首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Emission of methane (CH4), a major greenhouse gas, from submerged paddy soils is generally reduced by introducing intermittent drainage in summer, which is a common water management in Japan. However, such a practice is not widely conducted in Hokkaido, a northern region in Japan, to prevent a possible reduction in rice grain yield caused by cold weather. Therefore, the effects of intermittent drainage on CH4 emission and rice grain yield have not been investigated comprehensively in Hokkaido. In this study, we conducted a three-year field experiment in Hokkaido and measured CH4 and nitrous oxide (N2O) fluxes and rice grain yield to elucidate whether the reduction in CH4 emission can be achieved in Hokkaido as well as other regions in Japan. Four experimental treatments, namely, two soil types [soils of light clay (LiC) and heavy clay (HC) textures] and two water management [continuous flood irrigation (CF), and intermittent drainage (ID)], were used, and CH4 and N2O fluxes were measured throughout the rice cultivation periods from 2016 to 2018. Cumulative CH4 emissions in 2016 were markedly low, suggesting an initially low population of methanogens in the soils presumably due to no soil submergence or crop cultivation in the preceding years, which indicates a possible reduction in CH4 emission by introducing paddy-upland crop rotation. Cumulative CH4 emissions in the ID-LiC and ID-HC plots were 21–91% lower than those in the CF-LiC and CF-HC plots, respectively, whereas the cumulative N2O emissions did not significantly differ between the different water managements. The amount of CH4 emission reduction by the intermittent drainage was largest in 2018, with a comparatively long period of the first drainage for 12 days in summer. Rice grain yields did not significantly differ between the different water managements for the entire 3 years, although the percentage of well-formed rice grains was reduced by the intermittent drainage in 2018. These results suggest that CH4 emission from paddy fields can be reduced with no decrease in rice grain yield by the intermittent drainage in Hokkaido. In particular, the first drainage for a long period in summer is expected to reduce CH4 emission markedly.  相似文献   

2.
The combined seeding and cropping of non-leguminous and leguminous cover crops during the cold fallow season is recommended as an important agronomic practice to improve total biomass productivity and soil fertility in mono-rice (Oryza sativa L.) cultivation system. However, application of plant residues as green manure can increase methane (CH4) emission during rice cultivation and affect rice quality and productivity, but its effects are not well examined. In this field study, the mixture of barley (Hordeum vulgare R.) and hairy vetch (Vicia villosa R., hereafter, vetch) seeds with 75 % recommended dose (RD 140 kg ha?1) and 25 % RD (90 kg ha?1), respectively, were seeded after rice harvesting in late November, 2010, and harvested before rice transplanting in early June 2011. Total aboveground biomass was 36 Mg ha?1 (fresh weight basis with 68 % moisture content), which was composed with 12 Mg ha?1 of barley and 24 Mg ha?1 of vetch. In order to determine the optimum recycling ratio of biomass application that can minimize CH4 emission without affecting rice productivity, different recycling ratios of 0, 25, 50, 75, and 100 % of the total harvested biomass were incorporated as green manure 1 week before rice transplanting in a typical temperate paddy soil. The same rates of chemical fertilizers (N–P2O5–K2O?=?90–45–58 kg ha?1) were applied in all treatments. Daily mean CH4 emission rates and total CH4 fluxes were significantly (p?<?0.05) increased with increasing application rates of cover crop biomass. Rice productivity also significantly (p?<?0.05) increased with biomass application, but the highest grain yield (53 % increase over the control) was observed for 25 % recycling. However, grain quality significantly (p?<?0.05) decreased with increasing cover crop application rates above 25 % recycling ratio, mainly due to extended vegetative growth periods of rice plants. Total CH4 flux per unit grain yield, an indicator used to simultaneously compare CH4 emission impact with rice production, was not statistically different between 25 % biomass recycling ratio and the control but significantly increased with increasing application rates. Conclusively, the biomass recycling ratio at 25 % of combined barley and vetch cover crops as green manure might be suitable to sustain rice productivity without increasing CH4 emission impact in mono-rice cultivation system.  相似文献   

