首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early stages of development of Bremia lactucae (lettuce downy mildew) were examined on lettuce cultivars possessing high (Iceberg and Regina di Maggio) and low (Great Lakes and Plenos) levels of field resistance. Germ tubes, appressoria, penetration, primary and secondary vesicles, intercellular hyphae and haustoria were observed 3. 6 and 24 h after inoculation of cotyledons and of leaf discs from adult plants. Differences were observed between cv. Iceberg and susceptible genotypes in the percentage of spores germinating and the incidence and speed of development of infection structures. Secondary vesicles were first observed 24 h and 6 h after inoculation in Iceberg and susceptible genotypes, respectively. The lowest incidence of secondary vesicle formation 24 h after inoculation (48 and/or 43%) was recorded in Iceberg and Regina di Maggio, and the highest incidence (68%) occurred in Plenos. The formation of intercellular hyphae and haustoria was not observed in cv. Iceberg some 24 h after inoculation. There were significant differences in the lengths of germ tubes formed on different cultivars. Those on cv. Iceberg were longer than those formed on susceptible cultivars. The results indicate that the field resistance of B. lactucae may result from mechanisms which are effective in the early stages of infection.  相似文献   

2.
This study investigates the infection process of Phoma koolunga on field pea (Pisum sativum) stems and leaves using different susceptible and resistant pea genotypes for each tissue, viz. 05P778‐BSR‐701 (resistant) and 06P830‐(F5)‐BSR‐5 (susceptible) for stems and ATC 866 (resistant) and ATC 5347 (susceptible) for leaves. On both resistant and susceptible genotypes, light and scanning electron microscopy showed P. koolunga conidia infect stem and leaf tissues directly via appressoria or stomatal penetration, but with more infections involving formation of appressoria on stems than on leaves. On leaves of the resistant genotype, at 72 h post‐inoculation, P. koolunga penetrated more frequently via stomata (5.2 conidia per 36 893 μm2) than by formation of appressoria (1.8 conidia); yet no such difference was observed on stems of the resistant genotype. In contrast, at the same time point, the number of conidia infecting the susceptible genotype by formation of appressoria on either stems (135 conidia) or leaves (11.3 conidia) was significantly greater than via stomata (8 and 7.3 conidia, stems and leaves, respectively). Mean germ tube length of germinating P. koolunga conidia on both stems (29.8 μm) and leaves (32.9 μm) of the resistant genotype was less than on the susceptible genotype (40.5 and 63.7 μm, stem and leaves, respectively). In addition, there were differences in the number of germ tubes emerging from conidia on resistant and susceptible genotypes. These are the first insights into the nature of leaf and stem resistance mechanisms operating in field pea against P. koolunga.  相似文献   

3.
ABSTRACT Initial infection processes and the subsequent colonization of leaves and young stems of peach by Tranzschelia discolor were studied. On leaves where multiple disease cycles of peach rust occur during the growing season, urediniospores germinated after 4 h of wetness. Germ tubes became septate and formed appressoria only over leaf stomata beginning 18 h after inoculation. No appressoria, however, formed over stomata of positive replicas of leaf surfaces indicating nonthigmotropic responses of germ tubes. On young, primary-growth stems (ca. 8 weeks old), stomata were mostly closed, less frequent than on leaves, and recessed from the surface of the cuticle of the epidermis. Although appressoria formation was not observed on inoculated stems, germ tube growth of urediniospores was directional toward stomata. Penetration of stem tissue is apparently a less common event that was reflected by a lower occurrence of stem lesions compared with that of leaf lesions in our potted plant inoculation studies and previous field observations. Still, stem lesions are important as sources of primary inoculum each spring and were reproduced in this study for the first time. Fungal colonization of leaves and stems was subepidermal-intercellular and haustoria were commonly found within mesophyll or cortical cells, respectively. No fungal colonization was observed in cambial stem tissue. Vascular tissue was also not colonized and delimited lesions in leaves and stems. Morphological host responses were not observed in infections on either leaves or young stems. In older stems (>32 weeks old), however, the infection was delimited by a wound periderm after uredinial formation. Furthermore, with continued secondary growth, stems recovered and fungal lesions became part of the bark tissue of woody branches. Thus, the fungus must infect primary-growth branches each year to establish stem lesions.  相似文献   

