首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In the highlands of Madagascar, agricultural expansion gained on grasslands and cropping systems based on direct seeding with permanent vegetation cover are emerging as a means to sustain upland crop production. The objective of this study was to examine how such agricultural practices affect greenhouse‐gas emissions from a loamy Ferralsol previously used as a pasture. We conducted an experiment under controlled laboratory conditions combining cattle manure, crop residues (rice straw), and mineral fertilizers (urea plus NPK or di‐NH4‐phosphate) to mimic on‐field inputs and examined soil CO2 and N2O emissions during a 28‐d incubation at low and high water‐filled pore space (40% and 90% WFPS). Emissions of N2O from the control soil, i.e., soil receiving no input, were extremely small (< 5 ng N2O‐N (g soil)–1 h–1) even under anaerobic conditions. Soil moisture did not affect the order of magnitude of CO2 emissions while N2O fluxes were up to 46 times larger at high soil WFPS, indicating the potential influence of denitrification under these conditions. Both CO2 and N2O emissions were affected by treatments, incubation time, and their interactions. Crop‐residue application resulted in larger fluxes of CO2 but reduced N2O emissions probably due to N immobilization. The use of di‐NH4‐phosphate was a better option than NPK to reduce N2O emissions without increasing CO2 fluxes when soil received mineral fertilizers. Further studies are needed to translate the findings to field conditions and relate greenhouse‐gas budgets to crop production.  相似文献   

2.
The aims of this study were to assess the effectiveness of the nitrification inhibitors dicyandiamide (DCD) and nitrapyrin on reducing emissions of nitrous oxide (N2O) following application of NH4 + or NH4 +-forming fertilisers to grassland and spring barley. DCD was applied to grassland with N fertiliser applications in April and August in 1992 and 1993, inhibiting N2O emissions by varying amounts depending on the fertiliser form and the time of application. Over periods of up to 2 months following each application of DCD, emissions of N2O were reduced by 58–78% when applied with urea (U) and 41–65% when applied with ammonium sulphate (AS). Annual emissions (April to March) of N2O were reduced by up to 58% and 56% in 1992–1993 and 1993–1994, respectively. Applying DCD to ammonium nitrate (AN) fertilised grassland did not reduce emissions after the April 1993 fertilisation, but emissions following the August application were reduced. Nitrapyrin was only applied once, with the April fertiliser applications in 1992, reducing N2O emissions over the following 12 months by up to 40% when applied with U. When N fertiliser was applied in June without DCD, the DCD applied in April was still partly effective; N2O emissions were reduced 50%, 60% and 80% as effectively as the emissions following the April applications, for AS in 1993, U in 1992 and 1993, respectively. In 1992 the persistence of an inhibitory effect was greater for nitrapyrin than for DCD, increasing after the June fertiliser application as overall emissions from U increased. There was no apparent reduction in effectiveness following repeated applications of DCD over the 2 years. N2O emissions from spring barley, measured only in 1993, were lower than from grassland. DCD reduced emissions from applied U by 40% but there was no reduction with AN. The results demonstrate considerable scope for reducing emissions by applying nitrification inhibitors with NH4 + or NH4 +-forming fertilisers; this is especially so for crops such as intensively managed grass where there are several applications of fertiliser nitrogen per season, as the effect of inhibitors applied in April persists until after a second fertiliser application in June. Received: 30 August 1996  相似文献   

