首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 3 years field trial examined the effect of newly and previously applied lime on the growth and yield of two near-isogenic wheat genotypes differing only in aluminium (Al) tolerance (Triticum aestivum L. Al-sensitive line ES8 and Al-tolerant line ET8), and barley (Hordeum vulgare cv. Mundak) on an acid soil (pHCaCl2 4.6 in 0–10 cm and pH 4.1–4.3 in 10–40 cm) in the medium rainfall region of Western Australia. The trial consisted of four lime treatments: (i) no lime control; (ii) surface liming at 1.5 t ha−1 in 1999; (iii) surface liming at 2.5 t ha−1 in 1984; (iv) liming in 1984 and re-liming in 1999. Wheat crops were grown in 1999 and 2001, and barley was grown in 2000.

Liming in 1984 increased the pH in both topsoil and subsoil and decreased toxic Al in the subsoil. Liming in 1999 largely increased soil pH in the 0–10 cm in previously unlimed and limed plots, but only slightly increased the pH in 10–20 cm 2 years after application. In 1999, there was an overall 14% grain yield increase by growing ET8, mostly due to much better performance (41%) of ET8 over ES8 in the treatment with surface liming in 1999. In 2001, ET8 had yield 24% higher in the no lime control and 14% higher in the treatment with liming in 1999 compared with ES8. While both genotypes had similar root length density in the topsoil, root length density in acid subsoil was 22–160% higher for ET8 than for ES8. Wheat genotypes produced 23–24% higher yield due to the liming in 1984 compared to the no lime control. In 2000 season, shoot biomass of barley increased by 45–70% in the limed treatments compared with the no lime control. Liming at 2.5 t ha−1 in 1984 or liming at 1.5 t ha−1 in 1999 increased yield by 25%. Liming in 1984 and re-liming in 1999 increased the yield by over 50%. The results suggest that surface liming can ameliorate subsoil acidity as measured 15–17 years after application, and that growing an Al-tolerant crop in combination with surface liming provides a good strategy to combat subsoil acidity. The genotypic variation in response to liming appears to result from the difference in the sensitivity of root proliferation to low pH and high Al.  相似文献   


2.
基于始于2012年的不同耕作方式长期定位试验,分析冬小麦播前深翻(DT)、旋耕(ST)和免耕(NT)3种耕作方式对后茬免耕直播夏玉米生长(干物质积累与分配)、生理指标(叶面积指数和SPAD值)、子粒灌浆速率的影响,探析麦茬耕作方式对后茬夏玉米生长发育和产量建成的影响。结果表明,ST处理成熟期干物质积累量显著高于DT和NT处理(P<0.05),穗部干物质的分配比例分别较NT与DT处理显著增加了7.94%~13.79%、10.34%~17.48%。ST处理叶面积和持绿性优于DT和NT处理。ST处理的子粒灌浆速率较DT与NT处理提高12.71%~18.96%、5.25%~8.71%,最终获得最大产量。因此,冬小麦-夏玉米1年两熟种植模式下,麦茬旋耕更利于免耕直播夏玉米的生长和产量建成。  相似文献   