4.
ABSTRACT The germination and sporulation of Colletotrichum acutatum were characterized over time on strawberry leaves (cv. Tristar) and plastic coverslips incubated at 26 degrees C under continuous wetness. Conidia germinated within 3 h after inoculation and formed melanized appressoria with pores by 9 h after inoculation. Host penetration was not observed up to 7 days after inoculation. Production of secondary conidia on conidial and hyphal phialides began within 6 h after inoculation. Secondary conidiation was responsible for up to a threefold increase in the total number of conidia within 7 days after inoculation. Primary conidia and hyphae began to collapse 48 h after inoculation, whereas melanized appressoria remained intact. These findings suggest that appressoria and secondary conidia of C. acutatum produced on symptomless strawberry foliage may be significant sources of inoculum for fruit infections.  相似文献   

5.
小麦的种和品种对白粉病抗性的初步研究   总被引:1,自引:0,他引:1  
 在对白粉病具不同抗性的11个小麦的种和品种上进行的按种试验表明,在接种后8小时内,分生孢子达到最高萌发率(约为60%),并形成附着孢。在抗病的和感病的小麦叶片上,分生孢子的萌发率和萌发速度没有差异。接种后12小时,在感病的材料上,发现真菌侵入寄主,但在抗病的材料上,发现最早侵入时间,至少要比在感病材料上约晚4小时。接种后36小时,在高感的材料上,萌发的分生孢子有83%已侵入寄主,其中约有70~80%已形成吸胞。在感病、抗病和高抗材料上的侵入率,分别为70,45,27%。形成或开始形成吸胞的分别为55~61,14~27,4~8%。在抗病材料的表皮细胞内,真菌形成的吸胞较小,并有点畸形。在抗病材料的叶面上,真菌的菌丛稀薄,产孢也很少。  相似文献   

6.
立枯丝核菌侵染玉米的研究   总被引:7,自引:0,他引:7  
 用获自水稻及玉米的立枯丝核菌(Rhizoctonia solani Khn) AG-11A接种玉米发生典型纹枯症状,其致病力显著强于AG-4。玉米拔节期,上位叶鞘抗性较强,抽雄及抽丝期抗性减弱,下位叶鞘无论在拔节期或抽雄、抽丝期,均较上位叶鞘感病。接种玉米后8小时,形成侵染垫及附着胞,从这些结构上形成侵入钉侵入,AG-4侵染上位叶鞘时,常以菌丝直接穿透表皮或从气孔侵入。在去掉菌体的叶鞘表面,发现有周边光滑或稍破损的侵入孔。接种后12小时,在叶鞘细胞中发现菌丝,它们在穿过细胞壁进入邻近细胞时,明显变细。接种后16小时,新生出的菌丝从气孔成丛出现。  相似文献   

7.
ABSTRACT The early infection and colonization processes of Colletotrichum acutatum on leaves and petals of two almond cultivars with different susceptibility to anthracnose (i.e., cvs. Carmel and Nonpareil) were examined using digital image analysis of light micrographs and histological techniques. Inoculated tissue surfaces were evaluated at selected times after inoculation and incubation at 20 degrees C. Depth maps and line profiles of the digital image analysis allowed rapid depth quantification of fungal colonization in numerous tissue samples. The results showed that the early development of C. acutatum on petals was different from that on leaf tissue. On petals, conidia germinated more rapidly, germ tubes were longer, and fewer appressoria developed than on leaves. On both tissues, penetration by the pathogen occurred from appressoria and host colonization was first subcuticular and then intracellular. On petals, colonizing hyphae were first observed 24 h after inoculation and incubation at 20 degrees C, whereas on leaves they were seen 48 to 72 h after inoculation. Intercellular hyphae were formed before host cells became necrotic and macroscopic lesions developed on petals >/=48 h and on leaves >/=96 h after inoculation. Histological studies complemented data obtained by digital image analysis and showed that the fungus produced infection vesicles and broad hyphae below the cuticle and in epidermal cells. In both tissues, during the first 24 to 48 h after penetration fungal colonization was biotrophic based on the presence of healthy host cells adjacent to fungal hyphae. Later, during intercellular growth, the host-pathogen interaction became necrotrophic with collapsed host cells. Quantitative differences in appressorium formation and host colonization were found between the two almond cultivars studied. Thus, on the less susceptible cv. Nonpareil fewer appressoria developed and host colonization was reduced compared with that on cv. Carmel.  相似文献   