3.
Urine patches are significant hot‐spots of C and N transformations. To investigate the effects of urine composition on C and N turnover and gaseous emissions from a Danish pasture soil, a field plot study was carried out in September 2001. Cattle urine was amended with two levels of 13C‐ and 15N‐labeled urea, corresponding to 5.58 and 9.54 g urea‐N l–1, to reflect two levels of protein intake. Urine was then added to a sandy‐loam pasture soil equivalent to a rate of 23.3 or 39.8 g urea‐N m–2. Pools and isotopic labeling of nitrous oxide (N2O) and CO2 emissions, extractable urea, ammonium (NH4+), and nitrate (NO3), and plant uptake were monitored during a 14 d period, while ammonia (NH3) losses were estimated in separate plots amended with unlabeled urine. Ammonia volatilization was estimated to account for 14% and 12% of the urea‐N applied in the low (UL) and high (UH) urea treatment, respectively. The recovery of urea‐derived N as NH4+ increased during the first several days, but isotopic dilution was significant, possibly as a result of stress‐induced microbial metabolism. After a 2 d lag phase, nitrification proceeded at similar rates in UL and UH despite a significant difference in NH4+ availability. Nitrous oxide fluxes were low, but generally increased during the 14 d period, as did the proportion derived from urea‐N. On day 14, the contribution from urea was 23% (UL) and 13% (UH treatment), respectively. Cumulative total losses of N2O during the 14 d period corresponded to 0.021% (UL) and 0.015% (UH) of applied urea‐N. Nitrification was probably the source of N2O. Emission of urea‐derived C as CO2 was only detectable within the first 24 h. Urea‐derived C and N in above‐ground plant material was only significant at the first sampling, indicating that uptake of urine‐C and N via the leaves was small. Urine composition did not influence the potential for N2O emissions from urine patches under the experimental conditions, but the importance of site conditions and season should be investigated further.  相似文献   

4.
ABSTRACT

To investigate the influence of Azolla (A. filiculoides Lam.) incorporated as a green manure and its subsequent growth as a dual crop with rice on simultaneous methane (CH4) and nitrous oxide (N2O) emissions from a flooded alluvial soil planted with rice, a pot experiment with three treatments, chemical fertilizers (NPK) as the control, incorporation of Azolla as green manure (AGM), and AGM plus basal chemical fertilizers (NPK+AGM) was conducted in Tsuruoka, Yamagata, Japan in 2017. AGM and NPK+AGM treatments significantly increased CH4 emissions at early rice growth stages before 63 days after transplanting (DAT) by 123.0% and 176.7% compared to NPK, respectively. At late rice growth stages (after 63 DAT), only the NPK+AGM treatment significantly increased CH4 emission by 22.1% compared to NPK. However, percentage of CH4 emitted after 63 DAT relative to the seasonal CH4 emission followed the order of NPK (86.2%) > AGM (76.5%) > NPK+AGM (73.3%). Higher CH4 emissions from AGM and NPK+AGM before 63 DAT were attributed to the incorporated Azolla, while the higher emissions after 63 DAT in all treatment groups were ascribed to rice photosynthesis. AGM and NPK+AGM treatments significantly decreased N2O emissions by 71.6% and 81.1% compared to NPK, respectively, at early rice growth stages. Azolla incorporation may have restricted N2O emission from initial soil nitrate before 63 DAT and not have contributed to N2O emissions after 63 DAT. Significantly higher grain yields were observed under the AGM (32.5%) and NPK+AGM (36.3%) compared to NPK. Together, AGM and NPK+AGM treatments significantly increased seasonal CH4 emissions by 31.5% and 43.5%, and decreased seasonal N2O emissions 3.4- and 4.6- fold compared to NPK, respectively. There were no significant differences in the CH4 emissions per grain yield among the treatments; however compared to NPK, AGM and NPK+AGM treatments significantly reduced N2O emissions per grain yield by 78.7% and 84.1%, respectively.  相似文献   

5.
An accurate estimation of nitrous oxide (N2O) emission from 110 million ha of upland in China is essential for the adoption of effective mitigation strategies. In this study, the effects of different tillage practices combined with nitrogen (N) fertilizer applications on N2O emission in soils were considered for a winter wheat (Triticum aestivum L.) – summer maize (Zea mays L.) double cropping system. Treatments included conventional tillage plus urea in split application (CTF1), conventional tillage with urea in a single application (CTF2), no‐tillage with straw retained plus reduced urea in a split application (NTSF1) and no‐tillage with manure plus reduced urea in a split application (NTMF1). The amounts of N input in each treatment were 285 and 225 kg N/ha for wheat and maize, respectively. Both NTSF1 and NTMF1 were found to reduce chemical N fertilizer rates by 33.3% (wheat) and 20% (maize), respectively, compared to CTF1 and CTF2. N2O emissions varied between 3.2 (NTSF1) and 9.9 (CTF2) kg N2O‐N/ha during the wheat season and between 7.6 (NTFS1) and 14.0 (NTMF1) kg N2O‐N/ha during the maize season. The yield‐based emission factors ranged from 21.9 (NTSF1) to 60.9 (CTF2) g N2O‐N/kg N for wheat and 92.5 (NTSF1) to 157.4 (NTMF1) g N2O‐N/kg N for maize. No significant effect of the treatments on crop yield was found. In addition to reducing production costs involved in land preparation, NTSF1 was shown to decrease chemical fertilizer input and mitigate N2O emissions while sustaining crop yield.  相似文献   