3.
稻田种养结合循环农业温室气体排放的调控与机制   总被引:6,自引:0,他引:6  
水稻在我国粮食作物种植中占据主导地位,在保障粮食安全、关系国计民生方面有着重要的作用。稻田是温室气体甲烷(CH_4)和氧化亚氮(N_2O)的重要排放源。因此,控制稻田温室气体排放对缓解全球温室效应具有重要作用。近年来,稻田种养结合循环农业在我国发展迅速,具有稳产增效、绿色发展的重要功效,同时显著影响了稻田温室气体排放特征以及全球增温潜势(global warming potential,GWP)。稻鸭共作、稻田养小龙虾、稻鱼共作、稻田养蟹、稻田养鳖等稻田种养结合循环农业模式,由于稻田养殖生物在稻田生态系统中添加生态位、延长食物链的增环作用,通过其持续运动、觅食活动等,不同程度地影响稻田温室气体的排放量和GWP,总体呈现出减缓温室效应的趋势。本文概述了稻田种养结合循环农业的CH_4和N_2O的排放特征及水分管理和施肥措施的影响效应,探讨了稻田种养结合循环农业的减排途径,并分析了稻田种养结合循环农业温室气体减排的研究前景,以期为我国稻田种养结合循环农业的健康发展和稻田生态系统减排增效提供参考。  相似文献   

4.
水稻植株特性对稻田甲烷排放的影响及其机制的研究进展   总被引:6,自引:0,他引:6  
水稻是我国最主要的口粮作物,稻田是重要温室气体甲烷的主要排放源之一。水稻植株特性既是水稻产量形成的关键因子,也是稻田甲烷排放的主要影响因子。但是,至今关于水稻植株对稻田甲烷排放的调控效应及其机制仍存在许多不一致的认识。为此,本文从形态特征、生理生态特征、植株-环境互作等方面,对现有的相关研究进行了综合论述。水稻地上部形态特征如分蘖数、株高、叶面积等对稻田甲烷排放的影响的研究结果不尽相同,起关键作用的是地下系统。优化光合产物分配在持续淹水的情况下可以减少稻田甲烷排放。提高水稻生物量在低碳土壤增加稻田甲烷排放,但在高碳土壤下降低甲烷排放。本文还明确了相关研究现状和存在的问题。在此基础上,作者认为未来应加强水稻根系形态及其生理特征,以及水稻植株-土壤环境(尤其是水分管理和养分管理)互作对稻田甲烷产生、氧化和排放影响的研究,在方法上应加强微区试验和大田试验的结合,并开展植株和稻田的碳氮互作效应及其机制研究,为高产低碳排放的水稻品种选育和低碳稻作模式创新提供理论参考和技术指导。  相似文献   

5.
Cultivation of green manure plants during the fallow season in rice paddy soil has been strongly recommended to improve soil properties. However, green manuring may impact greenhouse gas emission, methane (hereafter, CH4) in particular, under the flooded rice cultivation and thus, application of chemical amendments being electron acceptors can be an effective mitigation strategy to reduce CH4 emissions in irrigated rice (Oryza sativa L.) field amended with green manure. To investigate the effect of iron (Fe) slag silicate fertilizer (hereafter, silicate fertilizer), which was effective in reducing CH4 emission and increasing rice productivity, in green manure-amended paddy soil, the aboveground biomass of Chinese milk vetch (hereafter, vetch) was added at rates of 0, 10, 20, and 40 Mg (fresh weight) ha−1 before the application of silicate fertilizer, which was added at rates of 0 and 2.3 Mg ha−1. Silicate fertilization reduced the seasonal CH4 flux by ca. 14.5% and increased rice yield by ca. 15.7% in the control (no vetch application) treatment. However, CH4 production was increased by silicate fertilization in vetch-treated soil particularly at the initial rice growing stage, which was probably due to the enhanced decomposition of added organic matters by the silicate liming effect. In conclusion, silicate fertilization is not effective in reducing CH4 production in green manure-amended rice paddy soils and its use should be properly controlled.  相似文献   