8.
为明确苹果炭疽叶枯病病原菌围小丛壳Glomerella cingulata的侵染致病特征,在分离获得该病原菌的基础上,采用形态学观察、ITS序列分析和致病性测定对其进行了鉴定,并利用光学和扫描电子显微镜对病原菌在嘎啦苹果叶片上的侵染过程进行了研究.结果表明,在陕西咸阳地区分离获得的9株病原菌均为围小丛壳G.cingulata.25 ℃下接种9 h后,分生孢子中间产生隔膜,双胞化,并萌发产生芽管和附着胞;24 h后分生孢子的2个细胞均可萌发并形成芽管及附着胞,部分芽管顶端可产生次级分生孢子;48 h后次级分生孢子萌发形成附着胞;72 h后,附着胞下形成的侵染钉可直接入侵寄主,在表皮细胞内形成初生菌丝和次生菌丝,此时叶片表面已出现褐色斑点.接种7 d后叶片病斑处出现分生孢子盘和子囊壳.表明陕西省近年出现的苹果炭疽叶枯病病原菌为围小丛壳G.cingulata,该病菌在嘎啦叶片上的一些特殊侵染行为可能是导致该病害易在短时间内暴发的重要原因.  相似文献   

9.
Peronospora viciae sporulated frequently following localized inoculation of leaflets of Pisum sativum cv. Krupp Pelushka but rarely on cv. Early Onward (60 and < 1% of plants respectively). Similar results were obtained following inoculation of seedling shoot apices. The proportions of sporangia that germinated, formed appressoria, invaded via stomata or cuticle, and established colonies, were similar on leaflets of both cultivars. After 2 days, total hyphal lengths of most colonies were greater than 100 μm (94% in Krupp Pelushka, 64% in Early Onward), but in Krupp Pelushka there were five times as many haustoria per unit length of hypha. Subsequently, only occasional colonies in Early Onward grew to the same extent as in Krupp Pelushka, with 8% and 88% respectively attaining lengths > 800 μm after 4 days. Reduced growth of hyphae in Early Onward was associated with increased frequency of host cells stained by trypan blue.  相似文献   

10.
The response of a susceptible coffee cultivar (Caturra) to infection by the root-knot nematode Meloidogyne exigua was compared histologically with that of cv. Iapar 59 possessing the recently identified Mex-1 resistance gene. The reproductive behaviour of the nematode was also compared in the two cultivars. Penetration and development in resistant plants were reduced in comparison with susceptible plants. Several cell features, including dark-stained cytoplasm and altered organelle structure, were observed in the resistant cultivar, indicating a hypersensitive-like (HR) response of the infested host cells. Features of giant cells were sometimes found beside necrotic-like areas, but the corresponding feeding sites were frequently associated with nematodes displaying abnormal shape. Six weeks after inoculation, root systems of cv. Caturra contained significantly more nematodes than those of cv. Iapar 59 (mean values 1574 and 41, respectively). The susceptible cultivar presented a minimum of 11 galls per plant, compared with only one or two galls per plant in the resistant cultivar. The findings are discussed in the context of plant–pathogen interactions.  相似文献   

11.
ABSTRACT Grape berries are highly susceptible to powdery mildew 1 week after bloom but acquire ontogenic resistance 2 to 3 weeks later. We recently demonstrated that germinating conidia of the grape powdery mildew pathogen (Uncinula necator) cease development before penetration of the cuticle on older resistant berries. The mechanism that halts U. necator at that particular stage was not known. Several previous studies investigated potential host barriers or cell responses to powdery mildew in berries and leaves, but none included observation of the direct effect of these factors on pathogen development. We found that cuticle thickness increased with berry age, but that ingress by the pathogen halted before formation of a visible penetration pore. Cell wall thickness remained unchanged over the first 4 weeks after bloom, the time during which berries progressed from highly susceptible to nearly immune. Autofluorescent polyphenolic compounds accumulated at a higher frequency beneath appressoria on highly susceptible berries than on highly resistant berries; and oxidation of the above phenolics, indicated by cell discoloration, developed at a significantly higher frequency on susceptible berries. Beneath the first-formed appressoria of all germinated conidia, papillae occurred at a significantly higher frequency on 2- to 5-day-old berries than on 30- to 31-day-old fruit. The relatively few papillae observed on older berries were, in most cases (82.8 to 97.3%), found beneath appressoria of conidia that had failed to produce secondary hyphae. This contrasted with the more abundantly produced papillae on younger berries, where only 35.4 to 41.0% were located beneath appressoria of conidia that had failed to produce secondary hyphae. A pathogenesis-related gene (VvPR-1) was much more highly induced in susceptible berries than in resistant berries after inoculation with U. necator. In contrast, a germin-like protein (VvGLP3) was expressed within 16 h of inoculation in resistant, but not in susceptible berries. Our results suggest that several putative barriers to infection, i.e., cuticle and cell wall thickness, antimicrobial phenolics, and two previously described pathogenesis-related proteins, are not principal causes in halting pathogen ingress on ontogenically resistant berries, but rather that infection is halted by one or more of the following: (i) a preformed physical or biochemical barrier near the cuticle surface, or (ii) the rapid synthesis of an antifungal compound in older berries during the first few hours of the infection process.  相似文献   