3.
Management and cropping systems varying in soil mobilization rates and plant-residue inputs may have profound effects on the biological properties of soil. Therefore, the objective of this study was to quantify soil microbial biomass carbon and nitrogen (MB-C and MB-N)—by means of the fumigation-extraction method—under varied soil-management and crop-rotation/succession systems in southern Brazil, correlating the results with yields of soybean and maize crops. The microbial biomass and grain yields were examined at the 0–10 cm layer in four short- to long-term field experiments. Experiment 1 was a 26-year trial consisting of four soil-management systems: (1) no-tillage (NT), (2) conventional tillage [(CT) with disc plough], (3) field cultivator (FC) or (4) heavy-disc harrow (DH), each with a crop succession (CS) of soybean (summer) and wheat (winter). Experiment 2 was a 21-year trial consisting of one CS, soybean/wheat every year) and seven crop rotations (CRs) comprising soybean, maize, wheat and green manures (lupine, radish and black oat), under the NT system. Experiment 3 comprised a 14-year CT trial, and 4-year and 14-year NT trials, with both one CS and two CRs. Experiment 4, a 10-year trial consisted of CT and NT and three CRs. Analyses were performed during the summer and winter croppings. Differences in microbial parameters, as a function of crop succession and rotation, were not easily detected as they varied as a function of a complex combination of plant species and time of implementation of the experiment. In contrast, MB-C and MB-N values were consistently higher—up to more than 100%—under NT in comparison to CT and were associated with higher grain yields. Our results—from this wide range of experiments—suggest that MB-C and, particularly, MB-N are sensitive indicators of the effects of soil- and crop-management regimens.  相似文献   

4.
Field experiments were conducted on four acid soils which were typical of the eastern section of the cropping region in southeastern Australia. The response of three cereal varieties to application of limestone or elemental S was measured as a function of soil pH. The cereals were selected to cover the known range of tolerance to acidity: Triticale (×Triticosecale wittmack cv. Currency) (tolerant); wheat (Tritcum aestivum cv. Matong) (moderately tolerant) and barley (Hordeum vulgare cv. Schooner) (sensitive). A two asymptote logistic equation was used to describe the relationship between soil pH and rates of limestone and elemental sulphur. The upper asymptotes for the four sites were well below the pH of lime saturation as the agriculturally practiced rates of lime were lower than the rates that could achieve the maximum pH in the field. The same equation was used to fit higher rates of lime application to a similar soil type to one of the four sites in this study and resulted in an upper asymptote of 7.26. Crop yield responses to lime application were well described by soil pHCa (0.01 M CaCl2). Soil pHCa ranges which gave 95% of maximum yield were pHCa 4.3–5.6 for Matong wheat, 4.4–4.8 for Currency triticale and 4.7–5.8 for Schooner barley. It was found that rainfall played an important role in limiting the yield response of crops to lime application. Lime reaction, lime requirement and grain yield models should include rainfall and soil water content as these influence the rate and extent of dissolution of limestone and subsequent plant response in a semi-arid environment.  相似文献   

5.
In the cropping regions of South Australia there is little information on whether acidity and acidification associated with high-input agriculture is affecting crop production and profitability. In much of the mid-north of South Australia, where thermic Calcic Palexeralf soils predominate, the levels of Al are low compared with other acid-soil types reported in comparable studies in Australia. In this study lime requirement curves have been used to predict the lime rate that achieves 80–90% maximum yield for different crop species on 3 sites on the red-brown earth soil type in the mid-north of South Australia. The results given demonstrate that the approach used for predicting lime responsiveness, with lime requirement calculated using the model of [Hochman, Z., Godyn, D.L., Scott, B.J., 1989. The integration of data on lime use by modelling. In: Robson, A.D. (Ed.). Soil Acidity and Plant Growth. Academic Press, Sydney, Australia, pp. 265–301], has provided good estimates of final pH changes. Yield response curves show that the largest yield gains mostly occurred in the second season of the experiment when lime at about 2.0 t/ha increased pHCa to 5.5–6.0. With the lime treatments calculated, yield of wheat, barley and faba beans were increased by about 70%, and durum by 30% compared with the control. It would appear that liming to achieve a pHCa of 5.2 has removed Al toxicity, and further liming to achieve pHCa 5.5–6.0 may have improved other soil properties to realise further yield gains. With cropping in this region commonly using practices that include high fertiliser nitrogen input and retention of crop residues, acidification is likely to be an on-going issue with these red-brown earth soils. Thus it is appropriate that soil testing and, where required, liming at the rate of 1.5 t/ha is used by farmers to both improve cropping profitability and also offset acid input associated with the farming practice.  相似文献   

