首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon (C) stocks in forest soils were evaluated in the first comprehensive survey of Great Britain, the BioSoil soil survey, using a total of 167 plots (72 in England, 26 in Wales and 69 in Scotland). The average C stock down to 80 cm depth for seven main soil types ranged between 108 and 448 t C/ha with maximum values from 511 to 927 t C/ha. Carbon stock varied with soil depth and type, forest type, and stand age. Stocks within the upper mineral soil (0–20 cm) represented between 29 and 69% of the total 0–80 cm C stock, while those in the top 40 cm comprised 59–100% of the total. Carbon stocks decreased in the order deep peats > peaty gleys > groundwater gleys > surface‐water gleys > podzols and ironpans > brown earths > rankers and rendzinas. Litter and fermentation horizons on average contributed an additional 7.3 and 8.8 t C/ha, respectively, to the overall soil C stock. Measured soil C stocks (0–80 cm) were upscaled by area of main soil and forest types to provide national estimates. Total forest soil stocks for England, Wales and Scotland were upscaled to 163, 46 and 337 Mt C, respectively, with an additional 17, 4 and 21 Mt C within surface organic layers (litter and fermentation horizons). Carbon stocks were larger under conifers compared with broadleaves. Peaty gleys contributed most to the total C stock in Scotland, while brown earths and podzolic soils made the largest contribution in Wales, and brown earths and surface‐water gley soils in England. Estimated total carbon stocks in forest soils in Great Britain, including organic layers, are 589 Mt C in the top 80 cm and 664 Mt C in the top 1 m of soil. The BioSoil soil survey provides the most comprehensive estimate of forest soil C stocks in Great Britain to date and provides a good baseline for assessing future change even though variability in forest soil C stocks is high. However, a relatively small number of additional plots to fill existing gaps in spatial coverage and to increase representation of rendzinas and highly organic soils would significantly reduce the level of uncertainty.  相似文献   

2.
The main change in soil use in Amazonia is, after slash and burn deforestation followed by annual crops, the establishment of pastures. This conversion of forest to pasture induces changes in the carbon cycle, modifies soil organic matter content and quality and affects biological activity responsible for numerous biochemical and biological processes essential to ecosystem functioning. The aim of this study was to assess changes in microbial biomass and activity in fallow and pasture soils after forest clearing. The study was performed in smallholder settlements of eastern Brazilian Amazonia. Soil samples from depths of 0–2, 2–5 and 5–10 cm were gathered in native forest, fallow land 8–10 yr old and pastures with ages of 1–2, 5–7 and 10–12 yr. Once fallow began, soil microbial biomass and its activity showed little change. In contrast, conversion to pasture modified soil microbial functioning significantly. Microbial biomass and its basal respiration decreased markedly after pasture establishment and continued to decrease with pasture age. The increase in metabolic quotient in the first years of pasture indicated a disturbance in soil functioning. Our study confirms that microbial biomass is a sensitive indicator of soil disturbance caused by land‐use change.  相似文献   

3.
Global demand for bioenergy increases interest in biomass‐derived fuels, as ethanol from sugarcane straw. However, straw is the main carbon source to soil and its removal reduces C input, affecting active fractions (dissolved organic carbon, DOC) and C storage. To quantify the effects of straw removal on DOC and C stocks, we built lysimeter system using soil (Rhodic Kandiudox) from sugarcane field. We evaluated four soil depths (1, 20, 50 and 100 cm) and four straw removal rates: no removal NR, medium MR, high HR and total TR, leaving 12, 6, 3 and 0 Mg/ha on the soil surface, respectively. After rainfall, drainage water was collected and analysed for DOC content. Soil C stocks were determined after the 17‐month. Total DOC released at 1‐cm depth amounted to 606, 500, 441 and 157 kg/ha in NR, MR, HR and TR, respectively. Net‐DOC suggests straw as the main source of DOC. Most of DOC in NR (50%) was retained within the 1–20 cm layer, resulting in higher C stock (10 Mg/ha) in the topsoil. In HR and MR, DOC retention was higher within 20–50 cm, suggesting differences in DOC composition. DOC in TR was 40% higher at 20 cm than at 1 cm, indicating C losses from topsoil. Low concentrations of DOC were found at 100‐cm depth, but representing 30% in TR. Straw removal for bioenergy production is sustainable, but we should leave at least 3 Mg/ha of straw to ensure DOC production and soil C storage, taking account the DOC contribution to key soil functions.  相似文献   

