首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
选择章古台地区三块典型樟子松(Pinussylvestrisvar.mongolica)人工固沙林为研究对象,采用实验室好氧培养法测定了不同土壤层次和在不同水分条件下的N矿化过程。结果表明:土壤0-60cm层N净矿化速率垂直变化范围为1.06–7.52mg·kg-1·month-1;土壤层次和含水量及其交互作用对土壤N净矿化速率的影响均达到差异显著(P<0.05);净矿化速率随着土壤层次的加深而明显下降,0-15cm层占总净矿化量的60.52%;半饱和与饱和含水量处理差异不显著,但均高于不加水处理。为此,在半干旱地区必须进一步加强开展调控生态系统N矿化、循环及其收支平衡影响因素的研究。图1表4参20。  相似文献   

2.
在孟加拉诺阿卡利地区及相临裸地,对海岸植被(12年和17年生无瓣海桑Sonneratia apetala)进行探索性研究,以便了解海岸造林对土壤特性的影响.在三种不同地带(内陆、中部、海边),在12年生和17年生无瓣海桑林下,土壤深度分别为0-10,10-30和30-40cm,土壤湿度、土壤粒度、有机质、C含量、总N、pH、有效P、K、Na、Ca和Mg含量明显高(p≤0.05,p≤0.01,p≤0.001)于其相临裸地的数据,土壤含盐量明显(p≤0.01)低于其相临裸地的数据.在内陆CharAlim植被,土壤表面的土壤湿度,土壤粒度,有机质,C含量、总N、pH、土壤含盐量、有效P、K、Na、Ca和Mg含量分别为:31.09%、2.24 g·cm-3、2.41%、4.14%、0.58%、7.07、O.09 dS·cm-1、28.06 mg·L-1、O.50 mg·L-1、11.5 mg·L-1、3.30 mg·L-1和2.7 mmol·kg-1;而在相邻的Char Rehania贫瘠地区的相同土壤深度,其相关值分别为:16.69%、1.25g·cm-3、O.43%、0.74%、O.25%、6.57、0.13 dS·cm-1、13.07mg·L-1、O.30mg·L-1、1.4 mg·L-1、O.30 mmol·kG-1和0.50 nag·L-1.然而,在小内陆到海边的植被中,土壤湿度、土壤密度、有机质、C含量、总N、pH、有效P、K、Na和Ca含量逐渐降低,而土壤含盐量、Na和Mg含量却逐渐增加.虽然,在植被与相临裸地的不同土壤深度中土壤质地不同,植被地中砂土份额明显(p≤0.01)低于相临裸地,而粉砂土份额则明显(p≤0.001)高于裸地.在本研究中,所有参数的评价也在为其他地区相关研究得到应用.  相似文献   

3.
We investigated soil physical properties in three forest types in tropical lowland monsoon forests in central Cambodia under the same climatic conditions, i.e., Kanhaplic Haplustults in dry evergreen forest (KH-E), Arenic Haplustults in dry deciduous forest (AH-D), and Arenic Ultic Alorthods in mixed evergreen–deciduous forest (AA-M), to clarify the relationship between forest types and soil physical properties. The clay content was correlated with water content at ψ = −9.8 and −1500 kPa (WC10 and WC1500), available water capacity (AWC), and the van Genuchten (vG) parameter N (P < 0.01). vG parameter N was in the order AH-D > AA-M > KH-E whereas vG parameter α had a high value in KH-E soil at 0–100 cm in depth. The cumulative AWC (AWCcl, mm) at a soil depth of 0–200 cm was higher in the AH-D than in the KH-E, and was not considered a major factor affecting the distribution of different forest types under the same climatic conditions. The unsaturated hydraulic conductivity (K) at 0–100 cm in depth, estimated by use of models, was higher in AH-D than in KH-E mostly at matric potential ψ > −10 kPa. The low K in KH-E at ψ > −10 kPa was considered favorable for evergreen trees to retain the soil water for the transpiration in the dry season, and the matric potential in KH-E showed more gentle decreases in the early dry seasons than AH-D. Thus the differences in K among generally sandy soil types could possibly affect the establishment of different forest types in the study area with the same climate.  相似文献   

