首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
张培栋  王刚 《农业工程学报》2005,21(12):147-151
农村户用沼气工程是中国可再生能源建设的重点项目,可为农村居民生活提供清洁的可再生能源,该工程的建设能减轻农村环境污染,有助于部分缓解全球气候变暖的趋势。该文根据国际通用的减排量计算方法,对中国农村户用沼气替代传统生物质能和煤炭所产生的CO2和SO2的减排量进行了计算分析,为制定农村能源发展战略和农村环境发展规划提供参考。研究结果表明,在1996~2003年间,每年可减少CO2排放39.76~419.39万t,减少SO2排放2.13~6.20万t。通过对2010、2020和2050年沼气替代农村传统能源减排CO2和SO2量的预测,证明农村户用沼气工程的建设可以有效减少CO2和SO2的排放。  相似文献   

2.
气候变化是当今全球面临的重大挑战, 人类社会生产生活引起的温室气体排放是全球气候变暖的主要原因。大气中CO2、CH4 和N2O 是最重要的温室气体, 对温室效应的贡献率占了近80%。据估计, 大气中每年有5%~20%的CO2、15%~30%的CH4、80%~90%的N2O 来源于土壤, 而农田土壤是温室气体的重要排放源。本文重点阐述了农田土壤温室气体产生、排放或吸收机理及其影响因素, 指出土地利用方式和农业生产力水平等人为控制因素通过影响土壤和作物生长条件来影响农田土壤温室气体产生与排放或吸收。所以, 我们可以从人类活动对农田生态系统的影响着手, 通过改善农业生产方式和作物生长条件来探索温室气体减排措施, 达到固碳/氮增汇的目的。对国内外关于农田温室气体排放的源/汇强度及其综合温室效应评估的最新研究进展进行了综述, 指出正确估算与评价农田土壤温室气体的源/汇强度及其对大气中主要温室气体浓度变化的贡献, 有助于为温室气体减排以及减少气候变化预测的不确定性提供理论依据。  相似文献   

3.
铝箔复合膜气袋对温室气体吸附性的试验研究   总被引:1,自引:0,他引:1  
为了解气袋对温室气体气样的吸附性,采用气相色谱仪对5 L气袋中CH4、SF6、CO2、和N2O标准气体浓度进行了连续监测。结果表明,CH4、SF6、CO2和N2O气体浓度的变异系数分别为6.72%,0.95%,3.86%和6.56%,气袋对4种温室气体的吸附性均不显著,该气袋用于以上温室气体的测定是可行的。  相似文献   

4.
3 种挺水植物吸收水体NH4+、NO3-、H2PO4- 的动力学特征比较   总被引:3,自引:1,他引:2  
本文用动力学试验研究了具有景观价值的3 种挺水植物—— 水生美人蕉(Canna generalis)、细叶莎草(Cyperus papyrus)、紫芋(Colocasia tonoimo)对H2PO4-、NH4+、NO3- 的吸收特征及差异。试验结果表明: 3 种挺水植物吸收H2PO4- 时, 美人蕉的吸收速率最快, 且在较低离子浓度条件下也可以吸收该离子, 说明其具有嗜磷特性, 能够适应广范围浓度H2PO4- 环境; 吸收NO3- 时, 细叶莎草的速率最快, 但对低浓度NO3- 环境的适应能力较差, 美人蕉吸收NO3- 的特性与细叶莎草刚好相反; 吸收NH4+ 时, 细叶莎草的吸收速率最快, 且在低浓度NH4+ 环境下仍能吸收该离子, 而美人蕉的吸收速率最慢, 但能在低浓度NH4+ 环境下吸收该离子。说明不同植物对养分的吸收特性存在较大差异, 各自的污染水体修复适用范围也不同。美人蕉可用于各种浓度H2PO4- 污染的水体修复; 而NO3- 污染严重的水体最适宜用细叶莎草作先锋植物, 修复到一定程度后再种植美人蕉来维持水质; 细叶莎草在各种浓度NH4+ 污染的水体中均适用, NH4+ 污染较轻的水体也可用美人蕉修复。  相似文献   