6.
Proper rice straw management in paddy fields is necessary in order to sustain soil productivity and reduce greenhouse gas emissions. A field experiment was carried out from 2008 to 2011 in subtropical China: (1) to monitor rice yield, soil available nutrients, CH4, and N2O emissions and (2) to evaluate the effects of timing of rice straw incorporation and joint N application rate in a double rice cropping system. The total amount of rice straw from one cropping season was incorporated in winter (WS) or in spring (SS) and mineral N was jointly applied with rice straw incorporation at rates of 0, 30, and 60 % of the basal fertilization rate (N0B, N30B, and N60B) for the first rice crop. Soil water was naturally drained during the period of winter fallow (PWF) and controlled under intermittent irrigation during the period of first rice growth (PFR). Compared with SS, WS significantly (P?<?0.05) increased the first rice yield only in the flooding year (2010), and increased the soil available K concentration after PWF and PFR in 2008–2009 and the hydrolysable N concentration after PWF in 2010–2011. Meanwhile, WS significantly decreased the total CH4 emission by about 12 % in 2009–2010 and 2010–2011, but increased the total N2O emission by 15–43 % particularly during PWF in all 3 years, resulting in a lower GWP in WS in the flooding year and no differences in the nonflooding years. Compared with N0B, joint N application (N60B and N30B) increased the soil hydrolysable N after PWF in all 3 years. Meanwhile, it decreased the total CH4 emissions by 21 % and increased the N2O emissions during PWF by 75–150 % in the nonflooding years, but the net GWP was lower in N60B than in N0B. The results suggested that the rice straw incorporation with joint N application in winter is more sustainable compared with the local practices such as rice straw incorporation in spring or open-field burning.  相似文献   

7.
A field experiment was conducted to study the effects of combination of straw incorporation and water management on fluxes of CH4, N2O and soil heterotrophic respiration (Rh) in a paddy field in subtropical central China by using a static opaque chamber/gas chromatography method. Four treatments were set up: two rice straw incorporation rates at 0 (S1) and 6 (S2) t ha?1 combined with two water managements of intermittent irrigation (W1, with mid-season drainage) and continuous flooding (W2, without mid-season drainage). The cumulative seasonal CH4 emissions for the treatments of S1W2, S2W1 and S2W2 increased significantly by 1.84, 5.47 and 6.63 times, respectively, while seasonal N2O emissions decreased by 0.67, 0.29 and 1.21 times, respectively, as compared to S1W1 treatment. The significant increase in the cumulative Rh for the treatments S1W1, S2W1 and S2W2 were 0.54, 1.35 and 0.52 times, respectively, in comparison with S1W2. On a seasonal basis, both the CO2-equivalents (CO2e) and yield-scaled CO2e (GHGI) of CH4 and N2O emissions increased with straw incorporation and continuous flooding, following the order: S2W2>S2W1>S1W2>S1W1. Thus, the practices of in season straw incorporation should be discouraged, while mid-season drainage is recommended in paddy rice production from a point view of reducing greenhouse gas emissions.  相似文献   

8.
Methane emission from paddy fields in Taiwan   总被引:3,自引:0,他引:3  
 In order to investigate the effect of environmental conditions on CH4 emission from paddy fields in Taiwan, four locations, two cropping seasons and two irrigation systems were studied. CH4 emission was high at the active tillering and the booting stages in the first cropping season, whereas it was low at the transplanting and the ripening stages with an intermittent irrigation system. CH4 emission was high at the transplanting stage in the second cropping season, and decreased gradually during rice cultivation. Daily temperature and light intensity increased gradually during rice growth in the first cropping season (February–June), while it was reversed in the second cropping season (August–December). The seasonal CH4 emission from paddy fields ranged from 1.73 to 11.70 g m–2, and from 10.54 to 39.50 g m–2 in the first and second cropping seasons, respectively. The seasonal CH4 emission in the second cropping season was higher than that in the first cropping season in all test fields. The seasonal CH4 emission was 32.65 mg m–2 in the first cropping season of the National Taiwan University paddy field with continuous flooding, and it was 28.85 mg m–2 in the second cropping season. The annual CH4 emission ranged from 12.3 to 49.3 g m–2 with an intermittent irrigation system, and the value was 61.5 g m–2 with a continuous flooding treatment. The annual CH4 emission from paddy fields was estimated to be 0.034 Tg in 1997 from 364,212 ha of paddy fields with an intermittent irrigation system, which was less than the 0.241 Tg calculated by the IPCC method with a continuous flooding treatment Received: 23 February 2000  相似文献   