6.
石灰石粉施用量的试验结果表明:(1)随着石灰石粉用量增加,土壤pH升高,交换性铝和铝饱和度下降。施后7年仍可发挥其效果。(2)施用石灰石粉,显著增加每株蒴数和千粒重,增产幅度为17%—6l%。(3)土壤pH升高到6.0以上、交换性铝含量降至1.0me/100克土以下,芝麻才能获得较高的产量。  相似文献   

7.
Under semiarid Mediterranean conditions irrigated maize has been associated to diffuse nitrate pollution of surface and groundwater. Cover crops grown during winter combined with reduced N fertilization to maize could reduce N leaching risks while maintaining maize productivity. A field experiment was conducted testing two different cover crop planting methods (direct seeding versus seeding after conventional tillage operations) and four different cover crops species (barley, oilseed rape, winter rape, and common vetch), and a control (bare soil). The experiment started in November 2006 after a maize crop fertilized with 300 kg N ha−1 and included two complete cover crop-maize rotations. Maize was fertilized with 300 kg N ha−1 at the control treatment, and this amount was reduced to 250 kg N ha−1 in maize after a cover crop. Direct seeding of the cover crops allowed earlier planting dates than seeding after conventional tillage, producing greater cover crop biomass and N uptake of all species in the first year. In the following year, direct seeding did not increase cover crop biomass due to a poorer plant establishment. Barley produced more biomass than the other species but its N concentration was much lower than in the other cover crops, resulting in higher C:N ratio (>26). Cover crops reduced the N leaching risks as soil N content in spring and at maize harvest was reduced compared to the control treatment. Maize yield was reduced by 4 Mg ha−1 after barley in 2007 and by 1 Mg ha−1 after barley and oilseed rape in 2008. The maize yield reduction was due to an N deficiency caused by insufficient N mineralization from the cover crops due to a high C:N ratio (barley) or low biomass N content (oilseed rape) and/or lack of synchronization with maize N uptake. Indirect chlorophyll measurements in maize leaves were useful to detect N deficiency in maize after cover crops. The use of vetch, winter rape and oilseed rape cover crops combined with a reduced N fertilization to maize was efficient for reducing N leaching risks while maintaining maize productivity. However, the reduction of maize yield after barley makes difficult its use as cover crop.  相似文献   

8.
Cropping systems in farmland areas of Iran are characterized by continuous cultivation of crops with consumption of chemical fertilizers leading to serious soil erosion and fertility decline. Information regarding the simultaneous evaluation of crop rotation and fertilization on the canola is lacking. Hence, field experiments were conducted during 2007-2010 using split-split plot design. Three crop rotations: chickpea, sunflower, wheat, and canola (R1); green manure, chickpea, green manure, wheat, green manure and canola (R2); canola, wheat, and canola (R3) were used as main plots. Sub plots were consisted of six methods of fertilization including (N1): farmyard manure (FYM); (N2): compost; (N3): chemical fertilizers; (N4): FYM + compost and (N5): FYM + compost + chemical fertilizers; and control (N6). Four levels of biofertilizers consisted of (B1): phosphate solubilizing bacteria (PSB); (B2): Trichoderma harzianum; (B3): PSB + T. harzianum; and (B4): without biofertilizers were arranged in the sub-sub plots. Results showed that green manure application in canola rotation (R2) increased grain yield and nutrient uptake. Combined application of FYM, compost and chemical fertilizers (N5) elevated the nitrogen uptake rate and grain oil yield. Simultaneous use of PSB and T. harzianum (B3) resulted in the increase of nitrogen and sulfur contents of grain. R2 rotation with regard to its biological and environmental efficiencies accompanied with FYM + compost and B3 (PSB + T. harzianum) is suggested as a low input system to obtain a more sustainable and productive farming in canola.  相似文献   