4.
Trees interact in a complex manner with soils: they recycle and redistribute nutrients via many ecological pathways. Nutrient distribution via leaf litter is assumed to be of major importance. Beech is commonly known to have lower nutrient concentrations in its litter than other hardwood tree species occurring in Central Europe. We examined the influences of distribution of beech (Fagus sylvatica L.), ash (Fraxinus excelsior L.), lime (Tilia cordata Mill. and T. platyphyllos Scop.), maple (Acer spp. L.), and clay content on small‐scale variability of pH and exchangeable Ca and Mg stocks in the mineral soil and of organic‐C stocks in the forest floor in a near‐natural, mature mixed deciduous forest in Central Germany. The soil is a Luvisol developed in loess over limestone. We found a positive effect of the proportion of beech on the organic‐C stocks in the forest floor and a negative effect on soil pH and exchangeable Ca and Mg in the upper mineral soil (0 to 10 cm). The proportion of ash had a similar effect in the opposite direction, the other species did not show any such effect. The ecological impact of beech and ash on soil properties at a sample point was explained best by their respective proportion within a radius of 9 to 11 m. The proportion of the species based on tree volume within this radius was the best proxy to explain species effects. The clay content had a significant positive influence on soil pH and exchangeable Ca and Mg with similar effect sizes. Our results indicate that beech, in comparison to other co‐occurring deciduous tree species, mainly ash, increased acidification at our site. This effect occurred on a small spatial scale and was probably driven by species‐related differences in nutrient cycling via leaf litter. The distribution of beech and ash resulted not only in aboveground diversity of stand structures but also induced a distinct belowground diversity of the soil habitat.  相似文献   

5.
ABSTRACT

Mangrove ecosystems play an important role in carbon (C) accumulation in tropical and subtropical regions. Below-ground deep anoxic soil is especially important for C accumulation. However, quantitative data on below-ground soil C stocks in mangrove ecosystems are lacking compared with data on above-ground biomass. In addition, soil C accumulation processes in mangrove ecosystems have not been sufficiently clarified. In this study, we quantified soil C stocks and focused on the mass of fallen litter and below-ground roots, which are produced by tree and that may directly influence soil C stocks in a mature subtropical mangrove in the estuary of Fukido River, Ishigaki Island, southwestern Japan. The principal species in this study site were Bruguiera gymnorhiza and Rhizophora stylosa, and total above-ground biomass at the site was 80.7 ± 1.3 (mean ± SD) Mg C ha?1 over the period from 2014 to 2016. Litter was collected in six litter traps from May 2013 to November 2016, it ranged from 7.8 to 11.5 Mg C ha?1, with the major proportion of litter being from foliage (leaves and stipules). The root C density at 90-cm depth was 27.1 ± 11.3 Mg C ha?1. The soil C stock in the mangrove forest at a depth of 90 cm at the study site was 251.0 ± 34.8 Mg C ha?1, and it seems to be lower value in the tropical region but it to be higher in subtropical East Asian mangrove sites. Dead roots, especially dead fine roots, but not fallen litter, were significantly positively correlated with soil C stocks. The δ13C values obtained from soils ranged from ?29.3‰ to ?27.0‰; these values are consistent with those for below-ground fine roots. These results strongly suggest that dead fine roots could be a main factor controlling soil C stocks at this study site.  相似文献   