5.
采用水生植物滤池(UB和PUB)和固定膜生物滤池(SB)的复合净化模式,对鲍鱼养殖水体和系统排放水体进行净化,实现了循环水养鲍系统的清洁生产。试验结果表明,植物滤池UB对养殖水体中总氨氮(TAN)具有很高的吸收效率,从而降低了SB的硝化负荷,大大减少了TAN、NO2-N、NO3-N和COD的积累,在整个试验过程中,养殖水体中TAN、NO2-N、NO3-N和COD的浓度分别低于0.19、0.01、1.75和1.20 mg/L。由于UB滤池的吸收作用和SB的硝化作用,养殖水体中PO3-4的浓度一直保持在0.30 mg/L以下。另外,这种复合净化模式具有调节水体pH值的作用,在试验期间,养殖水体中的pH值一直保持在8.11~8.14的良好水质范围,对鲍鱼的养殖十分有利。系统排放水经另一植物滤池PUB吸收净化后,PO3-4浓度降至0.22 mg/L 以下,NO-3-N的浓度甚至降至0.10 mg/L以下。本文还建立了养殖循环水体中无机氮的循环模型,用于对养殖水体中TAN、NO2-N和NO3-N的预测和控制。  相似文献   

6.
组培育苗气体微环境自动调控系统的研制与试验   总被引:2,自引:3,他引:2  
为改善组培苗生长发育的气体环境,降低育苗成本,在综合分析已有气体环境控制系统的基础上,基于以流量控制组培环境CO2浓度和以压力控制混合罐CO2浓度和气体压力的控制策略,建立了相应控制的数学模型,设计了新型组培育苗气体微环境自动综合调控系统,对组培气体环境中CO2浓度和相对湿度实施适宜参数组合调控。以叶用甘薯组培苗为试验材料,依据有关文献,取适宜光合光量子通量密度、CO2浓度和相对湿度的参数组合为(250 μmol·m<  相似文献   

7.
王强盛  刘欣  许国春  余坤龙  张慧 《土壤》2023,55(6):1279-1288
稻田是大气温室气体甲烷(CH4)和氧化亚氮(N2O)的重要排放源, 稻田温室气体减排一直是生态农业研究的热点。目前, 采用水稻品种选择利用、水分控制管理、肥料运筹管理、耕作制度调整以及种养结合模式等方法来减少稻田温室气体排放有较好实践效应, 但不同稻田栽培环境(露地、网室)基础上的稻鸭共作对麦秸全量还田的稻田温室气体排放特征及相关土壤理化特性关联性的影响尚为少见。本研究采用裂区设计, 在两种栽培环境条件下, 以无鸭子放养的常规稻作和麦秸不还田为对照, 在等养分条件下分析麦秸全量还田与稻鸭共作模式对稻田土壤氧化还原电位、CH4排放量、产CH4潜力及CH4氧化能力、N2O排放量及N2O排放高峰期土壤反硝化酶活性、全球增温潜势、水稻产量的影响, 为稻田可持续生产和温室气体减排提供参考。结果表明, 麦秆还田增加了稻田产CH4潜力、提高了CH4排放量, 降低了稻田土壤反硝化酶活性、土壤氧化还原电位和N2O排放量, 整体上导致全球增温潜势上升96.89%~123.02%; 稻鸭共作模式, 由于鸭子的不间断活动提高了稻田土壤氧化还原电位, 降低了稻田产CH4潜力, 增强了稻田CH4氧化能力, 从而降低稻田CH4排放量, N2O排放量虽有提高, 整体上稻鸭共作模式的全球增温潜势较无鸭常规稻田下降8.72%~14.18%; 网室栽培模式显著提高了稻田土壤氧化还原电位, 降低稻田产CH4潜力、CH4氧化能力和土壤反硝化酶活性, 减少了稻田CH4和N2O排放量, 全球增温潜势降低6.35%~13.14%。本试验条件下, 稻田土壤的CH4氧化能力是产CH4潜力的2.21~3.81倍; 相同环境条件下, 稻鸭共作和麦秸还田均能增加水稻实际产量, 网室栽培的所有处理较相应的露地栽培减少了水稻实际产量1.19%~5.48%。本试验表明, 稻鸭共作和网室栽培可减缓全球增温潜势, 稻鸭共作和麦秸还田能够增加水稻实际产量。  相似文献   