9.
The implications of adopting alternative seeding methods for rice and wheat establishment were examined at three geographically separate sites in the rice-wheat system of the Indo-Gangetic plains, across northern India. Rice yields in cultivated plots, established by either wet or dry seeding methods, were evaluated in comparison to yields from zero-tillage plots and under conventional transplanting methods. In the same trials, the effects of crop establishment methods in wheat were assessed both on wheat yields and rice yields. Rice crop establishment methods markedly influenced the emerging weed flora and attainable yields were measured in relation to intensity of weed management. Over four years, average rice grain yields in the absence of weed competition were greatest (6.56 t ha−1) under wet seeding (sowing pre-germinated rice seed on puddled soil), and similar to those from transplanted rice (6.17 t ha−1) into puddled soil, and dry seeded rice after dry soil tillage (6.15 t ha−1). Lowest yields were observed from dry seeded rice sown without tillage (5.44 t ha−1). Rice yield losses due to uncontrolled weed growth were least in transplanted rice (12%) but otherwise large (c. 85%) where rice had been sown to dry cultivated fields or to puddled soil, rising to 98% in dry seeded rice sown without soil tillage. Weed competition reduced multiple rice yield components, and weed biomass in wet seeded rice was six-fold greater that in rice transplanted into puddled soil and twice as much again in dry seeded rice sown either after dry tillage or without tillage. Wheat grain yields were significantly higher from crops sown into tilled soil (3.89 t ha−1) than those sown without tillage (3.51 t ha−1), and also were elevated (5% on average) where the soil had been dry cultivated in preparation for the previous rice crops rather than puddled. The method of wheat cultivation did not influence rice yield. Soil infiltration rates in the wheat season were least where the land had been puddled for rice (1.52 mm h−1), and greater where the soil had been dry-tilled (2.63 mm h−1) and greatest after zero-tillage (3.54 mm h−1).These studies demonstrated at research managed sites across a wide geographic area, and on farmers’ fields, that yields of dry seeded rice sown after dry cultivation of soil were broadly comparable with those of transplanted rice, providing weed competition was absent. These results support the proposition that direct seeding of rice could provide an alternative to the conventional practice of transplanting, and help address rising costs and threats to sustainability in the rice-wheat rotation. Further, analysis of patterns of long-term rainfall data indicated that farmers reliant on monsoon rainfall could prepare fields for dry direct seeded rice some 30 days before they could prepare fields for either transplanting or seeding with pre-germinated seed. Dry, direct seeding of rice contributes a valuable component of an adaptive strategy to address monsoonal variability that also may advance the time of wheat establishment and yield. Whilst the results illustrate the robustness, feasibility and significant potential of direct seeded rice, they also highlight the critical nature of effective weed control in successful implementation of direct seeding systems for rice.  相似文献   

10.
Soil acidity is a limiting factor affecting the growth and yield of many crops all over the world. It is recognized that liming is the most common management practice of profitable crop production on acid soils. On the other hand, it is well-known that the form of nitrogen may affect tobacco yield and quality. In this work, the impact of the interaction between three hydrated lime (HL, Ca(OH)2) rates (0, 1.5 and 3 t HL ha−1) and three nitrogen fertilizer forms (NO3-N 100%, NH4-N 100% and NO3-N 50% plus NH4-N 50%) on growth, yield and quality characteristics of Virginia (flue-cured) tobacco was investigated in a 4-year (1995–1998) field experiment established in an acid soil (pHwater 1:1 5.3) located in Northern Greece. Lime was applied only once in December 1994, while nitrogen fertilizer was applied annually before transplanting. The results showed that the effect of liming on tobacco growth was not dependent on time, weather conditions and form of nitrogen fertilizer. Liming increased soil pH, enhanced the early growth of tobacco (within 30 days after transplanting (DAT)) and finally increased the total gross and trade yield of tobacco proportionally to the amount of HL added. However, the quality index (organoleptic characteristics) of the cured product was improved only at the HL application rate of 3 t HL ha−1. Furthermore, liming significantly increased Ca and P concentrations but decreased K concentration in cured tobacco leaves. Tobacco yield increase was attributed to the increase of P uptake. Liming also increased the ash content of cured leaves, whereas it did not significantly affect nicotine, total nitrogen and reducing sugars. The use of ammonium N in fertilizer delayed the early growth of tobacco, reduced the nicotine concentration and increased the reducing sugars concentration of the cured product. Total-N, P, K and Mg concentrations of cured leaves were not significantly affected by the form of nitrogen fertilizer used. The results suggested that an initial application of hydrated lime at a rate of 3 t HL ha−1 may ameliorate soil acidity and increase the yield and quality characteristics of Virginia tobacco at least over a 4-year period after application, independent of the form of N fertilizer used.  相似文献   