6.
Post‐harvest biomass can be used as feedstock for energy production and alter N2O emissions from the soil, which is among the main issues determining bioethanol sustainability. To assess the effects of sugarcane straw return on gas emissions, we established a field experiment in which 0, 50, 75 or 100% (0, 5.65, 8.47 and 11.30 Mg/ha dry biomass, respectively) of the crop residues (straw) was left in the field during the first two ratoon crops. As fertilizer is applied in bands to sugarcane, we also investigated the contribution of different positions to the N2O emissions within the field. There was an interactive effect between straw and inorganic fertilizer, leading to a nonlinear effect of crop residues on the fertilizer emission factor (EF). However, straw consistently reduced N2O emissions from the field, acting mainly in the unfertilized areas in the field (< 0.05). We observed that considering the typical EF used in the literature, the N2O‐N emissions attributed to fertilizer ranged from 0.19 to 0.79 kg/ha, while the total emissions ranged from 3.3 to 5.2 kg/ha, from the highest amount of straw to the lowest. We conclude that overall, the fertilizer EF is not as relevant as the total emissions, based on this and other studies. Consequently, management practices might be more effective in improving the GHG balance than changing inorganic fertilizer use. We conclude that keeping up to 11 Mg/ha of straw with a large C:N ratio (>100:1) on site might increase sugarcane production sustainability by reducing the greenhouse gas emissions from the field.  相似文献   

7.
Liming of acidic agricultural soils has been proposed as a strategy to mitigate nitrous oxide (N2O) emissions, as increased soil pH reduces the N2O/N2 product ratio of denitrification. The capacity of different calcareous (calcite and dolomite) and siliceous minerals to increase soil pH and reduce N2O emissions was assessed in a 2-year grassland field experiment. An associated pot experiment was conducted using homogenized field soils for controlling spatial soil variability. Nitrous oxide emissions were highly episodic with emission peaks in response to freezing–thawing and application of NPK fertilizer. Liming with dolomite caused a pH increase from 5.1 to 6.2 and reduced N2O emissions by 30% and 60% after application of NPK fertilizer and freezing–thawing events, respectively. Over the course of the 2-year field trial, N2O emissions were significantly lower in dolomite-limed than non-limed soil (p < .05), although this effect was variable over time. Unexpectedly, no significant reduction of N2O emission was found in the calcite treatment, despite the largest pH increase in all tested minerals. We tentatively attribute this to increased N2O production by overall increase in nitrogen turnover rates (both nitrification and denitrification) following rapid pH increase in the first year after liming. Siliceous materials showed little pH effect and had no significant effect on N2O emissions probably because of their lower buffering capacity and lower cation content. In the pot experiment using soils taken from the field plots 3 years after liming and exposing them to natural freezing–thawing, both calcite (p < .01) and dolomite (p < .05) significantly reduced cumulative N2O emission by 50% and 30%, respectively, relative to the non-limed control. These results demonstrate that the overall effect of liming is to reduce N2O emission, although high lime doses may lead to a transiently enhanced emission.  相似文献   

8.
The aim was to investigate the effects of different N fertilisers on nitrous oxide (N2O) flux from agricultural grassland, with a view to suggesting fertiliser practices least likely to cause substantial N2O emissions, and to assess the influence of soil and environmental factors on the emissions. Replicate plots on a clay loam grassland were fertilised with ammonium sulphate (AS), urea (U), calcium nitrate (CN), ammonium nitrate (AN), or cattle slurry supplemented with AN on three occasions in each of 2 years. Frequent measurements were made of N2O flux and soil and environmental variables. The loss of N2O-N as a percentage of N fertiliser applied was highest from the supplemented slurry (SS) treatment and U, and lowest from AS. The temporal pattern of losses was different for the different fertilisers and between years. Losses from U were lower than those from AN and CN in the spring, but higher in the summer. The high summer fluxes were associated with high water-filled pore space (WFPS) values. Fluxes also rose steeply with temperature where WFPS or mineral N values were not limiting. Total annual loss was higher in the 2nd year, probably because of the rainfall pattern: the percentage losses were 2.2, 1.4, 1.2, 1.1 and 0.4 from SS, U, AN, CN and AS, respectively. Application of U in the spring and AN twice in the summer in the 2nd year gave an average emission factor of 0.8% – lower than from application of either individual fertiliser. We suggest that similar varied fertilisation practices, modified according to soil and crop type and climatic conditions, might be employed to minimise N2O emissions from agricultural land. Received: 30 August 1996  相似文献   

