首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

We studied the effect of crop residues with various C:N ratios on N2O emissions from soil. We set up five experimental plots with four types of crop residues, onion leaf (OL), soybean stem and leaf (SSL), rice straw (RS) and wheat straw (WS), and no residue (NR) on Gray Lowland soil in Mikasa, Hokkaido, Japan. The C:N ratios of these crop residues were 11.6, 14.5, 62.3, and 110, respectively. Based on the results of a questionnaire survey of farmer practices, we determined appropriate application rates: 108, 168, 110, 141 and 0 g C m?2 and 9.3, 11.6, 1.76, 1.28 and 0 g N m?2, respectively. We measured N2O, CO2 and NO fluxes using a closed chamber method. At the same time, we measured soil temperature at a depth of 5 cm, water-filled pore space (WFPS), and the concentrations of soil NH+ 4-N, NO? 3-N and water-soluble organic carbon (WSOC). Significant peaks of N2O and CO2 emissions came from OL and SSL just after application, but there were no emissions from RS, WS or NR. There was a significant relationship between N2O and CO2 emissions in each treatment except WS, and correlations between CO2 flux and temperature in RS, soil NH+ 4-N and N2O flux in SSL and NR, soil NH+ 4-N and CO2 flux in SSL, and WSOC and CO2 flux in WS. The ratio of N2O-N/NO-N increased to approximately 100 in OL and SSL as N2O emissions increased. Cumulative N2O and CO2 emissions increased as the C:N ratio decreased, but not significantly. The ratio of N2O emission to applied N ranged from ?0.43% to 0.86%, and was significantly correlated with C:N ratio (y = ?0.59 ln [x] + 2.30, r 2 = 0.99, P < 0.01). The ratio of CO2 emissions to applied C ranged from ?5.8% to 45% and was also correlated with C:N ratio, but not significantly (r 2 = 0.78, P = 0.11).  相似文献   

2.
The aim of this study was to investigate the effect of crop residues from winter oilseed rape on N2O emissions from a loamy soil and to determine the effect of different tillage practices on N2O fluxes. We therefore conducted a field experiment in which crop residues of winter oilseed rape (Brassica napus L., OSR) were replaced with 15N labelled OSR residues. Nitrous oxide (N2O) emissions and 15N abundance in the N2O were determined for a period of 11 months after harvest of OSR and in the succeeding crop winter wheat (Triticum aestivum L.) cultivated on a Haplic Luvisol in South Germany. Measurements were carried out with the closed chamber method in a treatment with conventional tillage (CT) and in a treatment with reduced soil tillage (RT). In both tillage treatments we also determined N2O fluxes in control plots where we completely removed the crop residues. High N2O fluxes occurred in a short period just after OSR residue replacement in fall and after N‐fertilization to winter wheat in the following spring. Although N2O emissions differed for distinct treatments and sub‐periods, cumulative N2O emissions over the whole investigation period (299 days) ranged between 1.7 kg and 2.4 kg N2O‐N ha?1 with no significant treatment effects. More than half of the cumulative emissions occurred during the first eight weeks after OSR replacement, highlighting the importance of this post‐harvest period for annual N2O budgets of OSR. The contribution of residue N to the N2O emission was low and explained by the high C/N‐ratio fostering immobilization of mineral N. In total only 0.03% of the N2O‐N emitted in the conventional tillage treatment and 0.06% in the reduced tillage treatment stemmed directly from the crop residues. The 15N recovery in the treatments with crop residues was 62.8% (CT) and 75.1% (RT) with more than 97% of the recovered 15N in the top soil. Despite our measurements did not cover an entire year, the low contribution of the OSR residues to the direct N2O emissions shows, that the current IPCC tier 1 approach, which assumes an EF of 1%, strongly overestimated direct emissions from OSR crop residues. Furthermore, we could not observe any relationship between tillage and crop residues on N2O emission, only during the winter period were N2O emissions from reduced tillage significantly higher compared to conventional tillage. Annual N2O emission from RT and CT did not differ.  相似文献   