11.
Four two-year field trials, arranged in randomised split-plots, were carried out in southern Sweden with the aim of determining whether reduced N fertiliser dose in winter wheat production with spring under-sown clover cover crops, with or without perennial ryegrass in the seed mixture, would increase the clover biomass and hence the benefits of the cover crops in terms of the effect on the wheat crop, on a subsequent barley crop and on the risk of N leaching. Four doses of nitrogen (0, 60, 120 or 180 kg N ha−1) constituted the main plots and six cover crop treatments the sub-plots. The cover crop treatments were red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in pure stands and in mixtures. The winter wheat (Triticum aestivum L.) was harvested in August and the cover crops were ploughed under in November. The risk of N leaching was assessed in November by measuring the content of mineral N in the soil profile (0–30, 30–90 cm). In the following year, the residual effects of the cover crops were investigated in spring barley (Hordeum distichon L.) without additional N. Under-sowing of cover crops did not influence wheat yield, while reduced N fertiliser dose decreased yield and increased the clover content of the cover crops. When N was applied, the mixed cover crops were as effective in depleting soil mineral nitrogen as a pure ryegrass cover crop, while pure clover was less efficient. The clover content at wheat harvest as well as the amount of N incorporated with the cover crops had a positive correlation with barley yield. Spring barley in the unfertilised treatments yielded, on average, 1.9–2.4 Mg DM ha−1 more in treatments with clover cover crops than in the treatment without cover crops. However, this positive effect decreased as the N dose to the preceding wheat crop increased, particularly when the clover was mixed with grass.  相似文献   

12.
Root distribution patterns in the soil profile are the important determinant of the ability of a crop to acquire water and nutrients for growth. This study was to determine the root distribution patterns of selected oilseeds and pulses that are widely adapted in semiarid northern Great Plains. We hypothesized that root distribution patterns differed between oilseed, pulse, and cereal crops, and that the magnitude of the difference was influenced by water availability. A field experiment was conducted in 2006 and 2007 near Swift Current (50°15′N, 107°44′W), Saskatchewan, Canada. Three oilseeds [canola (Brassica napus L.), flax (Linum usitatissimum L.), mustard (Brassica juncea L.)], three pulses [chickpea (Cicer arietinum L.), field pea (Pisum sativum L.), lentil (Lens culinaris)], and spring wheat (Triticum aestivum L.) were hand-planted in lysimeters of 15 cm in diameter and 100 cm in length which were pushed into soil with a hydraulic system. Crops were evaluated under low- (natural rainfall) and high- (rainfall + irrigation) water conditions. Vertical distribution of root systems was determined at the late-flowering stage. A large portion (>90%) of crop roots was mainly distributed in the 0-60 cm soil profile and the largest amount of crop rooting took place in the top 20 cm soil increment. Pulses had larger diameter roots across the entire soil profile than oilseeds and wheat. Canola had 28% greater root length and 110% more root tips in the top 10 cm soil and 101% larger root surface area in the 40 cm soil under high-water than under low-water conditions. In 2007, drier weather stimulated greater root growth for oilseeds in the 20-40 cm soil and for wheat in the 0-20 cm soil, but reduced root growth of pulses in the 0-50 cm soil profile. In semiarid environments, water availability did not affect the vertical distribution patterns of crop roots with a few exceptions. Pulses are excellent “digging” crops with a strong “tillage” function to the soil due to their larger diameter roots, whereas canola is more suitable to the environment with high availability of soil water that promotes canola root development.  相似文献   