9.

Purpose

Directly returning straw back to the paddy field would significantly accelerate methane (CH4) emission, although it may conserve and sustain soil productivity. The application of biochar (biomass-derived charcoal) in soil has been proposed as a sustainable technology to reduce methane (CH4) emission and increase crop yield. We compared the effects of either biochar or rice straw addition with a paddy field on CH4 emission and rice yield.

Materials and methods

A 2-year field experiment was conducted to investigate a single application of rice straw biochar (SC) and bamboo biochar (BC) (at 22.5 t ha?1) in paddy soil on CH4 emission and rice yield as compared with the successive application (6 t ha?1) of rice straw (RS). Soil chemical properties and methanogenic and CH4 oxidation activities in response to the amendment of biochar and rice straw were monitored to explain possible mechanism.

Results and discussion

SC was more efficient in reducing CH4 emission from paddy field than BC. Incorporating SC into paddy field could decrease CH4 emission during the rice growing cycle by 47.30 %–86.43 % compared with direct return of RS. This was well supported by the significant decrease of methanogenic activity in paddy field with SC. In comparison to a non-significant increase with BC or RS application, rice yield was significantly raised with SC amendment by 13.5 % in 2010 and 6.1 % in 2011. An enhancement of available K and P and an improvement in soil properties with SC amendment might be the main contributors to the increased crop yield.

Conclusions

These results indicated that conversion of RS into biochar instead of directly returning it to the paddy field would be a promising method to reduce CH4 emission and increase rice yield.  相似文献   

10.
Slag-type silicate fertilizer, which contains high amount of active iron oxide, a potential source of electron acceptor, was applied at the rate of 0, 2, 6, 10, and 20 Mg ha−1 to reduce methane (CH4) emission from rice planted in potted soils. Methane emission rates measured by closed chamber method decreased significantly with increasing levels of silicate fertilizer application during rice cultivation. Soil redox potential (Eh) decreased rapidly after flooding, but floodwater pH and soil pH increased significantly with increasing levels of silicate fertilizer application. Iron concentrations in potted soils and in percolated water significantly increased with the increasing levels of silicate fertilizer application, which acted as oxidizing agents and electron acceptors, and thereby suppressed CH4 emissions. Silicate fertilization significantly decreased CH4 production activity, while it increased carbon dioxide (CO2) production activity. Rice plant growth, yield parameters, and grain yield were positively influenced by silicate application levels. The maximum increase in grain yield (17% yield increase over the control) was found with 10 Mg ha−1 silicate application along with 28% reduction in total CH4 flux during rice cultivation. It is, therefore, concluded that slag-type silicate fertilizer could be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity and restoring the soil nutrient balance in rice paddy soil.  相似文献   

11.
No-tillage (NT) management is a promising method to sequester soil C and mitigate global warming caused by agricultural activities. Here, we report 4 years of continuous soil respiration rates and weekly nitrous oxide (N2O) and methane (CH4) emissions in NT and conventional-tillage (CT) plots in a typical Japanese volcanic soil. Overall, the soil respiration, N2O emission, and CH4 uptake decreased significantly in the NT plot. A difference in soil respiration and N2O emission between the two plots began after the tillage treatment and the incorporation of crop residues and fertilizers, whereas the CH4 uptake did not vary significantly during the fallow period after the treatments. The N2O emission was higher from the CT than from the NT plot during the fall. The overall lower CH4 uptake in the NT than in the CT plot likely resulted from a combination of decreased soil gas diffusivity and higher mineral N content at the soil surface. Higher soil respiration and N2O emission occurred in the NT plot in the summer of 2003 and were plausibly caused by an increase in the soil moisture content that resulted from lower temperatures during July and August; the higher soil moisture must have accelerated the decomposition of organic matter accumulated in the topsoil. These results indicate that NT management is generally effective for the mitigation of the total GWP by reducing soil respiration and N2O emission in temperate regions; however, NT management may increase rather than decrease these emissions when fields experience cool summers with frequent rainfall.  相似文献   