8.
密云水库作为北京地区最重要的地表饮用水水源地,其水质优劣直接关系到首都的社会经济发展,开展密云水库水污染监测和治理研究具有重要的现实意义。以密云水库上游流域为研究区,通过不同尺度流域水体营养物质监测,分析了水库上游河流水体营养物质现状;通过分割流量过程线,划分了水体营养物质来自点源和非点源污染的比例。研究结果表明,依据标准(GB3838-2002)要求,密云水库上游河流水体TN含量几乎全部超标,且15.9%样本的TP含量超标。密云水库的营养物质平均40.3%来自点源污染,59.7%来自非点源污染;入库水体中50.1%的TN,49.1%的NO3--N,39.0%的NH4+-N,26.5%的TP和36.8%的CODMn来自点源污染;49.9%的TN,50.9%的NO3--N,61.0%的NH4+-N,73.5%的TP和63.2%的CODMn来自非点源污染。  相似文献   

9.
汉江上游水体氮素污染特征   总被引:1,自引:0,他引:1  
2011年对汉江上游干流进行了6次采样,分析了水体氮素的污染特征。结果表明,汉江上游水体NH3-N,NO3-N和NO2-N的年平均值分别为:1.037,1.751和0.044 mg/L。氮素时间分布曲线表现为:NH3-N浓度的周年变化趋势为双峰型,呈现:丰水期 >枯水期 >平水期的规律。NO3-N,NO2-N浓度的周年变化趋势为单峰型曲线,NO3-N呈现:丰水期 >枯水期 >平水期的规律,NO2-N丰水期最高,枯水期和平水期相差不大。汉江上游水体氮素空间分布表现为:NH3-N,NO3-N浓度自源头向下游呈现出"低值-升高-降低"的趋势。NH3-N污染主要来自农村生活污水和畜禽养殖排放物,NO3-N污染主要来自水土流失。  相似文献   

10.
好氧堆肥处理厨余垃圾具有规模灵活、参数易调整、工艺适配性高等优点,但存在发酵周期长且易产生污染气体等问题,严重限制了就近就地处理利用的推广。污染气体产生与堆体内氧气供应与利用直接相关,为提高发酵速率、减少污染气体排放,优化厨余垃圾堆肥的工艺参数,该研究采用三因素三水平正交堆肥试验L9(34),探究粒径、含水率和通风速率三大因素对堆体温度、O2、pH值、EC值、GI值以及污染气体(H2S、NH3、N2O及CH4)的影响。结果表明,当初始物料粒径为0.5~10 mm时能够显著加快堆肥进程,在第11 天时GI值即可达80%以上,有效地缩短了堆肥周期。通过对污染气体做极差以及方差分析发现,物料粒径对H2S排放影响显著,含水率和通风速率对H2S和N2O排放影响显著。综合堆肥周期以及污染气体减排效果,厨余垃圾堆肥最优的工艺参数组合为:初始物料粒径为0.5~10 mm、初始含水率为60%、通风速率为0.2 L/(min·kg−1),研究结果可为厨余垃圾利用提供参考。  相似文献   

11.
Agro-industrial wastewater and municipal sewage wereused to restore Frank Lake, a 1246 ha northernprairie marsh in southern Alberta, Canada, to providewaterfowl habitat and improve water quality. Meanannual inflow wastewater nutrient concentrations were17 mg L-1 NH3-N, 30 mg L-1 NO3-Nand 11 mg L-1 SRP. Mean flows greater than 5000 m3 day-1 loaded the marsh with 23 000 kg of P annually. Summer NH3-N, NO3-N andtotal phosphorus (TP) surface water concentrationswere decreased by 76, 87 and 64%, respectively, aswaters flowed through the first basin of the marsh.Winter treatment was less successful, with surfacewater NH3-N, NO3-N and TP reductions of46, –26 (export) and 26%, respectively.Short-circuiting of water flow through the marsh andcold seasonal conditions with ice cover caused spatialand temporal variation in marsh treatment. Continuedhigh loadings to the marsh may lead to sediment saturation, eutrophication or phosphorus export from the marsh.  相似文献   