6.
The production and composition of leaf litter, soil acidity, exchangeable nutrients, and the amount and distribution of soil organic matter were analyzed in a broad‐leaved mixed forest on loess over limestone in Central Germany. The study aimed at determining the current variability of surface‐soil acidification and nutrient status, and at identifying and evaluating the main factors that contributed to the variability of these soil properties along a gradient of decreasing predominance of European beech (Fagus sylvatica L.) and increasing tree‐species diversity. Analyses were carried out in (1) mature monospecific stands with a predominance of beech (DL 1), (2) mature stands dominated by three deciduous‐tree species (DL 2: beech, ash [Fraxinus excelsior L.], lime [Tilia cordata Mill. and/or T. platyphyllos Scop.]), and (3) mature stands dominated by five deciduous‐tree species (DL 3: beech, ash, lime, hornbeam [Carpinus betulus L.], maple [Acer pseudoplatanus L. and/or A. platanoides L.]). The production of leaf litter was similar in all stands (3.2 to 3.9 Mg dry matter ha–1 y–1) but the total quantity of Ca and Mg deposited on the soil surface by leaf litter increased with increasing tree‐species diversity and decreasing abundance of beech (47 to 88 kg Ca ha–1 y–1; 3.8 to 7.9 kg Mg ha–1 y–1). The soil pH(H2O) and base saturation (BS) measured at three soil depths down to 30 cm (0–10 cm, 10–20 cm, 20–30 cm) were lower in stands dominated by beech (pH = 4.2 to 4.4, BS = 15% to 20%) than in mixed stands (pH = 5.1 to 6.5, BS = 80% to 100%). The quantities of exchangeable Al and Mn increased with decreasing pH and were highest beneath beech. Total stocks of exchangeable Ca (0–30 cm) were 12 to 15 times larger in mixed stands (6660 to 9650 kg ha–1) than in beech stands (620 kg ha–1). Similar results were found for stocks of exchangeable Mg that were 4 to 13 times larger in mixed stands (270 to 864 kg ha–1) than in beech stands (66 kg ha–1). Subsoil clay content and differences in litter composition were identified as important factors that contributed to the observed variability of soil acidification and stocks of exchangeable Ca and Mg. Organic‐C accumulation in the humus layer was highest in beech stands (0.81 kg m–2) and lowest in stands with the highest level of tree‐species diversity and the lowest abundance of beech (0.27 kg m–2). The results suggest that redistribution of nutrients via leaf litter has a high potential to increase BS in these loess‐derived surface soils that are underlain by limestone. Species‐related differences of the intensity of soil–tree cation cycling can thus influence the rate of soil acidification and the stocks and distribution of nutrients.  相似文献   

7.
8.
To identify crop rotation systems capable of sequestering C and N to 1 metre depth in a subtropical Ferralsol of Southern Brazil managed under long‐term zero‐tillage (21 yrs), we evaluated six crop sequences: wheat (Triticum aestivum)–soybean (Glycine max) [W‐S], the baseline; oat (Avena strigosa, as cover crop)–maize (Zea mays)–wheat–soybean [O‐M‐W‐S]; vetch (Vicia villosa, as legume cover crop)–maize–wheat–soybean [V‐M‐W‐S]; vetch–maize–oat–soybean–wheat–soybean [V‐M‐O‐S‐W‐S]; ryegrass (Lolium multiflorum, for hay)–maize–ryegrass–soybean [R‐M‐R‐S]; and alfalfa (Medicago sativa, for hay)–maize [A‐M]. Compared to W‐S and to 1 metre, the hay‐based system of A‐M showed the largest C and N sequestration rates (0.50 and 0.06 Mg/ha/yr, respectively). Alfalfa, being a perennial legume under cut‐regrowth cycles, possibly added more C and N through roots. The other hay system, R‐M‐R‐S, also sequestered C efficiently (0.27 Mg/ha/yr), but not N (0.01 Mg/ha/yr). The legume‐based system of V‐M‐W‐S sequestered significant amounts of both C (0.29 Mg/ha/yr) and N (0.04 Mg/ha/yr). The grass‐based system of O‐M‐W‐S showed the lowest sequestration of C (0.09 Mg/ha/yr). In all systems, a positive relationship (R2 = 0.71) occurred between estimated addition of root C and soil C stock to 1 metre. Whenever C and N sequestration occurred, more than half of that occurred below 20 cm depth. Results suggest that adoption of legume‐based systems, perennially as A‐M or annually as V‐M‐W‐S, is efficient for C and N sequestration in subtropical zero‐tillage soils and that roots possibly contribute more to that sequestration than aboveground biomass.  相似文献   