9.
有机无机肥配施对酸性菜地土壤硝化作用的影响   总被引:5,自引:0,他引:5  
通过室内培养和田间试验, 研究了有机无机肥配施对酸性菜地土硝化作用的影响。培养试验条件为60%土壤最大持水量和25 ℃。 结果表明,土壤硝化作用模式为指数方程,延滞期10天。与纯化肥处理(NPK)相比,鲜猪粪配施无机肥(FPM+NPK)和猪粪堆肥配施无机肥(CPM+NPK)均能降低土壤硝化势和氨氧化潜势,猪粪堆肥配施无机肥还能增加土壤微生物量碳、 氮。鲜猪粪配施无机肥和猪粪堆肥配施无机肥处理在硝化培养和田间试验期间N2O释放量均没有差异,但硝化培养期间鲜猪粪配施无机肥的N2O释放量显著低于纯化肥处理,田间试验期间猪粪堆肥配施无机肥的N2O释放量显著低于纯化肥处理。培养试验结束后的土壤pH值与土壤硝化势间,以及硝化培养期间N2O累积释放量与土壤硝化势间均存在显著正相关关系。本研究表明, 有机无机肥配施显著影响土壤硝化作用以及硝化培养期间和田间N2O释放。  相似文献   

10.
 Potential effects of earthworms (Lumbricus terrestris L.) inoculated into soil on fluxes of CO2, CH4 and N2O were investigated for an untreated and a limed soil under beech in open topsoil columns under field conditions for 120 days. Gas fluxes from L. terrestris, beech litter and mineral soil from soil columns were measured separately in jars at 17  °C. The inoculation with L. terrestris and the application of lime had no effect on cumulative CO2 emissions from soil. During the first 3–4 weeks earthworms significantly (P<0.05) increased CO2 emissions by 16% to 28%. In contrast, significantly lower (P<0.05) CO2 emission rates were measured after 11 weeks. The data suggest that earthworm activity was high during the first weeks due to the creation of burrows and incorporation of beech litter into the mineral soil. Low cumulative CH4 oxidation rates were found in all soil columns as a result of CH4 production and oxidation processes. L. terrestris with fresh feces and the beech litter produced CH4 during the laboratory incubation, whereas the mineral soil oxidised atmospheric CH4. Inoculation with L. terrestris led to a significant reduction (P<0.02) in the CH4 oxidation rate of soil, i.e. 53% reduction. Liming had no effect on cumulative CH4 oxidation rates of soil columns and on CH4 fluxes during the laboratory incubation. L. terrestris significantly increased (P<0.001) cumulative N2O emissions of unlimed soil columns by 57%. The separate incubation of L. terrestris with fresh feces resulted in rather high N2O emissions, but the rate strongly decreased from 54 to 2 μg N kg–1 (dry weight) h–1 during the 100 h of incubation. Liming had a marked effect on N2O formation and significantly (P<0.001) reduced cumulative N2O emissions by 34%. Although the interaction of liming and L. terrestris was not significant, N2O emissions of limed soil columns with L. terrestris were 8% lower than those of the control. Received: 2 September 1999  相似文献   