3.
Emissions of N2O were measured following addition of 15N‐labelled residues of tropical plant species [Vigna unguiculata (cowpea), Mucuna pruriens and Leucaena leucocephala] to a Ferric Luvisol from Ghana at a rate of 100 mg N/kg soil under controlled environment conditions. Residues were also applied in different ratio combinations with inorganic N fertilizer, at a total rate of 100 mg N/kg soil. N2O emissions were increased after addition of residues, and further increased with combined (ratio) applications of residues and inorganic N fertilizer. However, 15N‐N2O production was low and short‐lived in all treatments, suggesting that most of the measured N2O‐N was derived from the applied fertilizer or native soil mineral N pools. There was no consistent trend in magnitude of emissions with increasing proportion of inorganic fertilizer in the application. The positive interactive effect between residue‐ and fertilizer‐N sources was most pronounced in the 25:75 Leucaena:fertilizer and cowpea:fertilizer treatments where 1082 and 1130 mg N2O‐N/g residue were emitted over 30 days. N2O (loge) emission from all residue amended treatments was positively correlated with the residue C:N ratio, and negatively correlated with residue polyphenol content, polyphenol:N ratio and (lignin + polyphenol):N ratio, indicating the role of residue chemical composition in regulating emissions even when combined with inorganic fertilizer. The positive interactive effect in our treatments suggests that it is unlikely that combined applications of residues and inorganic fertilizer can lower N2O emissions unless the residue is of very low quality promoting strong immobilisation of soil mineral N.  相似文献   

4.
Post‐harvest biomass can be used as feedstock for energy production and alter N2O emissions from the soil, which is among the main issues determining bioethanol sustainability. To assess the effects of sugarcane straw return on gas emissions, we established a field experiment in which 0, 50, 75 or 100% (0, 5.65, 8.47 and 11.30 Mg/ha dry biomass, respectively) of the crop residues (straw) was left in the field during the first two ratoon crops. As fertilizer is applied in bands to sugarcane, we also investigated the contribution of different positions to the N2O emissions within the field. There was an interactive effect between straw and inorganic fertilizer, leading to a nonlinear effect of crop residues on the fertilizer emission factor (EF). However, straw consistently reduced N2O emissions from the field, acting mainly in the unfertilized areas in the field (< 0.05). We observed that considering the typical EF used in the literature, the N2O‐N emissions attributed to fertilizer ranged from 0.19 to 0.79 kg/ha, while the total emissions ranged from 3.3 to 5.2 kg/ha, from the highest amount of straw to the lowest. We conclude that overall, the fertilizer EF is not as relevant as the total emissions, based on this and other studies. Consequently, management practices might be more effective in improving the GHG balance than changing inorganic fertilizer use. We conclude that keeping up to 11 Mg/ha of straw with a large C:N ratio (>100:1) on site might increase sugarcane production sustainability by reducing the greenhouse gas emissions from the field.  相似文献   

5.
The influence of crop residues with different C: N ratios on the N2O emission from differently managed loamy sand soddy-podzolic soils was studied in a 50-day laboratory experiment. The application of crop residues into the soil increased the N2O emission from the soil. The N2O emission was lower from the poorly managed soil as compared to the soil with the high degree of cultivation. The crop residues form the following decreasing sequence in terms of their effect on the cumulative N2O flow: cabbage > red clover > perennial grasses > straw of spring wheat. The composting of crop residues with a wide C: N ratio for 50 days did not exceed the critical value of the emission factor (1.25%), whereas, in the composting of crop residues with a narrow C: N ratio, the critical value of the emission factor was 1.3–2.0 times higher.  相似文献   