9.
The objective of this work was to evaluate the C and N stocks and organic‐C fractions in soil under mixed forest stands of Scots pine (Pinus sylvestris L.) and Sessile oak (Quercus petraea [Matt.] Liebl.) of different ages in NE Germany. Treatments consisted of pure pine (age 102 y), and pine (age 90–102 y) mixed with 10‐, 35‐, 106‐, and 124‐y‐old oak trees. After sampling O layers, soils in the mineral layer were taken at two different depths (0–10 and 10–20 cm). Oak admixture did not affect total organic‐C (TOC) and N stocks considering the different layers separately. However, when the sum of TOC stocks in the organic and mineral layers was considered, TOC stocks decreased with increasing in oak age (r2 = 0.58, p < 0.10). The microbial C (CMB) was not directly correlated with increase of oak age, however, it was positively related with presence of oak species. There was an increase in the percentage of the CMB‐to‐TOC ratio with increase of oak‐tree ages. On average, light‐fraction C (CLF) comprised 68% of the soil TOC in upper layer corresponding to the highest C pool in the upper layer. CLF and heavy‐fraction C (CHF) were not directly affected by the admixture of oak trees in both layers. The CHF accounted on average for 30% and 59% of the TOC at 0–10 and 10–20 cm depths, respectively. Despite low clay contents in the studied soils, the differences in the DCB‐extractable Fe and Al affected the concentrations of the CHF and TOC in the 10–20 cm layers (p < 0.05). Admixture of oak in pine stands contributed to reduce topsoil C stocks, probably due to higher soil organic matter turnover promoted by higher quality of oak litter.  相似文献   

10.
Mountain regions are known to be especially vulnerable to climatic changes; however, information on the climate sensitivity of alpine ecosystems is still scarce to date. In this study, we investigate the impacts of climate and vegetation composition on soil organic‐matter (SOM) stocks and characteristics along an elevation gradient (900 to 1900 m asl) in the Austrian Limestone Alps. The soils classified as Leptic Histosols, i.e., organic soils directly overlying the calcareous bedrock. Soil organic‐carbon stocks (SOC; mean ± standard deviation) to bedrock increased in the low‐elevation forest sites from 19 ± 3 kg m–2 (900 m asl) to 31 ± 3 kg m–2 (1300 m asl), reached a maximum (38 ± 5 kg m–2) in the shrubland at 1500 m asl, but decreased again in the high‐elevation grassland sites (26 ± 3 kg m–2 at 1700 m asl and 13 ± 3 kg m–2 at 1900 m asl). Thermogravimetic measurements and Fourier‐transform infrared spectroscopy (FTIR) suggest that the upper soil layers were dominated by more labile organic compounds, whereas more persistent materials increased with depth. Along the studied climosequence, the aliphatic FTIR band (2920 cm–1) was lower in the low‐elevation forest sites compared to the high‐elevation grassland sites. Most other FTIR bands did not change with altitude, but were related to specific site conditions, such as vegetation composition and associated differences in soil pH. Our results demonstrate that differences in SOM stocks and characteristics are not consistently related to variations in climatic conditions along the studied elevation gradient, but are strongly affected by the vegetation composition, their C input and litter quality. This, in turn, is expected to shift in response to climate change.  相似文献   

11.
Aggregation often provides physical protection and stabilisation of soil organic carbon (C). No tillage (NT) coupled with stubble retention (SR) and nitrogen (N) fertiliser application (90 N, 90 kg N ha−1 application) can help improve soil aggregation. However, information is lacking on the effect of long‐term NT, SR and N fertiliser (NT, SR + N) application on soil aggregation and C distribution in different aggregates in vertisols. We analysed the soil samples collected from 0‐ to 30‐cm depth from a long‐term (47 years) experiment for soil aggregation and aggregate‐associated C and N. This long‐term field experiment originally consisted of 12 treatments, having plot size of 61·9 × 6·4 m, and these plots were arranged in a randomised block design with four replications, covering an area of 1·9 ha. Soil organic C concentrations as well as stocks were significantly higher under the treatment of NT, SR + N only in 0–10 cm compared with other treatments such as conventional tillage, stubble burning + 0 N (no N application) and conventional tillage, SR + 0 N. Mineral‐associated organic C (MOC) of <0·053 mm was 5–12 times higher (r  = 0·68, p  < 0·05, n  = 32) compared with particulate organic C (POC) (>0·053 mm) in the 0‐ to 30‐cm layer. We found that NT, SR + N treatment had a positive impact on soil aggregation, as measured by the mean weight diameter (MWD) through wet sieving procedure, but only in the top 0‐ to 10‐cm depth. MWD had significant positive correlation with water stable aggregates (r  = 0·67, p  < 0·05). Unlike MWD, water stable aggregates were not affected by tillage and stubble management. Large macroaggregates (>2 mm) had significantly higher organic C and N concentrations than small macroaggregates (0·25–2 mm) or microaggregates (0·053–0·25 mm). We also found that N application had a significant effect on MWD and soil organic C in vertisols. It is evident that better soil aggregation was recorded under NTSR90N could have a positive influence on soil C sequestration. Our results further highlight the importance of soil aggregation and aggregate‐associated C in relation to C sequestration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Tree thinning and harvesting produces large amounts of slash material which are typically disposed of by burning, often resulting in severe soil heating. We measured soil chemical properties and microbial community structure and function over time to determine effects of slash pile burning in a ponderosa pine forest soil. Real time data were collected for soil temperature, heat flux, and soil moisture contents in one of two slash piles burned in April 2004. During the burn, soil temperatures reached 300 °C beneath the pile center and 175 °C beneath the pile edge. Slash pile burning increased soil pH, extractable N and P, and decreased total C levels within the first 15 cm of soil. Burning reduced soil bacterial biovolumes within the first 15 cm of soil and fungal biovolumes within the first 5 cm of soil. One month after the burn, soil microbial communities under the pile center were enriched in Gram-positive bacterial fatty acid markers compared to communities from under the pile edge and control (nonburned) soil. Fifteen months later, soil chemical properties had not returned to background levels, and microbial community structure in fire-affected soil, regardless of pile location, was distinct from communities of control soil. In fire-affected soil, concentrations of fungal fatty acid biomarkers were low and arbuscular mycorrhizal fungal biomarkers were absent, regardless of pile location. Slash pile burning also reduced fungal and bacterial respiration and resulted in large fluctuations in microbial potential N mineralization and immobilization activities. By altering soil properties important to soil conservation and plant reestablishment, slash pile burning negatively impacts forest ecosystems at localized scales.  相似文献   