13.
《Field Crops Research》1995,43(1):19-29
Lupin, field pea, lentil, chickpea, canola, linseed, and barley were sown at different times (late April-early July) to study their effects on subsequent wheat production on a red earth at Wagga Wagga, New South Wales. The cultivars of field pea (Pisum sativum) included Dunn, Derrimut, Maitland and Dinkum; narrow-leaf lupin (Lupinus angustifolius) cultivars were Danja, Geebung and Gungurru, and either the L. angustifolius line 75A/330 (1989–1990) or the broad-leaf lupin L. albus cv. Ultra (1991–1992). Only one cultivar of the other crops was grown in any year and after 1989 lentil (Lens culinaris cv. Aldinga) was replaced by chickpea (Cicer arietinum cv. Amethyst). The canola (cv. Shiralee (1989–1991), cv. Barossa (1992)) and linseed (cv. Glenelg) rotations received annual applications of 40–50 kg N/ha as urea.Compared to barley and the oilseeds, grain legumes increased soil mineral N supply to the following wheat crop. Over 4 years the mean wheat grain yield response to a broad-leaf crop, relative to barley, was 115% for lupin, 84% for field pea, 88% for linseed and 86% for canola. However, the effects of the various crops on subsequent wheat grain yields and grain protein varied markedly with season. The main advantage of lupin over field pea occurred in years when disease reduced growth of field pea crops. In high rainfall years, wheat yields following lentil and chickpea were lower than those following lupin. The narrow-leaf cultivars of lupin promoted greater wheat yields than either the reduced branching line 75A/330 or the broad-leaf albus cultivar Ultra. Delayed sowing of lupin reduced yield and grain protein of wheat, except when low rainfall curtailed growth of either crop in the rotation. There was little effect of field pea sowing date on wheat grain yield but sowing in late June combined with a dry spring, reduced mineral N supply and grain protein. Late sowing of oilseeds had no consistent effect on wheat grain yield but increased grain protein in most years. Late sowing of barley typically increased wheat grain yield but had little effect on grain protein. The effects of sowing time were mainly attributed to effects on soil N supply and for barley on disease incidence in the subsequent wheat.  相似文献   

14.
To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system,a comparative experiment with a water-saving and drought-resistance rice(WDR)variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding(NTDS)mode and conventional tillage direct seeding(CTDS)mode for four years,using the CTDS mode as the control.Compared with the CTDS mode,the actual rice yield of WDR decreased by 8.10%at the first year,whereas the plant height,spikelet number per panicle,spikelet fertility,1000-grain weight,grain yield,actual yield,and harvest index increased with no-tillage years,which led to the actual yield increase by 6.49%at the fourth year.Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR.Compared with the CTDS mode in terms of the soil properties,the pH value of the NTDS mode decreased every year,whereas the contents of soil organic matter and total N of the NTDS mode increased.In the 0–5 cm layer of the NTDS mode,the soil bulk decreased,whereas the contents of soil organic matter,total N,and available N increased.In the 5–20 cm layer of the NTDS mode,the available N and K decreased,whereas the soil bulk,contents of soil organic matter,and total N increased.In summary,the NTDS mode increased the rice yield,and could improve the paddy soil fertility of the top layer.  相似文献   