6.
Groundnut as a pre‐rice crop is usually harvested 1–2 months before rice transplanting, during which much of legume residue N released could be lost. Our objectives were to investigate the effect of mixing groundnut residues (GN, 5 Mg ha?1) with rice straw (RS) in different proportions on: (i) regulating N dynamics, (ii) potential microbial interactions during decomposition, and (iii) associated nitrous oxide and methane emissions at weekly intervals during the lag phase until rice transplanting (i, ii) or harvest (iii). Decomposition was fastest in groundnut residues (64% N lost) with a negative interaction for N loss when mixed 1:1 with rice straw. Adding groundnut residues increased mineral N initially, while added rice straw led to initial microbial N immobilization. Mineral N in mixed residue treatments was significantly greatest at the beginning of rice transplanting. Soil microbial N and apparent efficiency were higher, while absolute and relative microbial C were often lowest in groundnut and mixed treatments. Microbial C:N ratio increased with increasing proportion of added rice straw. N2O losses were largest in the groundnut treatment (12.2 mg N2O‐N m?2 day?1) in the first week after residue incorporation and reduced by adding rice straw. N2O‐N emissions till rice harvest amounted to 0.73 g N2O‐N m?2 in the groundnut treatment. CH4 emissions were largest in mixed treatments (e.g. 155.9 g CH4 m?2, 1:1 treatment). Mixing residues resulted in a significant interaction in that observed gaseous losses were greater than predicted from a purely additive effect. It appears possible to regulate N dynamics by mixing rice straw with groundnut residues; however, at a trade‐off of increased CH4 emissions.  相似文献   

7.
Manipulating the N release from high-N crop residues by simultaneous mixing of these residues with organic biological waste (OBW) materials seems to be a possible method to reduce NO3 leaching. The aim of this study was to examine whether the incorporation of OBW materials together with a high-N crop residue (celery) had also an effect on N2O emission from horticultural soil under short-term and optimised laboratory conditions. A sandy loam soil and celery residues were mixed with different OBW materials and brought into PVC tubes at 80% water-filled pore space and 15°C. Every 2.5 h, a gas sample was taken and analysed by gas chromatography for its N2O concentration. The soil amended with only celery residues had a cumulative N2O emission of 9.6 mg N kg–1 soil in 50 h. When the celery residues were mixed with an OBW material, the N2O emission was each time lower than the emission from the celery-only treatment (between 3.8 and 5.9 mg N kg–1 soil during maximum 77 h), except with paper sludge (17.2 mg N kg–1 soil in 100 h). The higher N2O emission from the paper sludge treatment was probably due to its unusually low C:N ratio. Straw, green waste compost 1 (GWC1) and 2 (GWC2), saw dust, and tannic acid reduced the N2O emission of the celery treatment by 40 to 60%. Although the N2O reduction potential can be expected to be lower and with differing dynamics under field conditions, this study indicates that apart from reducing NO3 leaching, OBW application may at the same time reduce N2O emissions after incorporation of high-N crop residues.  相似文献   

8.
Abstract

Microbial nitrification and denitrification are responsible for the majority of soil nitrous (N2O) emissions. In this study, N2O emissions were measured and the abundance of ammonium oxidizers and denitrifiers were quantified in purple soil in a long-term fertilization experiment to explore their relationships. The average N2O fluxes and abundance of the amoAgene in ammonia-oxidizing bacteria during the observed dry season were highest when treated with mixed nitrogen, phosphorus and potassium fertilizer (NPK) and a single N treatment (N) using NH4HCO3as the sole N source; lower values were obtained using organic manure with pig slurry and added NPK at a ratio of 40%:60% (OMNPK),organic manure with pig slurry (OM) and returning crop straw residue plus synthetic NH4HCO3fertilizer at a ratio of 15%:85% (SRNPK). The lowest N2O fluxes were observed in the treatment that used crop straw residue(SR) and in the control with no fertilizer (CK). Soil NH4+provides the substrate for nitrification generating N2O as a byproduct. The N2O flux was significantly correlated with the abundance of the amoA gene in ammonia-oxidizing bacteria (r = 0.984, p < 0.001), which was the main driver of nitrification. During the wet season, soil nitrate (NO3?) and soil organic matter (SOC) were found positively correlated with N2O emissions (r = 0.774, p = 0.041 and r = 0.827, p = 0.015, respectively). The nirS gene showed a similar trend with N2O fluxes. These results show the relationship between the abundance of soil microbes and N2O emissions and suggest that N2O emissions during the dry season were due to nitrification, whereas in wet season, denitrification might dominate N2O emission.  相似文献   