4.
杉木纯林、混交林土壤微生物特性和土壤养分的比较研究   总被引:6,自引:0,他引:6  
王清奎  汪思龙 《林业研究》2008,19(2):131-135
本文于2005年5月份,在中国科学院会同森林生态实验站选择了一块15年生的杉木纯林和两块15年生杉阔混交林作为研究对象,调查了林地土壤有机碳、全氮、全磷、硝态氮、有效磷和土壤微生物碳、氮、磷、基础呼吸以及呼吸熵,比较了纯林和混交林土壤微生物特性和土壤养分.结果表明,杉阔混交林的土壤有机碳、全氮、全磷硝态氮和有效磷含量高于杉木纯林;在混交林中,土壤微生物学特性得到改善.在0(10 cm和10(20 cm两层土壤中,杉阔混交林土壤微生物氮含量分别比杉木纯林高69%和61%.在0(10 cm土层,杉阔混交林土壤微生物碳、磷和基础呼吸分别比杉木纯林高11%、14%和4%;在10(20 cm土层,分别高6%、3%和3%.但是,杉阔混交林土壤微生物碳:氮比和呼吸熵较杉木纯林低34%和4%.另外,土壤微生物与土壤养分的相关性高于土壤呼吸、微生物碳:氮比和呼吸熵与土壤养分的相关性.由此可知,在针叶纯林中引入阔叶树后,土壤肥力得以改善,并有利于退化森林土壤的恢复.  相似文献   

5.
The biomass and the spatial distribution of fine and small roots were studied in two Japanese black pine (Pinus thunbergii Parl.) stands growing on a sandy soil. More biomass of fine and small roots was found in the 17-year-old than in the 40-year-old stand. There were 62 g m−2 of fine roots and 56 g m−2 of small roots in the older stand, which represented mean values of 608 g for fine and 552 g for small roots per tree, respectively. In the younger stand, a total of 85 g m−2 of fine roots and 66 g m−2 of small roots were determined, representing a mean of 238 g for fine and 186 g for small roots per tree, respectively. Fine and small root biomasses decreased linearly with a soil depth of 0–50 cm in the older stand. In the younger stand, the fine and small roots developed only up to a depth of 30 cm. Horizontal distributions (with regard to distance from a tree) of both root groups were homogeneous. A positive correlation in the amount of biomass of fine and small roots per m2 relative to tree size was found. Fine and small root biomasses increased consistently from April to July in both stands. The results also indicated earlier growth activity of the fine roots than small roots at the beginning of the growing season. The seasonal increases in fine and small root biomasses were slightly higher in the younger stand than the older stand.  相似文献   

6.
Monitoring of soil nitrogen (N) cycling is useful to assess soil quality and to gauge the sustainability of management practices. We studied net N mineralization, nitrification, and soil N availability in the 0 10 cm and 11 30 cm soil horizons in east China during 2006 2007 using an in situ incubation method in four subtropical evergreen broad-leaved forest stands aged 18-, 36-, 48-, and 65-years. The proper- ties of surface soil and forest floor varied between stand age classes. C:N ratios of surface soil and forest floor decreased, whereas soil total N and total organic C, available P, and soil microbial biomass N increased with stand age. The mineral N pool was small for the young stand and large for the older stands. NO 3 - -N was less than 30% in all stands. Net rates of N mineralization and nitrification were higher in old stands than in younger stands, and higher in the 0 10 cm than in the 11 30 cm horizon. The differences were significant between old and young stands (p < 0.031) and between soil horizons (p < 0.005). Relative nitrification was somewhat low in all forest stands and declined with stand age. N trans- formation seemed to be controlled by soil moisture, soil microbial bio- mass N, and forest floor C:N ratio. Our results demonstrate that analyses of N cycling can provide insight into the effects of management distur- bances on forest ecosystems.  相似文献   