12.
A study has been conducted in a salt marsh, located in the coast of the Mar Menor lagoon (SE Spain), in which three watercourses overflow. Water samples were regularly collected over a one-year period from two transects established through the salt marsh towards the lagoon. All the samples were analysed for electrical conductivity, pH, sulphides, chlorides, nitrate, ammonium and dissolved phosphorus. The quality of the water flowing from the watercourses to the salt marsh showed a seasonal pattern, with higher contents of nitrates (> 200 mg NO? 3 L?1) in periods of maximum agricultural activities in the nearby areas, as well as a higher content of ammonium (> 30 mg NH+ 4 L?1) and phosphorus (> 10 mg PO3? 4?P L?1) when the human population increased in the zone as a result of tourism. The general spatial pattern of nutrient retention in the salt marsh, indicated by a reduction in the nutrient concentrations in the water closer to the lagoon, was modulated depending on the season. In the driest months, the marsh was 100% effective in reducing nutrient concentrations, but in the rainy periods the effectiveness was reduced. This reduction was more evident for phosphorus in autumn, whose concentration increased in the lower part of the salt marsh closer to the lagoon until it reached that of the inflow. This could mainly be explained by the accumulation of water in some sites near the lagoon, which can act as sinks of pollutants. Our data support the existence of polluted water in the surface watercourses of the area, and the associated risk can include soil salinization and the eutrophication of aquatic systems. Based on our data, the Mar Menor coastal marshes have an important role as filters to reduce pollution in this lagoon.  相似文献   

13.
运用地统计学方法研究了黄河口滨岸潮滩湿地土壤中硝态氮和铵态氮的空间分布格局。结果表明,潮滩湿地土壤NO3--N和NH4+-N的水平变异性在不同土层差异较大,较高的水平变异性主要与其在潮滩湿地良好水分条件下较为活跃的物理运移特性有关;潮滩湿地表层土壤NO3--N的水平分布具有明显的空间结构,符合高斯模型,并具有中等程度的空间相关性;自然结构因素在引起NO3--N空间异质性中的贡献占优,随机因素的影响相对较小;表层土壤NO3--N的空间变异性以向低潮滩延伸且受潮汐涨落影响较大的方向最大;潮滩湿地表层土壤的NO3--N具有明显的空间分布格局,表现出向低潮滩延伸方向形成明显斑块低值区,边缘则形成斑块高值区的特征。微地貌特征和潮汐微域物理扰动强度是导致空间异质性的两个重要随机因素,而水盐条件、土壤类型和潮汐物理扰动是3个重要结构因素。  相似文献   

14.
Abstract

Soil aeration status in relation to water table was analyzed by contour mapping in a forested wetland, an emergent marsh, and an irrigated rice field. Two soil aeration status indicators, oxygen (O2) and redox potential (Eh), showed a significant correlation (P<0.01). Soil O2 and Eh levels generally decreased with the water table rise in the forested wetland and marsh, but with a noncontinuous pattern. The results indicate that soil aeration status could be temporally improved at an optimum water table level, probably due to O2 transport by wetland plants. The soil Eh in the rice fields clearly showed a seasonal pattern regardless of the water tables.  相似文献   

15.
To elucidate effect of the CH4 transport capacity of plants on CH4 production and CH4 emission, we measured CH4 emission and the CH4 transport capacity of plants as well as CH4 and dissolved organic carbon (DOC) concentrations in porewater and redox potential in the freshwater marsh vegetated with Carex lasiocarpa, Carex meyeriana and Deyeuxia angustifolia. Although only 31% of CH4 emitted was released via Deyeuxia angustifolia into the atmosphere compared to 72–86% via Carex plants and the CH4 transport capacity of per stem of Deyeuxia angustifolia was only 8.0 g CH4 stem–1 h–1 being equal to half for Carex plants, the flux of CH4 emission from the Deyeuxia angustifolia marsh was just lower by 17–28% than those from the Carex marshes as the standing water depth decreased significantly from 15–20 to 5 cm, indicating that despite the poor CH4 transport capability of Deyeuxia angustifolia partly reduced CH4 emission via plants, however CH4 emission was not greatly reduced as expected. This is because although the poor gas transport capability of Deyeuxia angustifolia lowered CH4 emission to some extent, however it also decreased the input of O2 into the rhizosphere via plants; the latter not only reduced CH4 oxidation in the rhizosphere and/or rhizome but also lowered redox potential in the vertical profile resulting in an increase in CH4 production potential and CH4 concentration especially at 5 cm depth, which in turn facilitated CH4 emission through diffusion in the Deyeuxia angustifolia marsh. This study suggests that the sharp decrease in the CH4 transport capacity of plants did not necessary result in an expected lowering of CH4 emission in the freshwater marsh.  相似文献   