15.
原位钝化对轻度镉污染农田小麦修复研究   总被引:1,自引:0,他引:1  
为探讨原位钝化在镉轻度污染小麦农田上的修复效果,在田间试验条件下,研究了石灰、生物炭配施石灰、生物有机肥配施石灰以及多孔陶瓷纳米材料配施石灰等钝化剂联合修复对镉污染农田中土壤氮、磷、钾含量、土壤pH值、土壤有效态Cd含量、土壤Cd的化学形态、小麦籽粒Cd含量以及小麦产量的影响。结果表明,在土壤Cd背景值为0.337 mg·kg~(-1)的轻度Cd污染农田中,钝化剂处理均可以在不同程度上提高土壤养分含量和pH值,降低小麦籽粒Cd含量和土壤中有效态Cd含量,促使土壤中的Cd形态由易被作物吸收的酸溶态和可还原态转化为不易被吸收的可氧化态和残渣态。其中,小麦籽粒Cd含量降低幅度最大,为40.0%,土壤有效态Cd最大降低率为43.7%,土壤pH值提高0.35。对各指标的相关性分析表明,土壤Cd含量与土壤酸溶态Cd及小麦籽粒Cd含量显著正相关,与可氧化态Cd显著负相关,与可还原态Cd含量极显著正相关;土壤中可还原态Cd与酸溶态Cd含量显著正相关,与小麦籽粒Cd含量极显著正相关。  相似文献   

16.
为给冬小麦水分高效利用提供科学依据,根据土壤-植物-大气连续体(SPAC)原理,利用野外小型蒸渗仪,以不施肥为对照(CK),原位研究了配方施肥(PF)以及配方施肥+秸秆还田(PF+JG)处理对砂姜黑土水分动态和冬小麦水分利用效率的影响.结果表明,秸秆还田主要影响0~40 cm土层土壤剖面水分含量,而40~80 cm土层土壤水分含量基本保持稳定.在小麦出苗期和拔节期,PF+JG处理的0~40 cm土层土壤含水量较PF处理分别提高50.9%和34.6%.土壤水分最大有效库容在小麦全生育期呈单峰变化趋势,峰值在返青期;PF+JG处理的出苗期土壤水分最大有效库容较CK和PF处理增加了8.25%和20.82%,拔节期增加8.07%和10.95%,且均差异显著(P<0.05).PF+JG处理的土壤水分入渗量分别是CK和PF处理的4.53和3.55倍;小麦耗水量较PF处理降低9.2%;小麦产量和水分利用效率分别比CK和PF处理增加124.1%、18.8%和144.0%、30.8%,且差异达显著水平(P<0.05).说明秸秆还田对冬小麦产量和水分利用效率的提高作用与增加土壤水分有效库容、水分入渗量和减少总耗水量有关.  相似文献   

17.
Long days partially depress tiller growth of spring cereals. In this study we characterised and quantified growing conditions and cultivar-induced variation in tiller traits and contribution of tillers to grain yield. Experiments were done at two locations in southern Finland, incorporating two nitrogen fertiliser application rates (80 and 120 kg N ha−1) and 12 two-row barley (Hordeum vulgare L.), 10 six-row barley, ten oat (Avena sativa L.) and 11 wheat (Triticum aestivum L.) cultivars. Spring cereal species differed significantly in their tillering: two-row barley was superior compared with other spring cereals, with the highest number and growth capacity of tillers and head-bearing tillers. Grain yield produced by tillers was, however, always modest compared with that of main shoots, ranging from 13% and 15% in oat and wheat to 20% in six-row barley and 64% in two-row barley. Cultivar and growing condition-induced differences were marked in tiller traits, but tillers were never able to out-yield the main shoot. This is likely to be emphasised by standard use of high seeding rates. Tillers are dominated by the main shoot under long day conditions at high latitudes, and tiller yield potential remains clearly underutilised even under conditions favouring growth.  相似文献   