7.
We investigated the Effects of plantation development, seasons, and soil depth on soil microbial indices in Gmelina arborea plantations in south-western Nigeria. Soil samples were obtained from the soil depths of 0-15 and 15-30 cm from plantations of six different ages during the rainy season, dry seasons, and their transitions. We used plate count and fumigation-extraction methods to determine microbe population and microbial biomass carbon (MB-C) and nitrogen (MB-N), respectively. Plantation age did not affect microbial indices, implying a non-significant effect of plantation development on microbial communities. It could also imply that soil microbial indices had already stabilized in the sampled plantations. Seasonal variation and soil depth had significant effects on microbial indices. At 0-15 cm soil depth, mean MB-C increased from 50.74 μg g-1 during the peak of the dry season (i.e. March) to 99.58 μg g-1 during the peak of the rainy season (i.e. September), while it increased from 36.22 μg g-1 to 75.31 μg g-1 at 15-30 cm soil depth between the same seasonal periods. Bacteria populations and MB-N showed similar increasing trends. Correlations between MB-C, MB-N, microbe populations, and rainfall were positive and linear. Significantly higher microbial activities took place in the plantations during the rainy season, increased with soil wetness, and decreased at greater soil depth.  相似文献   

8.
Based on data collected (through local observations) for several consecutive years, comparative analyses of Chinese fir plantations in Huitong, Hunan, were made. Results show that, before harvesting, carbon storage in forest soils in these 22-year-old plantations (0–60 cm) amounted to 160.38 t/hm2; 1 year after a 100% clear-cutting, loss of carbon storage in the soil (0–60 cm) of cutover areas was 35.00%; 2 years later, the rate was 44.65%; and, after 3 years, the rate was 43.93% compared with a control area of a standing forest. Three years after 50% thinning and 100% clear-cutting, the loss of carbon storage in the soil (0–60 cm) of cutover areas was 16.14 and 45.15%, respectively. There existed an evident difference in carbon storage in the soil (0–60 cm) of cutover areas in four kinds of management regimes, which followed the order: closed Chinese fir forests (108.20 t/hm2) > fallow lands after farming (92.68 t/hm2) > commercial forests (85.80 t/hm2) > naturally regenerated forestlands after harvesting. Carbon storage in unburnt soil (0–45 cm) reached 73.36 t/hm2, which was 15.20 t/hm2 higher than that in the soil of burnt areas. A total of 20.7% of carbon storage in the soil (0–45 cm) of burnt areas was lost 40 days after burning. Carbon storage in surface soil (0–15 cm) was higher than in the lower soil layer, which amounted to 30.04% (0–60 cm) and 53.52% (0–30 cm) of total carbon storage in the soil. Translated from the Journal of Central South Forestry University, 2004, 24(1) (in Chinese)  相似文献   

9.
The objective of this study was to determine the rate of nitrogen (N) mineralization in response to various levels of canopy cover in red pine (Pinus resinosa Ait.) stands. Experimental plots consisted of various levels of canopy cover,i.e., clearcut, 25% (50% during first sampling year), 75%, and uncut in red pine plantations in northern Lower Michigan, USA. Net N mineralization and nitrification in the top 15 cm of mineral soil were examined during the first two growing seasons (1991–1992) following the canopy cover manipulations, using anin situ buried bag technique. Mean net N mineralization over the course of both growing seasons (May–October) ranged from 26.9 kg ha−1 per growing season in the clearcut treatment to 13.4 kg ha−1 per growing season in the uncut stand. Net N mineralization and nitrification increased significantly in the clearcut treatment compared to the uncut treatment during the second growing season only. However, net N mineralization and nitrification did not differ significantly between the partial canopy cover treatments and the uncut stand. Increased N mineralization and nitrification in the clearcut during the second growing season may be associated with increased soil temperature and changes of organic matter quality with time since canopy removal. This study was supported in part by the USDA Forest Service and Michigan Technological University.  相似文献   

10.
The species composition and diversities, and soil properties under canopy gaps in broad-leaved Pinus koraiensis forests were studied in the Changbai Mountains. The results indicated that the species composition and diversities in gap were different from those under canopy. The Shannon-Wiener index, evenness index, and abundance index in gap were higher than those under canopy in the seedling layer, while the community dominance in the seedling layer increased in closed canopy. The physicochemical properties of soil changed with the change of space and resource availability in gaps. The thickness, standing crop, and water holding capacity of the litter layer under canopy were significantly (p<0.01) higher than those in gap. The content of total nitrogen and total potassium of litter in gap were 10.47% and 20.73% higher than those under canopy, however, the content of total phosphorus and organic carbon under canopy were 15.23% and 12.66% more than those under canopy. The water content of 0–10 cm and 10–20 cm of soil layer in gap were 17.65% and 16.17% more than those under canopy. The soil buck density of 0–10 cm were slightly higher under canopy than that in gaps, but there was no significant difference in the soil buck density of the 10–20 cm soil layer. The soil pH values were 5.80 and 5.85 in gap and under canopy, respectively, and were not significantly different. The content of soil organic matter, total nitrogen, and total potassium in gap were 12.85%, 7.67%, and 2.38% higher than those under canopy. The content of NH4 +-N, available phosphorus, available potassium, and total phosphorus in soil under canopy were 13.33%, 20.04%, 16.52%, and 4.30% higher than those in gap. __________ Translated from Forest Research, 2006, 19(3): 347–352 [译自: 林业科学研究]  相似文献   