11.
施肥方式对紫色土农田生态系统N2O和NO排放的影响   总被引:1,自引:1,他引:0  
依托紫色土施肥方式与养分循环长期试验平台(2002年—),采用静态箱-气相色谱法开展紫色土冬小麦-夏玉米轮作周期(2013年10月至2014年10月)农田生态系统N_2O和NO排放的野外原位观测试验。长期施肥方式包括单施氮肥(N)、传统猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)和秸秆还田配施氮磷钾肥(RSDNPK)等5种,氮肥用量相同[小麦季130 kg(N)×hm~(-2),玉米季150 kg(N)×hm~(-2)],不施肥对照(CK)用于计算排放系数,对比不同施肥方式对紫色土典型农田生态系统土壤N_2O和NO排放的影响,以期探寻紫色土农田生态系统N_2O和NO协同减排的施肥方式。结果表明,所有施肥方式下紫色土N_2O和NO排放速率波动幅度大,且均在施肥初期出现峰值;强降雨激发N_2O排放,但对NO排放无明显影响。在整个小麦-玉米轮作周期,N、OM、NPK、OMNPK和RSDNPK处理的N_2O年累积排放量分别为1.40 kg(N)×hm~(-2)、4.60 kg(N)×hm~(-2)、0.95 kg(N)×hm~(-2)、2.16kg(N)×hm~(-2)和1.41 kg(N)×hm~(-2),排放系数分别为0.41%、1.56%、0.25%、0.69%、0.42%;NO累积排放量分别为0.57 kg(N)×hm~(-2)、0.40 kg(N)×hm~(-2)、0.39 kg(N)×hm~(-2)、0.46 kg(N)×hm~(-2)和0.17 kg(N)×hm~(-2),排放系数分别为0.21%、0.15%、0.15%、0.17%、0.07%。施肥方式对紫色土N_2O和NO累积排放量具有显著影响(P0.05),与NPK处理比较,OM和OMNPK处理的N_2O排放分别增加384%和127%,同时NO排放分别增加3%和18%;RSDNPK处理的NO排放减少56%。表明长期施用猪厩肥显著增加N_2O和NO排放,而秸秆还田有效减少NO排放。研究表明,土壤温度和水分条件均显著影响小麦季N_2O和NO排放(P0.01),对玉米季N_2O和NO排放没有显著影响(P0.05),土壤无机氮含量则是在小麦-玉米轮作期N_2O和NO排放的主要限制因子(P0.01)。全量秸秆还田与化肥配合施用是紫色土农田生态系统N_2O和NO协同减排的优化施肥方式。  相似文献   

12.
《Soil Use and Management》2018,34(3):326-334
Chemical soil phosphorus (P) extraction has been widely used to characterize and understand changes in soil P fractions; however, it does not adequately capture rhizosphere processes. In this study, we used the biologically based phosphorus (BBP ) grading method to evaluate the availability and influencing factors of soil P under four P fertilizer regimes in a typical rice–wheat cropping rotation paddy field. Soil P was assessed after seven rice‐growth seasons at multiple growth stages: the seedling, the booting and the harvest stage. Soil CaCl2‐P, citrate‐P and HC l‐P (inorganic P, Pi) as well as enzyme‐P (organic P, Po) were not significantly different between soil treated with P fertilizer during the wheat season only (PW ) and during the rice season only (PR ) compared with soil treated during both the rice and the wheat seasons (PR +W) at all three rice‐growth stages. No P fertilizer application during either season (Pzero) significantly reduced the concentration of soil citrate‐P and HC l‐P at the rice‐seedling and harvest stages. Significant correlations were observed between the HC l extraction and Olsen‐P (R 2 = 0.823, <  0.001), followed by enzyme‐P (R 2 = 0.712, <  0.001), citrate‐P (R 2 = 0.591, <  0.001) and CaCl2‐P (R 2 = 0.133, <  0.05). Further redundancy analysis (RDA ) suggested that soil alkaline phosphatase (S‐ALP ) activity played a role in soil P speciation changes and was significantly correlated with enzyme‐P, citrate‐P and HC l‐P. These results may improve our ability to characterize and understand changes in soil P status while minimizing the overapplication of P fertilizer.  相似文献   