9.
施肥方式对紫色土农田生态系统N2O和NO排放的影响   总被引:1,自引:1,他引:0  
依托紫色土施肥方式与养分循环长期试验平台(2002年—),采用静态箱-气相色谱法开展紫色土冬小麦-夏玉米轮作周期(2013年10月至2014年10月)农田生态系统N_2O和NO排放的野外原位观测试验。长期施肥方式包括单施氮肥(N)、传统猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)和秸秆还田配施氮磷钾肥(RSDNPK)等5种,氮肥用量相同[小麦季130 kg(N)×hm~(-2),玉米季150 kg(N)×hm~(-2)],不施肥对照(CK)用于计算排放系数,对比不同施肥方式对紫色土典型农田生态系统土壤N_2O和NO排放的影响,以期探寻紫色土农田生态系统N_2O和NO协同减排的施肥方式。结果表明,所有施肥方式下紫色土N_2O和NO排放速率波动幅度大,且均在施肥初期出现峰值;强降雨激发N_2O排放,但对NO排放无明显影响。在整个小麦-玉米轮作周期,N、OM、NPK、OMNPK和RSDNPK处理的N_2O年累积排放量分别为1.40 kg(N)×hm~(-2)、4.60 kg(N)×hm~(-2)、0.95 kg(N)×hm~(-2)、2.16kg(N)×hm~(-2)和1.41 kg(N)×hm~(-2),排放系数分别为0.41%、1.56%、0.25%、0.69%、0.42%;NO累积排放量分别为0.57 kg(N)×hm~(-2)、0.40 kg(N)×hm~(-2)、0.39 kg(N)×hm~(-2)、0.46 kg(N)×hm~(-2)和0.17 kg(N)×hm~(-2),排放系数分别为0.21%、0.15%、0.15%、0.17%、0.07%。施肥方式对紫色土N_2O和NO累积排放量具有显著影响(P0.05),与NPK处理比较,OM和OMNPK处理的N_2O排放分别增加384%和127%,同时NO排放分别增加3%和18%;RSDNPK处理的NO排放减少56%。表明长期施用猪厩肥显著增加N_2O和NO排放,而秸秆还田有效减少NO排放。研究表明,土壤温度和水分条件均显著影响小麦季N_2O和NO排放(P0.01),对玉米季N_2O和NO排放没有显著影响(P0.05),土壤无机氮含量则是在小麦-玉米轮作期N_2O和NO排放的主要限制因子(P0.01)。全量秸秆还田与化肥配合施用是紫色土农田生态系统N_2O和NO协同减排的优化施肥方式。  相似文献   

10.
A field experiment involving rice–wheat rotation was performed to investigate the effect of mushroom residue (MR) in comparison with chemical fertilizer (CF) and crop straw return on methane (CH4) and nitrous oxide (N2O) emissions in 2012–2013. Five treatments in quadruplicate were included in this study: (1) CF only, (2) CFS (straw + CF), (3) MR-1 (50% amount of N in CF was replaced with MR), (4) MR-2 (100% amount of N in CF was replaced with MR) and (5) MR-3 (150% amount of N in CF was replaced with MR). Results showed that the effects of CFS and MR-1 treatments on CH4 and N2O emissions did not significantly differ. By contrast, CH4 emissions decreased as the amount of applied MR increased. Crop straw and MR stimulated CH4 emissions (from 48.8% to 119%) in rice season in 2012. In 2013, the applied crop straw and MR decreased CH4 emissions (from 21.3% to 37.3%). This contrasting effect might be explained by the difference in soil moisture content between the two seasons. N2O emission in wheat season could be efficiently decreased (from 25.2% to 29.7%) by applying MR. Our results suggesting that MR could be used as a soil organic amendment under the premise of proper water management.  相似文献   