11.
The distributions of ectomycorrhizas and ectomycorrhizal fungal inoculum with soil depth (0–45 cm) were determined in a 40-year-oldBetula platyphylla var.japonica forest. Mycorrhizal and non-mycorrhizal fine roots were measured in each soil core sample that was collected at soil depths of 0–5, 5–10, 10–15, 15–20, 20–25, 30–35, and 40–45 cm. The ectomycorrhizas were mainly distributed (>50%) in the top soil (0–5 cm) of organic forest floor horizons. Below 5 cm the quantity of ectomycorrhizas decreased sharply. The percentage of fine roots which were ectomycorrhizal gradually declined with the depth of soil. The ectomycorrhizal fungal inoculum was evaluated by a bioassay method, measuring the lengths of the entire root system and of the ectomycorrhizal roots of birch seedlings planted in each soil sample. The soil samples were collected from 0–5, 10–15, 20–25, 30–35, and 40–45 cm depths of the soil profile. Ectomycorrhizal formation on birch seedling roots in the bioassay was high in both the soil depth intervals 0–5 cm and 10–15 cm, while the amount was lower in the soil depth interval from 20–45 cm. The results of these investigations show that the amount of the ectomycorrhizas in soil, and the ectomycorrhizal fungal inoculum potential as determined by bioassay, are not always consistent with each other.  相似文献   

12.
The amounts of extractable sulfate in 12 forest soils were measured as a preliminary work to study sulfur dynamics in forest ecosystems. The sulfate content determined by the distillation method varied widely (10–880 × 10−6 gSg−1) depending on the soil type and the depth. Japanese forest soils were broadly divided into two groups in sulfate level: one retains a large amount of sulfate and the other does not. In general, the surface soils to the depth of 10 cm contained small amounts of sulfate (< 100 × 10−6 gSg−1), while subsoils contained more. The soil samples with low (< 4.6) or high (6 <) pH (H2O) retained small amounts of sulfate. Black soils derived from volcanic ash retained great quantities of sulfate. The two levels of sulfate contents in Japanese forest soils suggests that the sulfur dynamics are different in these soils.  相似文献   

13.
The distribution of fine (<2 mm diameter) and small roots (2–20 mm diameter) was investigated in a chronosequence consisting of 9-year-old, 26-year-old, 82-year-old and 146-year-old European beech (Fagus sylvatica) stands. A combination of trench wall observations and destructive root sampling was used to establish whether root distribution and total biomass of fine and small roots varied with stand age. Root density decreased with soil depth in all stands, and variability appeared to be highest in subsoil horizons, especially where compacted soil layers occurred. Roots clustered in patches in the top 0–50 cm of the soil or were present as root channels at greater depths. Cluster number, cluster size and number of root channels were comparable in all stands, and high values of soil exploitation occurred throughout the entire chronosequence. Overall fine root biomass at depths of 0–120 cm ranged from 7.4 Mg ha−1 to 9.8 Mg ha−1, being highest in the two youngest stands. Small root biomass ranged from 3.6 Mg ha−1 to 13.3 Mg ha−1. Use of trench wall observations combined with destructive root samples reduced the variability of these estimates. These records showed that variability in fine root distribution depended more on soil depth and edaphic conditions than on stand age, and suggest that trench wall studies provide a useful tool to improve estimates of fine root biomass.  相似文献   