13.
The study was carried out at the experimental station of the Japan International Research Center for Agricultural Sciences to investigate gas fluxes from a Japanese Andisol under different N fertilizer managements: CD, a deep application (8 cm) of the controlled release urea; UD, a deep application (8 cm) of the conventional urea; US, a surface application of the conventional urea; and a control, without any N application. NO, N2O, CH4 and CO2 fluxes were measured simultaneously in a winter barley field under the maize/barley rotation. The fluxes of NO and N2O from the control were very low, and N fertilization increased the emissions of NO and N2O. NO and N2O from N fertilization treatments showed different emission patterns: significant NO emissions but low N2O emissions in the winter season, and low NO emissions but significant N2O emissions during the short period of barley growth in the spring season. The controlled release of the N fertilizer decreased the total NO emissions, while a deep application increased the total N2O emissions. Fertilizer-derived NO-N and N2O-N from the treatments CD, UD and US accounted for 0.20±0.07%, 0.71±0.15%, 0.62±0.04%, and 0.52±0.04%, 0.50±0.09%, 0.35±0.03%, of the applied N, respectively, during the barley season. CH4 fluxes from the control were negative on most sampling dates, and its net soil uptake was 33±7.1 mg m−2 during the barley season. The application of the N fertilizer decreased the uptake of atmospheric CH4 and resulted in positive emissions from the soil. CO2 fluxes were very low in the early period of crop growth while higher emissions were observed in the spring season. The N fertilization generally increased the direct CO2 emissions from the soil. N2O, CH4 and CO2 fluxes were positively correlated (P<0.01) with each other, whereas NO and CO2 fluxes were negatively correlated (P<0.05). The N fertilization increased soil-derived global warming potential (GWP) significantly in the barley season. The net GWP was calculated by subtracting the plant-fixed atmospheric CO2 stored in its aboveground parts from the soil-derived GWP in CO2 equivalent. The net GWP from the CD, UD, US and the control were all negative at −243±30.7, −257±28.4, −227±6.6 and −143±9.7 g C m−2 in CO2 equivalent, respectively, in the barley season.  相似文献   

14.
Current understanding of the effects of long-term application of various organic amendments on soil particulate organic matter (POM) storage and chemical stabilisation remains limited. Therefore, we collected soil samples from the soil profile (0–100?cm) under six treatments in a 31-year long-term fertilisation experiment: no fertiliser (CK), mineral fertilisers (NPK), mineral fertilisers plus 3.8 or 7.5?t?ha?1?year?1 (fresh base) the amount of wheat straw (1/2SNPK and SNPK) and mineral fertilisers plus swine or cattle manure (PMNPK and CMNPK). Long-term incorporation of wheat straw and livestock manure amendments significantly (p?<?0.05) increased crop yield and sustainable yield index, and POM storage compared with CK and NPK treatments. The mole ratios of H/C in the POM under organic amendment treatments significantly (p?<?0.05) decreased by 13.8% and 37.1%, respectively, compared with the NPK treatment. Similarly, solid state NMR spectroscopy showed that the O–alkyl carbon content of POM was greatly decreased, whereas aromatic carbon contents and alkyl to O–alkyl carbon ratios were substantially increased under PMNPK and CMNPK treatments. In conclusion, we recommend long-term livestock manure application as a preferred strategy for enhancing POM quantity and quality (chemical stability), and crop yield of vertisol soil in northern China.  相似文献   

15.
A field experiment on permanent ryegrass–white clover pasture at AgResearch's Ruakura dairy farm near Hamilton, New Zealand quantified nitrous oxide (N2O) emissions from different types of dairy effluent applied to soil at three seasons and evaluated the potential of dicyandiamide (DCD) (a nitrification inhibitor) to decrease gaseous N2O emissions. Fresh or stored manure and farm dairy effluent (FDE; from dairy shed washings), with or without DCD (10 kg/ha), were applied at approximately 100 kg N/ha to plots on a well‐drained soil on volcanic parent material. A field chamber technique was used to measure N2O emissions. Application of manure or FDE, both in fresh and stored forms, to pasture generally increased N2O emissions. Overall N2O emission factors (EF) varied between 0.01% and 1.87%, depending on application season and effluent type. EFs in spring and autumn were greater than those in summer (< 0.05). Among the effluents, N2O EFs were largest from fresh FDE (1.65%) during the spring measurement period, stored manure (1.87%) during the autumn and stored FDE (0.25%) during the summer. DCD was effective in decreasing N2O EFs from fresh FDE, fresh manure, stored FDE and stored manure by 40–80%, 69–76%, 24–84% and 60–70%, respectively. DCD reduced N2O emissions during the spring and autumn seasons more effectively than in the summer season.  相似文献   