13.
Intensive vegetable production in greenhouses has rapidly expanded in China since the 1990s and increased to 1.3 million ha of farmland by 2016, which is the highest in the world. We conducted an 11‐year greenhouse vegetable production experiment from 2002 to 2013 to observe soil organic carbon (SOC) dynamics under three management systems, i.e., conventional (CON), integrated (ING), and intensive organic (ORG) farming. Soil samples (0–20 and 20–40 cm depth) were collected in 2002 and 2013 and separated into four particle‐size fractions, i.e., coarse sand (> 250 µm), fine sand (250–53 µm), silt (53–2 µm), and clay (< 2 µm). The SOC contents and δ13C values of the whole soil and the four particle‐size fractions were analyzed. After 11 years of vegetable farming, ORG and ING significantly increased SOC stocks (0–20 cm) by 4008 ± 36.6 and 2880 ± 365 kg C ha?1 y?1, respectively, 8.1‐ and 5.8‐times that of CON (494 ± 42.6 kg C ha?1 y?1). The SOC stock increase in ORG at 20–40 cm depth was 245 ± 66.4 kg C ha?1 y?1, significantly higher than in ING (66 ± 13.4 kg C ha?1 y?1) and CON (109 ± 44.8 kg C ha?1 y?1). Analyses of 13C revealed a significant increase in newly produced SOC in both soil layers in ORG. However, the carbon conversion efficiency (CE: increased organic carbon in soil divided by organic carbon input) was lower in ORG (14.4%–21.7%) than in ING (18.2%–27.4%). Among the four particle‐sizes in the 0–20 cm layer, the silt fraction exhibited the largest proportion of increase in SOC content (57.8% and 55.4% of the SOC increase in ORG and ING, respectively). A similar trend was detected in the 20–40 cm soil layer. Over all, intensive organic (ORG) vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated (ING) management.  相似文献   

14.
Nutrient‐rich biochar produced from animal wastes, such as poultry litter, may increase plant growth and nutrient uptake although the role of direct and indirect mechanisms, such as stimulation of the activity of mycorrhizal fungi and plant infection, remains unclear. The effects of poultry litter biochar in combination with fertilizer on mycorrhizal infection, soil nutrient availability and corn (Zea mays L.) growth were investigated by growing corn in a loam soil in a greenhouse with biochar (0, 5 and 10 Mg/ha) and nitrogen (N) and phosphorus (P) fertilizer (0, half and full rates). Biochar did not affect microbial biomass C or N, mycorrhizal infection, or alkaline phosphomonoesterase activities, but acid phosphomonoesterase activities, water‐soluble P, Mehlich‐3 Mg, plant height, aboveground and root biomass, and root diameter were greater with 10 Mg/ha than with no biochar. Root length, volume, root tips and surface area were greatest in the fully fertilized soil receiving 10 Mg/ha biochar compared to all other treatments. The 10 Mg/ha biochar application may have improved plant access to soil nutrients by promoting plant growth and root structural features, rather than by enhancing mycorrhizal infection rates.  相似文献   