14.
Although crucial for assessing the functioning of alley cropping systems, quantitative information related to the hedgerow tree root distribution remains scarce. Soil mapping and destructive soil sampling was used to assess the impact of soil profile features on selected root characteristics of Senna siamea hedgerows, growing in alley cropping systems in three sites (Glidji, Amoutchou, and Sarakawa) representative for the derived savanna of Togo, West Africa. While the soil profiles in Glidji and Sarakawa contained a clay accumulation horizon, the Amoutchou profile was sandy up to 1 m. The number of small roots (diameter < 2 mm), quantified on a soil profile wall, decreased with depth in all sites. For most soil depths, the abundance of small roots tended to be higher near the tree base, e.g., ranging from 5.3 dm−2 in Amoutchou to 21.4 dm−2 in Glidji for the 0–20 cm layer, than in the middle of the alley, e.g., ranging from 3.1 dm−2 in Amoutchou to 13.8 dm−2 in Glidji for the 0–20 cm layer. Root length density (RLD) of the 0–10 cm and 10–20 cm layers was significantly higher in Glidji than in Amoutchou (P < 0.05) and in Sarakawa (P = 0.08). Differences in RLD between sites were not significant for layers below 30 cm. For each layer, root weight densities (RWD) were similar in all sites, e.g., ranging from 0.44 mg cm−3 in Amoutchou to 0.64 mg cm−3 in Glidji in the 0–10 cm layer, indicating that the roots in the Glidji topsoil had a smaller overall diameter than in Amoutchou. In Amoutchou, the relative RLD was lower than in Glidji or Sarakawa for the top 40 cm of soil, while the inverse was observed for the layers between 50 and 100 cm deep and this was related to the sandy soil profile in Amoutchou. Another consequence of the sandy profile was the larger tap root diameter below 50 cm in Amoutchou compared to Sarakawa. For all sites, significant (P < 0.001) linear regressions were observedbetween RLD's, RWD's, and the abundance of small roots, although the variation explained by the regression equations was highest for the relationship between RLD and RWD. The potential of the hedgerows to recover nutrients leached beyond the reach of food crops or the safety-net efficiency was evaluated for the tree sites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Changes in phosphorus (P) fractions in a P deficient allophanic soil under P. radiata seedlings grown with broom (Cytisus scoparius L.) and ryegrass (Lolium multiflorum) in pots were studied 14 months after the application of triple superphosphate at the rates of 0, 50, and 100 μg·g−1, to determine the fate of fertiliser-derived P in the rhizosphere soils. Application of P fertiliser increased NaOH-Pi, NaOH-Po, and H2SO4-Pi concentrations in the soil, but decreased the residual-P concentration. The resin-Pi concentration, which is extremely low in this soil (1 to 3 μg·g−1), remained the same. The majority of the added fertiliser P was however recovered in the NaOH-Pi fraction (40%–49%). This is due to the high P fixation in this soil (92%). The second highest P recovery was in NaOH-Po fraction (7%–19%). Under P deficient condition or addition at the rate of 0 μg·g−1, the NaOH-Pi concentration in the radiata rhizosphere soil was lower than that in the bulk soil and broom and grass rhizosphere soils. This may be due to higher oxalate production by the roots and mycorrhiza under P deficient conditions which released some of the P fixed to the soils in the rhizosphere, which needs to be tested in future studies. Foundation project: This work was supported by Centre for Sustainable Forest Management at Forest Research Institute, New Zealand.  相似文献   

16.
Agroforestry systems can play a major role in the sequestration of carbon (C) because of their higher input of organic material to the soil compared to sole crop agroecosystems. This study quantified C input in a 19-year old tropical alley cropping system with E. poeppigiana (Walp.) O.F Cook in Costa Rica and in a 13-year old hybrid poplar (Populus deltoides × nigra DN-177) alley cropping system in southern Canada. Changes in the level of the soil organic carbon (SOC) pool, residue decomposition rate, residue stabilization efficiency, and the annual rate of accumulation of SOC were also quantified in both systems. Carbon input from tree prunings in Costa Rica was 401 g C m−2 y−1 compared to 117 g C m−2 y−1 from litterfall at the Canadian site. In southern Canada, crop residue input from maize (Zea mays L.) was 212 g C m−2 y−1, 83 g C m−2 y−1 from soybeans (Glycine max L.) and 125 g C m−2 y−1 for wheat (Triticum aestivum L.), and was not significantly different (p < 0.05) from the sole crop. The average yearly C input from crop residues in Costa Rica was significantly greater (p < 0.05) in the alley crop for maize (134 g C m−2 y−1) and Phaseolus vulgaris L. bean crops (35 g C m−2 y−1) compared to the sole crop. The SOC pool was significantly greater (p < 0.05) in the Costa Rican alley crop (9536 g m−2) compared to its respective sole crop (6143 g m−2) to a 20 cm depth, but no such difference was found for the southern Canadian system. Residue stabilization, defined as the efficiency of the stabilization of added residue (crop residues, tree prunings, litterfall) that is added to the soil C pool, is more efficient in southern Canada (31%) compared to the alley cropping system in Costa Rica (40%). This coincides with a lower organic matter decomposition rate (0.03 y−1) to a 20 cm depth in Canada compared to the Costa Rican system (0.06 y−1). However, the average annual accumulation rate of SOC is greater in Costa Rica (179 g m−2 y−1) and is likely related to the greater input of organic material derived from tree prunings, compared to that in southern Canada (30 g m−2 y−1) to a 20 cm depth.  相似文献   