11.
肥料添加剂降低N2O排放的效果与机理   总被引:4,自引:2,他引:2  
如何降低氮肥施入农田后的N2O排放,实现氮肥增产效应的同时降低其对环境的负面影响是全球集约化农业生产中重要的科学问题,氮肥添加剂是有效途径之一。本研究采用室内静态培养法,在调节土壤水分含量和温度等环境因素的条件下,研究不同肥料添加剂对华北平原典型农田土壤N2O排放的影响及其机制。结果表明,N2O排放通量的峰值大约出现在施氮后的第24 d,肥料混施较肥料表施的出峰时间提前。与单施尿素处理相比,添加硝化抑制剂DMPP或DCD能分别降低N2O排放总量99.2%和97.1%; 添加硫酸铜对N2O排放的抑制作用不显著; 添加秸秆会增加N2O排放总量60.7%,而在添加秸秆的土壤中施加硝化抑制剂DMPP能够显著降低N2O排放量至无肥对照水平。说明华北平原农田土壤中N2O的产生主要是由硝化作用驱动,同时也可看出,添加硝化抑制剂是N2O减排的有效措施。  相似文献   

12.
Concerns about sustainability of agroecosystems management options in developed and developing countries warrant improved understanding of N cycling. The Integrated Soil Fertility Management paradigm recognizes the possible interactive benefits of combining organic residues with mineral fertilizer inputs on agroecosystem functioning. However, these beneficial effects may be controlled by residue quality. This study examines the controls of inputs on N cycling across a gradient of (1) input, (2) residue quality, and (3) texture. We hypothesized that combining organic residue and mineral fertilizers would enhance potential N availability relative to either input alone. Residue and fertilizer inputs labeled with 15N (40–60 atom% 15N) were incubated with 200 g soil for 545 d in a microcosm experiment. Input treatments consisted of a no-input control, organic residues (3.65 g C kg−1 soil, equivalent to 4 Mg C ha−1), mineral N fertilizer (100 mg N kg−1 soil, equivalent to 120 kg N ha−1), and a combination of both with either the residue or fertilizer 15N-labeled. Zea mays stover inputs were added to four differently textured soils (sand, sandy loam, clay loam, and clay). Additionally, inputs of three residue quality classes (class I: Tithonia diversifolia, class II: Calliandra calothyrsus, class III: Z. mays stover) were applied to the clay soil. Available N and N2O emissions were measured as indicators for potential plant N uptake and N losses. Combining residue and fertilizer inputs resulted in a significant (P < 0.05) negative interactive effect on total extractable mineral N in all soils. This interactive effect decreased the mineral N pool, due to an immobilization of fertilizer-derived N and was observed up to 181 d, but generally became non-significant after 545 d. The initial reduction in mineral N might lead to less N2O losses. However, a texture effect on N2O fluxes was observed, with a significant interactive effect of combining residue and fertilizer inputs decreasing N2O losses in the coarse textured soils, but increasing N2O losses in the fine textured soils. The interactive effect on mineral N of combining fertilizer with residue changed from negative to positive with increasing residue quality. Our results indicate that combining fertilizer with medium quality residue has the potential to change N transformations through a negative interactive effect on mineral N. We conclude that capitalizing on interactions between fertilizer and organic residues allows for the development of sustainable nutrient management practices.  相似文献   