16.
The superiority of mixing and deep placement of prilled urea (PU) or urea supergranules (USG) over surface‐broadcast application for reducing nitrogen (N) loss from lowland rice is well established. In upland agricultural systems, rainfall and/or the application and loss of irrigation water from soil systems may regulate urea N transformations and gaseous losses, depending on the method of fertilizer application and the particle size. To develop further insights into these processes, experiments were carried out in a silt loam soil mixed with PU or amended with point‐placed USG at a depth of 7.5 cm. Two soil water regimes were used: around field capacity (AFC) with low evaporative conditions (depletion: 77 to 69% water‐filled pore space, WFPS) and below field capacity (BFC) with high evaporative conditions following two irrigations (depletion: 70 to 55% WFPS). The nitrous oxide (N2O) emission was greater at AFC than at BFC, where nitrification was more rapid. The N2O peaks appeared mostly after the disappearance of nitrite (NO2 ?), presumably dominated by nitrifier and/or chemodenitrification and the degree of emissions probably depended on the stability period and the reduction of NO2 ? induced by the soil water regimes. The relative N2O losses from the added N were small (?0.20%) for all treatments after 21 days. The point at which 50% of its emissions (t½) occurred was delayed up to 6 days longer than found from the application of PU. The differences between PU and USG application were likely linked with the concentrations of ammonium (NH4 +), NO2 ?, and pH. These high concentrations continued longer at AFC than at BFC and were limited to a distance of <5.0 cm from the application zone. Similarly, the relative losses of the added N ranged from 0.19 to 0.56% at AFC and 0.08 to 0.37% at BFC, the highest being with USG application. Based on the areas receiving equal N, the N2O and ammonia (NH3) emissions from USG differed marginally with PU. Carbon dioxide (CO2) release was higher at AFC than BFC, in which the USG application probably limited microbial respiration preferentially to methane oxidation. A correlation study showed that the N2O flux was best explained together with CO2, nitrate (NO3 ?), NO2 ?, and WFPS (R 2 = 0.67***). This indicates the influence of both auto‐ and heterotrophic microbial activities toward N2O emission, with soil water being an important regulatory factor.  相似文献   

17.
The effect of reduced tillage (RT) on nitrous oxide (N2O) emissions of soils from fields with root crops under a temperate climate was studied. Three silt loam fields under RT agriculture were compared with their respective conventional tillage (CT) field with comparable crop rotation and manure application. Undisturbed soil samples taken in September 2005 and February 2006 were incubated under laboratory conditions for 10 days. The N2O emission of soils taken in September 2005 varied from 50 to 1,095 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in September 2005 were statistically (P < 0.05) higher or comparable than the N2O emissions from their respective CT soil. The N2O emission of soils taken in February 2006 varied from 0 to 233 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in February 2006 tended to be higher than the N2O emissions from their respective CT soil. A positive and significant Pearson correlation of the N2O–N emissions with nitrate nitrogen (NO3 –N) content in the soil was found (P < 0.01). Leaving the straw on the field, a typical feature of RT, decreased NO3 –N content of the soil and reduced N2O emissions from RT soils.  相似文献   

18.
Global warming potential (GWP) of sandy paddy soils may be reduced by trade-offs between N2O, CH4 and CO2 emissions. Laboratory experiments using either rice straw (1% or 0.5%) or together with urea-N (25 or 50 mg N kg−1 soil) at various levels of soil water were carried out for 30 days each, to test this assumption. Waterlogging combined with urea-N increased total N2O emissions, with greater release upon rewaterlogging (7.4 mg N kg−1 soil) than experienced by removing waterlogging only. Rice straw±urea-N either emitted small amounts of N2O or resulted in negative values at all water levels, including saturated and aerobic. Total CH4 fluxes declined with the decreased water levels and amount of rice straw (<193 mg C kg−1 soil), and also for CO2 with the latter (<1340 mg C kg−1 soil), and rewaterlogging had little influence on both. N2O under rewaterlogged and waterlogged±urea-N, CH4 under waterlogged with rice straw, and CO2 for the remainder were the major contributors to GWP. Results show that waterlogging following aerobic decomposition of rice straw (1%) with urea-N, applied either at the beginning or at the end of the aerobic conditions, could decrease GWP by 56-64% and 32-42% over the sole addition of rice straw (1% and 0.5%) under waterlogged and saturated conditions, respectively.  相似文献   