15.
The economic benefits of organic agriculture and its wide adoption are well documented, but the impact of that practice on soil C dynamics in irrigated croplands of semi‐arid regions is less well understood. In manure‐based organic production systems, land applications of animal wastes not only provide nutrients but could also contribute to soil carbon sequestration. A study was conducted in irrigated cotton (Gossypium arboreum L) agro‐ecosystems of New Mexico (USA) under conventional (CONV; 100 kg N/ha as urea and NH4NO3) and organic farming practices (OF for 3–9 yr; 50 Mg dry manure/ha) to assess the effect of OF on soil C stocks (organic, inorganic) and biochemical indices [microbial biomass C (MBC); respiration; metabolic quotient (qCO2)]. In the plough layer (0–30 cm), soil organic carbon (SOC) stocks tended to be higher (although not statistically) under OF (35.9 Mg C/ha) than CONV (33.5 Mg C/ha). However, when the entire 100‐cm soil profile was considered, the total SOC under CONV exceeded that under OF by 39.8 Mg C/ha, but this may be influenced by other factors. Accounting for 52% of the total C stock, inorganic C was significantly higher under CONV than OF and was positively correlated with soil respiration and the H/C ratio of soil organic matter. While OF duration had no consistent effect on soil biochemical properties, MBC was significantly higher (1.5 times) and the qCO2 (3–6 times) was lower in the organically fertilized soils than under CONV. These results suggest the development, under OF, of a soil microbial community that is larger and processes added C substrates more efficiently compared with the community present in CONV practices.  相似文献   

16.
In recent time, phytoliths (silicon deposition between plant cells) have been recognized as an important nutrient source for crops. The work presented here aims at highlighting the potential of phytolith‐occluded K pool in ferns. Dicranopteris linearis (D. linearis ) is a common fern in the humid subtropical and tropical regions. Burning of the fern D. linearis is, in slash‐and‐burn regions, a common practice to prepare the soil before planting. We characterised the phytolith‐rich ash derived from the fern D. linearis and phytolith‐associated potassium (K) (phytK), using X‐ray tomographic microscopy in combination with kinetic batch experiments. D. linearis contains up to 3.9 g K/kg d.wt, including K subcompartmented in phytoliths. X‐ray tomographic microscopy visualized an interembedding structure between organic matter and silica, particularly in leaves. Corelease of K and Si observed in the batch experiments confirmed that the dissolution of ash phytoliths is one of major factors controlling K release. Under heat treatment, a part of the K is made available, while the remainder entrapped into phytoliths (ca. 2.0–3.3%) is unavailable until the phytoliths are dissolved. By enhanced removal of organic phases, or forming more stable silica phases, heat treatment changes dissolution properties of the phytoliths, affecting K release for crops and soils. The maximum releases of soluble K and Si were observed for the phytoliths treated at 500–800 °C. For quantitative approaches for the K provision of plants from the soil phytK pool in soils, factors regulating phytolith dissolution rate have to be considered.  相似文献   

17.
Forest management and climate change may have a substantial impact on future soil organic carbon (SOC) stocks at the country scale. Potential SOC in Japanese forest soils was regionally estimated under nine forest managements and a climate change scenario using the CENTURY ecosystem model. Three rotations (30, 50, 100 yr) and three thinning regimes were tested: no‐thinning; 30% of the trees cut in the middle of the rotation (e.g. 15 year in a 30‐yr rotation) and thinned trees all left as litter or slash (ThinLef) and the trees from thinning removed from the forest (ThinRem). A climate change scenario was tested (ca. 3 °C increase in air temperature and 9% increase in precipitation). The model was run at 1 km resolution using climate, vegetation and soil databases. The estimated SOC stock ranged from 1600 to 1830 TgC (from 6800 to 7800 gC/m2), and the SOC stock was largest with the longest rotation and was largest under ThinLef with all three rotations. Despite an increase in net primary production, the SOC stock decreased by 5% under the climate change scenario.  相似文献   