12.
One of the components of partial resistance of barley to leaf rust,Puccinia hordei, is a reduced infectibility. It was investigated whether this low infectibility may rest on a hampered appressorium formation of the leaf rust fungus. The appressorium formation on the primary leaves of 11 barley genotypes with an intermediate-to-low infectibility was compared with that on the highly infectible L94. The number of stomata per cm2 leaf area occupied by appressoria ofP. hordei was determined per genotype by means of fluorescence microscopy. No cosistent differences could be detected, indicating that the mechanisms causing a low infectibility of partially resistant barley seedlings act at a phase later than the formation of the appressoria. On the non-host wheat not fewer appressoria were formed than on L94, but no appressoria were found on a lettuce genotype. The latter probably lacks the stimuli that enable the fungus to find stomata.Samenvatting Eén van de componenten van partiële resistentie van gerst tegen dwergroest,Puccinia hordei, is een verminderde infectiedichtheid. Het mechanisme, dat hieraan ten grondslag ligt, is onbekend. Een experiment werd uitgevoerd om na te gaan of bij partieel resistente rassen een verminderde appressoriumvorming optreedt. Na inoculatie in een inoculatietoren en een zorgvuldig uitgevoerde incubatie werd het aantal huidmondjes per cm2 bladoppervlak bepaald dat bezet was door appressoria vanP. hordei. De elf weinig vatbare gerstlijnen uit deze studie bleken niet reproduceerbaar te verschillen van de zeer vatbare gerstlijn L94 in de mate van appressoriumbezetting. Dit wijst erop dat infectiedichtheidsverschillen t.g.v. partiële resistentie veroorzaakt worden door mechanismen die werken na de appressoriumvorming. In een tweede experiment werd aangetoond dat zelfs op de niet-waardsoort tarwe, waaropP. hordei geen symptomen veroorzaakt, niet minder appressoria worden gevormd dan op L94. Op een sla-genotype trad echter geen appressoriumvorming op. Op deze laatste niet-waardsoort ontbreken waarschijnlijk de stimuli die de schimmel in staat stellen huidmondjes te vinden.  相似文献   

13.
The interaction between Stagonospora nodorum and a susceptible wheat cultivar was investigated using a range of microscopic techniques. Germination of pycnidiospores occurred approximately 3 h after making contact with the leaf surface and was followed by attempted penetration 8–12 h later. Penetration was observed through stomata and also directly through periclinal and anticlinal epidermal cell walls. Penetration down the anticlinal cell walls appeared to occur without a differentiated penetrating structure whilst structures identified as either lateral appressoria or hyphopodia were typically present when penetrating over a periclinal cell wall. Once inside the leaf, the fungus continued to grow for the next 4–5 days colonising all parts of the leaf except the vascular bundles. Only in the later phase of the infection was total host cell collapse apparent. Evidence of polyphenolic compounds was observed. The infection cycle was completed within 7 days as indicated by sporulation on the leaf surface. These results have allowed us to understand how the fungus physically interacts with the leaf and will help the overall understanding of the infection process.  相似文献   

14.
ABSTRACT The course of colonization of leaf mesophyll by the causal agent of grapevine downy mildew, Plasmopara viticola, in a susceptible and a resistant grapevine genotype was examined in order to characterize the development of the pathogen in compatible and incompatible host-pathogen interactions. Within a few hours after inoculation, the pathogen was established in the susceptible Vitis vinifera cv. Müller-Thurgau and formed primary hyphae with a first haustorium. No further development occurred in the following 10 to 18 h. The next step, in which the hyphae grew and branched to colonize the intercellular space of the host tissue, was observed 1.5 days after inoculation. After 3 days, the intercostal fields were entirely filled with mycelium and sporulation was abundant under favorable environmental conditions. The first infection steps were essentially the same in the resistant V. rupestris. However, the invasive growth of P. viticola was delayed, and further development ceased before the intercostal fields were filled with mycelium.  相似文献   