19.
Artificial urine, an aqueous solution of various nitrogenous compounds and salts, is routinely used in soil incubation studies on nitrous oxide (N2O) emissions and related nitrogen (N) and pH dynamics. There is, however, no consensus on artificial urine composition, and a wide variety of compositions are used. The aim of this study was to test which artificial urine composition is adequate for simulating N2O fluxes, respiration, soil mineral N and pH dynamics of real cattle urine in both short- and long-term incubation studies. Urine solutions of differing compositions were applied to a sandy soil and incubated for 65 days, and results of measurements on N2O fluxes and soil mineral N were analyzed over the first 5 days as well as over the whole incubation period. Results from two real cattle urines with known nitrogenous composition (R1 and R2) were compared with three artificial urine types: (i) urea+glycine (AG), (ii) urea+hippuric acid (AH) and (iii) an artificial urine identical to the nitrogenous composition of real urine R1 (AR). During the first 5 days, only cumulative N2O emissions for AG deviated significantly (P=0.02) from the N2O emissions for real urines, with 0.4% of applied N emitted compared with 0.0% and 0.1% for R1 and R2, respectively. Respiration from R1 was significantly (P<0.001) higher than from R2 and all artificial urines. Over the whole incubation period, no significant differences could be detected for N2O emissions or respiration with urine type. From all artificial urine types, AH yielded N2O emissions closest to those from real urine. AG deviated most from real urine, both in short- and long-term incubations. Over the whole period, soil NH4+ was higher for all artificial urines (P<0.001) and pH-KCl was lower for AG and AR (P=0.004) than for the real urines. AH was not significantly different from real urine R2 with respect to all measured properties except soil NH4+. We conclude that only AG did not adequately simulate N2O emissions, and that glycine is therefore not an appropriate substitution for hippuric acid in artificial urine. For future studies using artificial urine we recommend therefore a mixture containing at least urea and hippuric acid as sources of N. As no artificial urine composition resembled real urine with respect to all measured variables, even when nitrogenous composition was identical (AR), we recommend the use of real urines whenever possible.  相似文献   

20.
Urea fertilizer‐induced N2O emissions from soils might be reduced by the addition of urease and nitrification inhibitors. Here, we investigated the effect of urea granule (2–3 mm) added with a new urease inhibitor, a nitrification inhibitor, and with a combined urease inhibitor and nitrification inhibitor on N2O emissions. For comparison, the urea granules supplied with or without inhibitors were also used to prepare corresponding supergranules. The pot experiments without vegetation were conducted with a loess soil at (20 ± 2)°C and 67% water‐filled pore space. Urea was added at a dose of 86 kg N ha–1 by surface application, by soil mixing of prills (<1 mm) and granules, and by point‐placement of supergranules (10 mm) at 5 cm soil depth. A second experiment was conducted with spring wheat grown for 70 d in a greenhouse. The second experiment included the application of urea prills and granules mixed with soil, the point‐placement of supergranules and the addition of the urease inhibitor, and the combined urease plus nitrification inhibitors at 88 kg N ha–1. In both experiments, maximum emissions of N2O appeared within 2 weeks after fertilization. In the pot experiments, N2O emissions after surface application of urea were less (0.45% to 0.48% of total fertilization) than from the application followed by mixing of the soil (0.54% to 1.14%). The N2O emissions from the point‐placed‐supergranule treatment amounted to 0.64% of total fertilization. In the pot experiment, the addition of the combined urease plus nitrification inhibitors, nitrification inhibitor, and urease inhibitor reduced N2O emissions by 79% to 87%, 81% to 83%, and 15% to 46%, respectively, at any size of urea application. Also, the N2O emissions from the surface application of the urease‐inhibitor treatment exceeded those of the granules mixed with soil and the point‐placed‐supergranule treatments receiving no inhibitors by 32% to 40%. In the wheat growth experiment, the N2O losses were generally smaller, ranging from 0.16% to 0.27% of the total fertilization, than in the pot experiment, and the application of the urease inhibitor and the combined urease plus nitrification inhibitors decreased N2O emissions by 23% to 59%. The point‐placed urea supergranule without inhibitors delayed N2O emissions up to 7 weeks but resulted in slightly higher emissions than application of the urease inhibitor and the urease plus nitrification inhibitors under cropped conditions. Our results imply that the application of urea fertilizer added with the combined urease and nitrification inhibitors can substantially reduce N2O emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号