18.
The impacts of tillage and organic fertilization on soil organic matter (SOM) are highly variable and still unpredictable, and their interactions need to be investigated under various soil, climate and cropping system conditions. Our work examined the effect of reduced tillage and animal manure on SOM stocks and quality in the 0–40 cm layer of a loamy soil under mixed cropping system and humid temperate climate. The soil organic carbon (SOC) and N stocks, particulate organic matter (POM), and C and N mineralization potential (301 days at 15 °C) were measured in a 8‐yr‐old split‐plot field trial, including three tillage treatments [mouldboard ploughing (MP), shallow tillage (ST), no tillage (NT)] and two fertilization treatments [mineral (M), poultry manure 2.2 t/ha/yr C (O)]. No statistically significant interactive effects of tillage and fertilization were measured except on C mineralization. NT and ST showed greater SOC stocks (41.2 and 39.7 t/ha C) than MP (37.1 t/ha C) in the 0–15 cm increment, while no statistical differences were observed at a greater depth. N stocks exhibited similar distribution patterns with regard to tillage effect. Animal manure, applied at a rate representative of typical field application rates, had a smaller impact on SOC and N stocks than tillage. The mean SOC and N stocks were higher under O than M, but the differences were statistically significant only in the 0–5 cm increment. MP showed lower C‐POM stocks than NT and ST in the 0–5 cm increment, whereas greater C‐POM stocks were measured under MP than under NT or under ST in the 20–25 cm increment. Organic fertilization had no impact on C‐POM or N‐POM stocks. In the 0–25 cm increment, NT showed a lower C and N mineralization potential than MP. Our work shows that the sensitivity of SOM to reduced tillage for the whole soil profile can be relatively small in a loamy soil, under humid‐temperate climate. However, POM was particularly sensitive to the differential effects of tillage practices with depth, and indicative of differentiation in total SOM distribution in the soil profile.  相似文献   

19.
Proper assessment of environmental quality or degradation requires knowledge of how terrestrial C pools respond to land use change. Forest plantations offer a considerable potential to sequester C in aboveground biomass. However, their impact on initial levels of soil organic carbon (SOC) varies from strong losses to gains, possibly affecting C balances in afforestation or reforestation initiatives. We compiled paired‐plot studies on how SOC stocks under native vegetation change after planting fast‐growth Eucalyptus species in Brazil, where these plantations are becoming increasingly important. SOC changes for the 0–20 and 0–40 cm depths varied between −25 and 42 Mg ha−1, following a normal distribution centered near zero. After replacing native vegetation by Eucalyptus plantations, mean SOC changes were −1·5 and 0·3 Mg ha−1 for the 0–20 and 0–40 cm depths, respectively. These are very low figures in comparison to C stocks usually sequestered in aboveground biomass and were statistically nonsignificant as demonstrated by a t‐test at p < 0·05. Similar low, nonsignificant SOC changes were estimated after data were stratified into first or second rotation cycles, soil texture and biome (savanna, rainforest or grassland). Although strong SOC losses or gains effectively occurred in some cases, their underpinning causes could not be generally identified in the present work and must be ascribed in a case basis, considering the full set of environmental and management conditions. We conclude that Eucalyptus spp. plantations in average have no net effect on SOC stocks in Brazil. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

The forest–savanna transition zone, which contains nutrient-poor soils (Oxisols), is found throughout central Africa. To evaluate the effect of deforestation on soil phosphorus dynamics, which regulate the plant growth in this area, we quantified the relationship between phosphorus (P) and carbon (C) in different fractions and compared their relationship to forest and savanna (deforested vegetation) in eastern Cameroon. We analyzed the P, C, and nitrogen (N) contents of soil using the physical fractionation method (0.25–2.0 mm as macro-particulate organic matter [M-POM]; 0.053–0.25 mm as micro-POM; and <0.053 mm as Clay+silt) in different land management (young and old forests and annual and perennial grass savannas at 100-cm soil depth). We found larger soil P stock in forests (4.7–4.9 Mg P ha?1) than that in savannas (3.4–4.0 Mg P ha?1), though soil C and N stocks were similar between the vegetation. We also observed lower soil P stock in the active fraction (M-POM) with its higher C:P and lower C:N ratio in forest surface layer (0–10 cm), indicating that forests have lower available soil P. By using the regression analysis, we found a clear relationship between P and C in the stable fraction (Clay+silt) of the upper layer (0–40 cm) for each land management, and the coefficient of the regression was clearly different between the forest and savanna. It indicates that a more chemically complex organic P form of the stable fraction exists in forest soil than in savanna soil. These results indicate that the deforestation (savannazation) affect the active and stable P dynamics and it should cause the lower soil P stock of the upper layer in savanna than in forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号