15.
Both germination of Uromyces viciae-fabae uredospores and growth of germ tubes were increased when spores were leached for 12 h at 0.4 ml/min water flow whereas leaching at aflow rate of 2.8 ml/min completely inhibited germination. Washing uredospores once in water caused a reduction in growth of germ tubes and in the numbers of lesions produced on detached leaves of the host, broad bean (Vicia faba).
During germination uredospores from recently formed pustules leaked considerably moreendogenous nutrients on hydration than older uredospores. However, the majority of the leaked compounds were reabsorbed by young uredospores within a few hours. Concentrations ofglucose and leucine equivalents leaked from uredospores and from leaves were compared.
Leaf leachates stimulated growth of uredospore germ tubes to an extent similar to that caused by low concentrations of glucose and amino acids but the addition of pollen inhibited growth of germ tubes. A variety of nutrients caused stimulation of uredospore germination and growth of germ tubes at low concentrations whereas higher concentrations of exogenous nutrients inhibited these processes. The response of uredospores was affected by their age.
Utilization of exogenous 14C-labelled nutrients by germinating uredospores was very low compared with that of cells of a leaf surface yeast, Cryptococcus sp. Cryptococcus ; cells could consume over 90% of the glucose in a solution of glucose and amino acids of concentrations similar to those in leaf leachates before germinating U. viciae-fabae uredospores had taken up 10%.  相似文献   

16.
Experiments were conducted to test the hypothesis that recognition of the physical structure of epicuticular leaf waxes by Erysiphe graminis may be important to the development of normal germlings and the formation of functional appressoria. Comparisons of germination rates and characteristics of germling development by E. graminis f.sp. avenae , and in one experiment by f.sp. hordei , were made between intact cereal leaves and leaves from which the epicuticular waxes had been stripped away.
Overall, fungal development was very similar on intact and wax-free leaves: although germination rates were slightly, but significantly, lower, and lengths of appressorial germ tubes slightly greater, on stripped than intact leaves, a very similar proportion of germlings formed apparently normal appressoria in both cases. This was true for f.sp. avenae on first- and fifth-formed leaves of susceptible and adult plant resistant oats, and on barley and wheat first leaves, and for f.sp. hordei on first leaves of barley, oat and wheat. The appressoria formed on stripped leaves not only appeared normal, but also formed haustoria with at least the same frequency as on intact leaves; in several experiments, a higher proportion formed haustoria in stripped than intact leaves. Wax removal did not affect the adult plant resistance of oat cv. Maldwyn, which limits haustorium formation by appressoria, indicating that epicuticular wax was not involved in this resistance. It is concluded that the physical structure of epicuticular wax is not involved in the recognition processes leading to normal germling development.  相似文献   

17.
Pratt RG 《Phytopathology》2003,93(12):1565-1571
ABSTRACT Excised leaves of bermudagrass were inoculated with mycelium of isolates of Bipolaris, Exserohilum, Curvularia, and Drechslera spp. in water agar plates to evaluate differences in susceptibility of leaf tissue, virulence of pathogens, and quantitative resistance of bermudagrass genotypes. Isolates of nine species of pathogens induced similar symptoms of light- to dark-brown necrosis and bordering chlorosis in excised leaves that were not distinct for individual species or genera. Severity of symptoms induced by most isolates increased progressively from younger to older leaves. Within and across leaf positions, numerous significant differences in virulence of isolates within fungal species and between species were observed. Among 40 randomly selected bermudagrass genotypes, a continuous quantitative gradient was observed for mean scores of disease severity in excised leaves inoculated with E. rostratum. Numerous significant differences were observed within this gradient, and severity of symptoms in the most susceptible genotypes was approximately double that in the most resistant. When intact foliage of genotypes from the resistant and susceptible extremes of the gradient was inoculated with spores of E. rostratum, corresponding differences in severity of symptoms and significant (P = 0.05) correlations between results with excised leaves and intact foliage were observed. However, the range of differences in disease severity between genotypes was more narrow in intact foliage than in excised leaves. Results indicate that the excised leaf inoculation technique can be used to evaluate the relative resistance of bermudagrass genotypes to E. rostratum for use in programs to breed for quantitative host resistance.  相似文献   