16.
Rebecca Phillips  Ofer Beeri   《CATENA》2008,72(3):386-394
Net greenhouse gas (GHG) source strength for agricultural wetland ecosystems in the Prairie Pothole Region (PPR) is currently unknown. In particular, information is lacking to constrain spatial variability associated with GHG emissions (CH4, CO2, and N2O). GHG fluxes typically vary with edaphic, hydrologic, biologic, and climatic factors. In the PPR, characteristic wetland plant communities integrate hydropedologic factors and may explain some variability associated with trace gas fluxes at ecosystem and landscape scales. We addressed this question for replicate wetland basins located in central North Dakota stratified by hydropedologic vegetation zone on Jul 12 and Aug 3, 2003. Data were collected at the soil-atmosphere interface for six plant zones: deep marsh, shallow marsh, wet meadow, low prairie, pasture, and cropland. Controlling for soil moisture and temperature, CH4 fluxes varied significantly with zone (p < 0.05). Highest CH4 emissions were found near the water in the deep marsh (277,800 μg m− 2 d− 1 CH4), which declined with distance from water to − 730 μg m− 2 d− 1 CH4 in the pasture. Carbon dioxide fluxes also varied significantly with zone. Nitrous oxide variability was greater within zones than between zones, with no significant effects of zone, moisture, or temperature. Data were extrapolated for a 205.6 km2 landscape using a previously developed synoptic classification for PPR plant communities. For this landscape, we found croplands contributed the greatest proportion to the net GHG source strength on Jul 12 (45,700 kg d− 1 GHG-C equivalents) while deep marsh zones contributed the greatest proportion on Aug 3 (26,145 kg d− 1 GHG-C equivalents). This was driven by a 30-fold reduction in cropland N2O–N emissions between dates. The overall landscape average for each date, weighted by zone, was 462.4 kg km− 2 d− 1 GHG-C equivalents on Jul 12 and 314.3 kg km− 2 d− 1 GHG-C equivalents on Aug 3. Results suggest GHG fluxes vary with hydropedologic soil zone, particularly for CH4, and provide initial estimates of net GHG emissions for heterogeneous agricultural wetland landscapes.  相似文献   

17.
As ecosystem engineers, ants can mediate soil processes and functions by producing biogenic structures. In their mounds, ants not only directly produce CO2 by respiration, but may also indirectly impact soil greenhouse gas emissions by affecting substrate availability and soil physicochemical characteristics. Recent studies focused on overall gas production from ant mounds. However, little is known about mound material respiration and N2O emissions in ant mounds in wetlands. We measured CO2 and N2O emissions from mound soils of three different ant species (Lasius niger Linnaeus, Lasius flavus Fabricius, and Formica candida Smith) and natural marsh soils in a laboratory incubation experiment. On the whole, average soil CO2 and N2O emission rates from ant mounds were significantly higher than from the natural marsh soils. Over the 64 days incubation, the cumulative soil CO2 and N2O production from ant mounds was, respectively, 1.5–3.0 and 1.9–50.2 times higher than from the natural soils. Soil gas emissions from ant mounds were significantly influenced by the specific ant species, with soil CO2 and N2O emissions from L. niger mounds being higher than those from F. candida or L. flavus mound soils. Cumulative CO2 and N2O emissions from ant mound soils were positively correlated with soil clay, total carbon, dissolved organic carbon, total nitrogen and NH4+ content. Our laboratory results indicated that mound soil is an important source of CO2 and N2O emission from ant mounds in marshes, making mounds potential “hot spots” for CO2 and N2O emissions. Ants may increase the spatial heterogeneity of soil gas emissions by changing mound soil physicochemical properties, especially carbon and nutrition content, and soil texture. Contributions from ant mound materials should be considered when describing soil C and N cycles and their driving factors in wetland ecosystems.  相似文献   