18.
The rotation crops wheat, barley, oat, maize, soybean, rye, yellow mustard, alfalfa, and spring canola and weeds eastern black nightshade, velvetleaf, timothy grass, orchard grass, and Giant foxtail common to potato-growing areas in North America were used to study the host range ofColletotrichum coccodes, the causal agent of potato black dot. The fungus was isolated from nine of 14 rotation crops and weeds that were inoculated: yellow mustard, soybean, spring canola, alfalfa, oat, eastern black nightshade, velvetleaf, giant foxtail, and timothy grass. In all, colonization was highest in black nightshades (87%) and velvetleaf (80%). Among the rotation crops, colonization was highest on yellow mustard (59%) followed by spring canola (33%) and soybean (30%).Colletotrichum coccodes was not isolated from wheat, barley, rye, maize, or orchard grass. The results indicated that crops used for rotation with potato should be selected carefully to prevent the increase ofC. coccodes inoculum in the soil and that weeds may help maintain viable inoculum ofC. coccodes in the absence of potato. Based on these results we recommend that wheat, barley, maize, or rye be used in rotation with potato in areas whereC. coccodes is present in high levels in the soil.  相似文献   

19.
《Plant Production Science》2013,16(3):327-335
Abstract

We introduced subsoiling to a field of wheat-soybean rotation where no-tillage practice had been conducted for five years and whose yield tended to decrease or stagnate. By subsoiling a half of each plot just before wheat sowing, treatments of tillage/no-tillage × subsoiling/no-subsoiling were established. Root distribution, shoot growth, water uptake and yield of both crops were examined to elucidate whether the subsoiling improves the productivity such as shoot biomass and yield through the modification of root system development, and how differ the effects of subsoiling between tilled and non-tilled fields. In wheat, roots were less concentrated in surface (0 ? 5 cm) layer in no-tillage, and distributed more in deep (20 ? 25 cm) layer of the soil. Deuterium labeled heavy water analysis revealed that the subsoiling enhanced water uptake from the deep soil layer in the no-tillage field. Both the no-tillage and subsoiling showed positive and significant effect on total biomass and yield. The effect of subsoiling must be related to water supply by deep roots in spring. In soybean no-tillage significantly increased the productivity, but subsoiling did not though distribution of the roots was modified by both practices. Soybean in non-tilled accumulated roots in the surface soil layer, but subsoiling did not significantly modify the root distribution especially in the deep soil layer. Water uptake trend and yield was thus not changed significantly by subsoiling. Subsoiling in the non-tilled field increased rooting depth and showed the possibility of braking yield stagnation in long-term no-tillage cultivation in wheat, but not in soybean.  相似文献   

20.
We studied the performance of different seed mixtures and the influence of liming on the establishment of a montane pasture under acidic site conditions during a wood-pasture separation process from 1998 to 2001 in Styria, Austria. Two treatments (with and without liming) were established, each with four seeding treatments (without seeding, commercial, site-adapted and site-specific mixtures), and all plots were regularly fertilized from 1998 to 2002. Vegetation surveys and forage analyses regarding development of vegetation cover, seeded species persistence, quality and yield parameters were conducted again in 2014 and 2016; soil samples were taken in 2015. After cessation of regular fertilization, the analysed soil parameters declined to levels that were sufficient or low for grasslands. pH decreased again over time, but still was significantly higher (p = .0034) in the liming treatment. The single liming during experimental set-up also caused better long-term performance for nearly all vegetation, quality and yield parameters. The site-specific seed mixture performed best regarding most analysed parameters, under both liming treatments. Concerning seeded species, the habitat-typical species Agrostis capillaris, Festuca rubra agg. and Trifolium repens persisted best with and without liming. All analysed vegetation and yield parameters stayed far behind their results of 2001 and their potential. The use of site-specific seed mixtures supports the establishment of productive grassland on specific locations. The long-term results also illustrated that even low-input management like liming in multi-annual intervals can help to improve acidic site and growing conditions significantly and thereby increases the sustainability of cost-intensive wood-pasture separation processes under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号