13.
Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China. Despite the popularity of this practice, our understanding of the underlying processes for straw and manure combined application is relatively poor. In this study, rice straw (carbon (C)/nitrogen (N) ratio of 63), green manure (hairy vetch, C/N ratio of 14), and their mixtures (C/N ratio of 25 and 35) were added into a paddy soil, and their effects on soil N availability and C or N loss under waterlogged conditions were evaluated in a 100-d incubation experiment. All plant residue treatments significantly enhanced CO2 and CH4 emissions, but decreased N2O emission. Dissolved organic C (DOC) and N (DON) and microbial biomass C in soil and water-soluble organic C and N and mineral N in the upper aqueous layer above soil were also enhanced by all the plant residue treatments except the rice straw treatment, and soil microbial biomass N and mineral N were lower in the rice straw treatment than in the other treatments. Changes in plant residue C/N ratio, DOC/DON ratio, and cellulose content significantly affected greenhouse gas emissions and active C and N concentrations in soil. Additionally, the treatment with green manure alone yielded the largest C and N losses, and incorporation of the plant residue mixture with a C/N ratio of 35 caused the largest net global warming potential (nGWP) among the amended treatments. In conclusion, the co-incorporation of rice straw and green manure can alleviate the limitation resulting from only applying rice straw (N immobilization) or the sole application of leguminous green manure (high C and N losses), and the residue mixture with a C/N ratio of 25 is a better option because of lower nGWP.  相似文献   

14.
In the context of their role in global warming, nitrous oxide (N2O) emissions from agricultural soil under different management practices were studied in Hokkaido, northern Japan. To assess the impacts of reduced tillage, composted cattle manure-based fertilization and amendments with crop residues and green manure on N2O emissions from soil, a field experiment was conducted under a four-year crop rotation on a well-drained Andisol. The crop rotation included potato (Solanum tuberosum L.) or sweet corn (Zea mays L.), winter wheat (Triticum aestivum L.), sugar beet (Beta vulgaris L. subsp. vulgaris) and soybean (Glycine max (L.) Merr.). The cumulative N2O emissions for the four-year study period differed widely (0.33 to 4.90?kg?N?ha?1), depending on the treatments imposed, being the greatest for a combination of conventional moldboard plow tillage, composted cattle manure-based fertilization and increased plant residue input, and the lowest for a combination of conventional tillage, chemical fertilizer-based fertilization and normal plant residue input treatments. The cumulative N2O emissions under reduced tillage were all small, irrespective of fertilization and plant residue input treatments. Composted cattle manure-based fertilization (P?≤?0.01) and increased plant residue input (P?≤?0.01) significantly increased cumulative N2O emissions. Tillage showed a significant interaction with fertilization and plant residue input, indicating that N2O emissions were enhanced when composted cattle manure, crop residues and green manure were incorporated by conventional tillage. In the present study, the N2O emission factors for chemical fertilizer, composted cattle manure and crop residues were 0.26?±?0.44, 0.11?±?0.16 and ?0.03?±?0.52%, respectively, all much lower than the country-specific emission factor for Japan's well-drained soils (0.62%) and the default emission factor used in the IPCC guideline (1%).  相似文献   

15.
Experiments were conducted in an attempt to study the impact of using different organic residues as fertilizers on grain yield, magnitude of nitrous oxide (N2O) emissions, and soil characteristics. Five fertilizer treatments including conventional nitrogen (N) fertilizer, cow manure, rice straw, poultry manure, and sugarcane bagasse were applied in the rice field in 2012. The maximum reduction in seasonal N2O emissions (10–27%) was observed under the influence of rice straw application over conventional N fertilizer. The experiment was repeated for a second season in 2013 with the same treatments for further confirmation of the results obtained during the first year of experimentation. The application of rice straw also showed a slight advantage by increasing grain yield (4.38 t ha?1) compared to control. Important soil properties and plant growth parameters were studied and their relationships with N2O emission were worked out. The incorporation of organic residues helped in restoring and improving the soil health and effectively enhancing grain yield with reduced N2O emission from rice fields.  相似文献   