18.
The growth of a coffee orange rust fungus (Hemileia vastatrix Berk and Br.) isolate (race II) and the sequence of responses it induced in leaves of resistant Coffea arabica L. and C. congensis Froehner as well as on a susceptible C. arabica were investigated cytologically and biochemically. The percentages of germinated urediospores and of appressoria formed over stomata as well as the fungal growth inside leaf tissues were similar in resistant and susceptible leaves until the 3rd day after the inoculation. In the susceptible leaves, at the majority of the infection sites (70%) the fungus pursued its growth without apparent inhibition while in the resistant leaves the fungus ceased its growth with higher frequency (34% in C. arabica and 54% in C. congensis) after the formation of at least one haustorium. The first signs of incompatibility, detected 2 days after the inoculation, were cytologically expressed by hypersensitive host cell death (HR), host cell wall autofluorescence and haustoria encasement with callose and β-1,4-glucans. Biochemically, two peaks of phenylalanine ammonia-lyase (PAL) activity were detected by 2 and 5 days after the inoculation. The 1st peak coincided with the early accumulation of phenolic compounds and with the beginning of cell death. The 2nd peak could be related to later accumulation of phenols and the lignification of the host cell walls. About 5–7 days after the inoculation, ultrastructural observations revealed the accumulation of a material partially crystallized in the intercellular spaces around the senescent hyphae, next to dead host cells and in close association with the middle lamella that initially labelled for pectins. It also contained polysaccharides and phenolic-like compounds. Cellulose, hemicellulose, extensins, hydroxyproline-rich glycoproteins and proteins were not detected. The hypertrophy of the host cells in the infection area were also observed around 12 days after the inoculation corresponding macroscopically to the reaction flt.In susceptible plants, cell death was also observed 3 days after the inoculation but only in a reduced percentage of infection sites in which the fungus aborted at an early stage. A late haustorium encasement and stimulation of PAL activity were also observed but these delayed host responses did not prevent fungal growth and sporulation.The intercellular material, only observed in the resistant plants, is here reported for the first time and although its role is unknown it might be the result of plant cell death.  相似文献   

19.
The infection and colonization process of Colletotrichum acutatum on ripe blueberry fruit from two cultivars with different susceptibility to anthracnose were examined using light and confocal laser scanning microscopy. Ripe fruit from susceptible cv. Jersey and resistant cv. Elliott were drop-inoculated with a conidial suspension of C. acutatum, and epidermal peels were evaluated at selected times after inoculation and incubation. Results from pre-penetration studies demonstrated that there were significant differences in the rate of formation of melanized appressoria between the two cultivars, with the rate of formation being faster in the susceptible one. In both cultivars, penetration by the pathogen occurred via appressoria 48 h post-inoculation (hpi). However, in the susceptible cv. Jersey, C. acutatum then adopted an intracellular hemibiotrophic-like infection strategy, whereas in the resistant cv. Elliott subcuticular intramural-like infection occurred. In cv. Jersey by 108 hpi, intracellular growth of the pathogen led to the formation of numerous acervuli, with orange conidial masses. By 120 hpi, the conidial masses had coalesced covering the entire inoculated area. In cv. Elliott, acervuli were not seen until 144 hpi and contained few conidia. These results demonstrate for the first time the ability of C. acutatum to adopt a different infection and colonization strategy depending on the susceptibility of the host tissue being colonized.  相似文献   

20.
Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. is an important fungal pathogen known to cause glomerella leaf spot (GLS). The objective of this study was to analyze the infection of C. gloeosporioides on leaves of apple cv. Fuji (resistant) and cv. Gala (susceptible) and apply proteomics techniques to study the apple defense responses 48 h after inoculation (h.a.i.). On both of cultivars, C. gloeosporioides started to germinate at 3 h.a.i. on adaxial surface and produced appressoria adhering to epidermal cell juxtapositions. Histological analysis showed more stratified parenchyma in leaves of cv. Fuji than cv. Gala associated with differences in the chemical composition of cell walls. Total and unique proteins expressed by cvs. Fuji and Gala at 3, 12, 24 and 48 h.a.i. were detected by comparative proteomes analysis. A total of 42 unique proteins expressed at 24 and 48 h.a.i. were identified by MALDI/TOF mass spectrometry, and most of these proteins were identified as directly involved in defense responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号