm, respectively, in A30. The improved lowland cultivar, Nipponbare gave the highest yield in CF and AWD. The improved upland cultivar, UPLRi-7, and the traditional upland cultivar, Sensho gave the highest yield in A15 and A30, respectively. The yields of traditional upland cultivars,Sensho and Beodien in A30 were not lower than the yields in CF. However, the yields of the improved lowland cultivars, Koshihikari and Nipponbare, were markedly lower in A15 and A30. Total water input was 2145 mm in CF, 1706 mm in AWD, 804 mm in A15, and 627 mm in A30. The water productivity of upland rice cultivars in aerobic plots was 2.2 to 3.6 times higher than that in CF, while those of lowland cultivars in aerobic plots were lower than those in CF. The bleeding rate of Koshihikari was lower in A15 and A30 than in CF and AWD, and its LWP was significantly lower in A15 and A30 than in CF and AWD, but Sensho and Beodien showed no differences among the four cultivation conditions. We conclude that aerobic rice systems are promising technologies for farmers who lack access to enough water to grow flooded lowland rice. However, lowland cultivars showed severe growth and yield reductions under aerobic soil conditions. This might result from poor root systems and poor root function, which limits water absorption and thus decreases LWP. More research on the morphological and physiological traits under aerobic rice systems is needed.  相似文献   

20.
水分管理对免耕抛秧水稻根系生长及产量的影响   总被引:11,自引:2,他引:9  
研究了水分管理对免耕水稻根系生长和产量的影响。结果表明,干湿交替灌溉对根系的伸长、生长、生理及分布具有较大影响,水稻各生育期干湿交替灌溉处理水稻单株根干质量、单株生物量、根半径、根表面积、总根数、根系活力、超氧化物歧化酶活性均显著高于淹水淹灌。干湿交替灌溉处理实收产量显著高于淹水淹灌,增产主要因子是有效穗数、每穗粒数和结实率。灌浆盛期干湿交替灌溉处理单株生物量、根半径、根表面积、总根数、超氧化物歧化酶活性均显著高于湿润淹灌,水稻产量差异则不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号