16.
Grain legume production with rhizobial inoculation has drawn attention not only because of the economic value of nitrogen (N) fixation by grain legumes, but also because of the concern that N2 fixation by grain legumes may enhance emissions of nitrous oxide (N2O), a powerful greenhouse gas. However, the relationship between N2O emissions and biological N2 fixation by grain legumes is not well understood. The objective of this study was to quantify N2O emissions associated with N2 fixation by grain legumes as affected by wetting/drying cycles and crop residues. Two grain legumes, lentil (Lens esculenta Moench) and pea (Pisum sativum L.), either inoculated with two Rhizobium leguminosarum biovar viciae strains, 99A1 and RGP2, respectively, or fertilized with 15N-labeled fertilizer were grown in a controlled environment under three wetting/drying cycles. Profile N2O concentrations and surface N2O emissions were measured from the soil–plant systems, which were compared with those from a cereal, spring wheat (Triticum aestivum L. ac. Barrie). After harvest, crop residues were incorporated into soils that were seeded to spring wheat to evaluate the effect of crop residues on N2O emissions. Results indicated that: (1) inoculating grain legumes with non-denitrifying rhizobia did not enhance N2O emissions and the presence of grain legumes did not increase N2O emissions compared with the cereal crop, and (2) profile N2O accumulation and surface emissions were not related to the type of crop residues added to the soil, but related to the residual N applied previously as N fertilizer. This suggests that N2O emissions are not directly related to biological N2 fixation by grain legumes, and on a short time scale, N rich residues of N2-fixing crops have a limited impact on N2O emissions compared with N fertilization.  相似文献   

17.
Soils under intensive agricultural practices such as those for growing vegetables in plastic greenhouses are an important anthropogenic source of nitrous oxide (N2O). Nitrous oxide emissions and measures to mitigate them through fertilizer N management have been less frequently studied than open field systems. The objectives of this study were to measure N2O emissions from vegetables under greenhouse conditions in Southern China and to investigate the effect of reducing the amount of applied synthetic N fertilizer compared with local practice. Results indicate that the average N2O‐N flux during the growth of four vegetables (tomato, cucumber, celery and a second tomato crop) was 117.4 ± 9 μg N/m2/h, and the annual emission rate was 8.1 ± 0.6 kg/N/ha for local farms. Temperature was important with much lower emissions during the celery‐growing season when soil and air temperatures were frequently <10 °C. Nitrous oxide emissions from the greenhouse vegetables were seven times greater than from the rice–wheat system in the same area and soils. Reducing the amount of applied synthetic N fertilizer by 40% relative to local farmers’ normal usage could reduce annual cumulative N2O emissions by 33% without any impact on crop yields.  相似文献   

18.
施肥方式对冬小麦季紫色土N2O排放特征的影响   总被引:8,自引:2,他引:6  
利用紫色土养分循环长期定位施肥试验平台,通过静态箱-气相色谱法,于2012年11月至2013年5月,研究了单施氮肥(N)、猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)、秸秆还田配施氮磷钾肥(CRNPK)及对照不施肥(NF)6种施肥方式下,紫色土冬小麦季土壤N2O的排放特征。结果表明,在相同施氮水平[130 kg(N)·hm-2]下,施肥方式对N2O排放量有显著影响(P0.05)。N、OM、NPK、OMNPK和CRNPK处理下,土壤N2O排放量[kg(N)·hm-2]分别为0.38、0.36、0.29、0.33和0.19,N2O排放系数分别为0.25%、0.23%、0.18%、0.21%和0.10%。NF的土壤N2O排放量为0.06 kg(N)·hm-2。土壤无机氮含量(NO3--N和NH4+-N)是N2O排放的主要影响因子,降雨能有效激发N2O排放。基于小麦产量评价不同施肥方式下的N2O排放,结果表明,N、OM、NPK、OMNPK和CRNPK单位小麦产量N2O的GWP值[yield-scaled GWP,kg(CO2 eq)·t-1]分别为132.57、45.70、49.07、48.92和26.41。CRNPK的小麦产量与6种施肥方式中获得最大产量的OM间没有显著差异,但显著高于其他处理。而且,CRNPK的yield-scaled GWP比紫色土地区冬小麦种植中常规施肥方式(NPK)显著减少46%,并显著低于其他4种施肥方式。可见,秸秆还田配施氮磷钾肥在保证小麦产量的同时,能有效减少因施肥引发的N2O排放,可作为紫色土地区推荐的最佳施肥措施。  相似文献   