18.
Northern wetlands are critically important to global change because of their role in modulating atmospheric concentrations of greenhouse gases, especially CO2 and CH4. At present, continuous observations for CO2 and CH4 fluxes from northern wetlands in Asia are still very limited. In this paper, two growing season measurements for CO2 flux by eddy covariance technique and CH4 flux by static chamber technique were conducted in 2004 and 2005, at a permanently inundated marsh in the Sanjiang Plain, northeastern China. The seasonal variations of CO2 exchange and CH4 flux and the environmental controls on them were investigated. During the growing seasons, large variations in net ecosystem CO2 exchange (NEE) and gross ecosystem productivity (GEP) were observed with the range of −4.0 to 2.2 (where negative exchange is a gain of carbon from the atmosphere) and 0-7.6 g C m−2 d−1, respectively. Ecosystem respiration (RE) displayed relatively smooth seasonal pattern with the range of 0.8-4.2 g C m−2 d−1. More than 70% of the total GEP was consumed by respiration, which resulted in a net CO2 uptake of 143 ± 9.8 and 100 ± 9.2 g C m−2 for the marsh over the growing seasons of 2004 and 2005, respectively. A significant portion of the accumulated NEE-C was lost by CH4 emission during the growing seasons, indicating the great potential of CH4 emission from the inundated marsh. Air temperature and leaf area index jointly affected the seasonal variation of GEP and the seasonal dynamic of RE was mainly controlled by soil temperature and leaf area index. Soil temperature also exerted the dominant influence over variation of CH4 flux while no significant relationship was found between CH4 emission and water table level. The close relationships between carbon fluxes and temperature can provide insights into the response of marsh carbon exchange to a changing climate. Future long term flux measurements over the freshwater marsh ecosystems are undoubtedly necessary.  相似文献   

19.
ABSTRACT

The mineralization of soil organic nitrogen in two floating marshes types in Louisiana, USA with different vegetation and mat thickness (and biomass) was measured by incubating peat soil in situ in polyethylene bottles at depths of 10 and 25 cm. The size of the extractable inorganic N (NH4+ – N) pool was related to mat thickness and soil bulk density. The N mineralization rates were twice as great at the thick mat site (1.5 mg N/kg soil/day) compared to the thin mat floating marsh (0.71 mg N/kg soil/day). The amount mineralized on a volume basis to 30 cm depth were 22 mg N/m2/day for the thick mat marsh and 6 mg N/m2/day for the thin mat marsh. The nitrogen mineralization rates observed in this study reflect plant biomass differences between the thick mat and thin mat marshes, with the former exhibiting approximately 7-fold greater biomass. These low overall mineralization rates suggest that nitrogen entering these freshwater floating marshes from Mississippi River water percolating through the root zone, would result in increased plant productivity-increasing marsh stability and also providing a natural mechanism contributing to the processing and removal of dissolved inorganic nitrogen in river water entering these wetlands.  相似文献   

20.
Abstract

The kinetics of the release of dissolved iron [Fe(II)], manganese [Mn(II)], and phosphate in salt and brackish marsh sediment and the exchange with the overlying water column were investigated. Sediment was incubated in laboratory microcosms and in sediment water columns in studying these exchanges. The rate constants of the dissolved Fe(II), Mn(II), and phosphate release in sediment suspensions were 2.02–2.28,0.08–0.117, and 4.18–5.38 μmol g‐1 dry sediment d‐1, respectively. In sediment‐water column studies, the rate constants (K) of dissolved Fe(II), Mn(II), and phosphate removal from the overlying water into the sediment were 0.755–0.989,0.0695–0.0949, and 0.315–0.448, day‐1, respectively. The flux of dissolved Fe(II), Mn(II), and phosphates from the salt and brackish marsh sediment to the overlying water in the column studies were 2.56–4.93,1.05–1.689, and 208.6–428.9 mg m‐2 d‐1, respectively. The fluxes from salt marsh were slightly greater than those measured in brackish marsh, although these differences were not statistically significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号