17.
A study was carried out to test the effects of three rates of TSP (triple superphosphate) (0, 50, and 100 mg·kg -1 P) on growth of broom with and without radiata pine seedlings and to determine the rela- tionships between P concentrations in the broom shoot and dry matter yields with soil plant-available P (Bray-2 P). A bulk sample of soil was collected from Kaweka forest at soil depth of 0 10 cm, in New Zealand on March 11, 2001. The forest area was not supplied with fertiliser at least 30 years. The results show that TSP application increased P avail- ability in the soil. The P availability concentration in soil of broom with radiata pine seedlings was higher than that in soil of broom alone. Bray-2 P concentrations had a significant logarithmic relationship with P con- centrations of broom shoot and an exponential relationship with dry matter weight of whole broom plant.  相似文献   

18.
Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).  相似文献   

19.
A case study was conducted in beech forests of northern Iran to determine the effect of the created gaps on some soil properties in beech stand. Changes of soil properties in small (60 150 m 2 ), medium (151 241 m 2 ), large (242 332 m 2 ) and very large (333 550 m 2 ) gaps, as well as under closed stands were studied eight years after the gap creation. Soil samples were taken from three depths, 0 10, 10 20 and 20 30 cm. The gaps were different from their around undisturbed stands in terms of the following soil parameters: Mg +2 concentration of 0 10 cm at medium gap size, bulk density of 10 20 cm at very large gap size as well as K + and Ca +2 concentrations at 20 30 cm at small and large gap sizes, respectively. Furthermore, the size of the gaps had no effect on soil characteristics through the whole profile. Water saturation percent (Sp %) at 0 10cm as well as P and Mg +2 at 20 30 cm was different amongst undisturbed stands around different gap sizes. The center and the edges of the gap were different only in terms of organic carbon at the depth of 10 20 cm. Significant differences were observed between gaps andclosed canopy regarding P and Ca +2 at depth 0 10 cm and 10 20 cm, respectively. It can be concluded that applied silvicultural system for harvesting trees which created these gaps might be suitable for conservation and forest management in the region.  相似文献   

20.
Microenvironmental heterogeneity of soil physical properties in 0–20 cm and 20–40 cm soil layers in a broad-leaved Pinus koraiensis forest gap in Xiao Xing’anling Mountains were analyzed by geostatistical method. The results show that the amount of soil water, saturation water capacity, capillary water capacity and porosity in the top layer were greater than those in the lower layer, except for bulk density, where the opposite applied. Soil physical properties in the top soil layer had relatively higher ranges and coefficients of variation. The total and auto correlation spatial heterogeneity of soil physical properties in the top layer were larger than those in the lower layer. The soil water had a strong anisotropic structure in an easterly and northerly direction, but porosity shows isotropy in the same directions. With increasing spatial distance, the other three physical factors exhibited anisotropic structures. The mutual effect between semi-variograms of soil physical properties in the top layer within the spatial autocorrelation range was not significant. For spatial distribution of physical properties within different layers, the patches at the middle and lower ranks in the forest gap dominated. Patches at higher rank were only distributed in the 0–20 cm soil layer and were located north of the forest gap center. __________ Translated from Science of Soil and Water Conservation, 2007, 5(3): 52–58 [译自: 中国水土保持科学]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号