19.
Biochar has been shown to be potentially beneficial for enhancing yields and soil properties, and diminishing nitrogen (N) losses. However, it remains unclear how biochar regulates soil carbon (C) and N to mitigate N losses induced by straw mixing with N fertilizer in dryland soils. Therefore, we investigated the effects of straw mixing (S1), S1 with biochar (SB) and no straw inputs (S0), and routine urea application rates (N1) and 70% of routine rates (N0.7) on yields and N losses, and identify the relationship between N losses and soil C and N compounds. Results showed that N0.7 and N1 were suitable for the maize and wheat seasons, respectively, contributing to mitigating N losses without reducing crop yields. Moreover, in the maize season, N0.7-SB significantly mitigated the straw-induced NH3-N and N2O-N emissions by 106% and 81%, respectively. In the wheat season, N1-SB reduced the straw-induced NH3-N and N2O-N emissions by 35% and 66%, respectively. In addition, N0.7-SB sharply reduced soil inorganic N (SIN) storage in the maize season. Furthermore, the NH3-N and N2O-N emission rates were negatively correlated with dissolved organic carbon/SIN content (0–20 cm) (DOC/SIN0-20). N losses (N2O-N and NH3-N emissions and SIN storage) were positively correlated with SIN0-20, but negatively correlated with soil organic carbon / SIN0-20 (SOC/ SIN0-20). This study provides further evidence that biochar with an appropriate N application rate decreased SIN0-20 and increased DOC/SIN0-20, thus reducing SIN storage and the straw-induced gaseous N emissions without decreasing crop yields.  相似文献   

20.
An increasing area of oilseed rape cultivation in Europe is used to produce biodiesel. However, a large amount of straw residue is often left in the field in autumn. Straw mineralization provides both carbon (C) and nitrogen (N) sources for emission of soil nitrous oxide (N2O), which is an important greenhouse gas with a high warming potential. Some studies have focused on soil N2O emissions immediately post-harvest; however, straw mineralization could possibly last over winter. Most field studies in winter have focused on freeze-thaw cycles. It is still not clear how straw mineralization affects soil N2O emissions in unfrozen wintertime conditions. We carried out a field experiment in northern Germany in winter 2014, adding straw and glucose as a source of C with three rates of N fertilizer (0, 30, and 60 kg N ha−1). During the 26 days of observation, cumulative N2O emission in treatments without C addition was negative at all N fertilizer levels. Straw addition produced –3.2, 11.2, and 5.0 mg N2O-N m−2 at 0, 30, and 60 kg N ha−1, respectively. Addition of glucose surprisingly caused –1.5, 74.6, and 165 mg N2O–N m−2 at 0, 30, and 60 kg N ha−1, respectively. This study demonstrates that oilseed rape straw does not cause high N2O emissions in wintertime when no extreme precipitation or freeze-thaw cycles are involved, and soil organic C content is low. However, N2O emission could be intensively stimulated, when both easily available organic C and nitrate are not limited and the soil temperature between 0 and 10°C. These results provide useful information on potential changes to N2O emissions that may occur due to the increased use of oilseed rape for biodiesel combined with less severe winters in the northern hemisphere driven by global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号