12.
Abstract

Methane emission rates from plots with and without fertilizer and rice straw application, and growth of two rice varieties (an improved variety, IR74 or IR64, and a local variety, Krueng Aceh) in two Indonesian paddy fields (Inceptisol and Alfisol soils of volcanic ash origin) were measured every week throughout the growth period in the first and the second cropping seasons, 1994. The CH4 emission rates from the fields were similar between the two varieties. The effect of chemical fertilizer on the increase of the emissions was observed only in the Tabanan paddy field for the plots treated with rice straw. Application of rice straw increased the CH4 emission rates. The mean rates of CH4 emission were 1.37-2.13 mg CH4?C m?2 h?1 for the plots without rice straw and 2.14–3.62 mg CH4?C m?2 h?1 for the plots with rice straw application in the Alfisol plots, and 2.32–3.32 mg CH4 -C m-2 h-1 for the plots without rice straw and 4.18–6.35 mg CH4?C m?2 h?1 for the plots with rice straw application in the Inceptisol plots, respectively. Total amounts of CH4 emitted during the growth period were 3.9–6.8 and 2.6–3.3 g CH4?C m?2 for the Alfisol plots and 6.9–10.7 and 4.2–5.8 g CH4?C m?2 for the Inceptisol plots with and without rice straw application, respectively. These findings suggested that CH4 emission from tropical paddy fields with soils of volcanic ash origin is low.  相似文献   

13.
Combination of a pre-season wet soil condition and rice straw incorporation just before transplanting, which is typical for a tropical rice double cropping, can induce a flash of methane (CH4) emission shortly after the transplanting. The conventional practice of alternate wetting and drying (AWD) irrigation technique that typically starts at 21 days after transplanting (DAT) can hardly reduce this emission because the soil become methanogenic before the onset of AWD treatment. Field experiments were conducted in Central Luzon, Philippines, during the 2014–2017 dry rice seasons to examine the effects of the timing of rice straw/stubble incorporation on the efficacy of AWD in reducing the CH4 emission. Two treatments of the timing of stubble incorporation were stubbles incorporated during the start of wet land preparation (S1) and stubbles incorporated during the dry fallow tillage (S2). For the water management, we compared two treatments: continuous flooding (CF) and AWD with – 15 cm threshold for irrigation. The AWD under S2 was implemented earlier at 10 DAT. We observed a significant interaction (p < 0.01) between effects of AWD and straw management on CH4 emissions; the seasonal total CH4 emission was reduced by AWD compared with CF by 73% under S2, while the reduction was <20% under S1. The AWD significantly (p < 0.05) increased the nitrous oxide (N2O) emissions by 47 and 48% relative to CF under S1 and S2, respectively. The global warming potential (GWP, CH4 + N2O) and yield-scaled GWP were still substantially lower by 62 and 59%, respectively, in AWD than in CF under S2, but the reduction was not realized under S1 due to the relatively smaller CH4 reduction and increased N2O emission. The results confirm that pre-season aerobic stubble decomposition and earlier implementation of AWD enhanced AWD’s mitigation potential in reducing substantially the CH4 emission from the tropical rice double-cropping system.  相似文献   

14.
Abstract

Subsurface drainage systems (pipe/tile drain systems) in paddy fields have been used in Japan since the 1960s for appropriate water management to encourage rice growing. Water management using the drainage systems probably accelerates the aerobic decomposition of organic matter in the paddy soils, and the management using the systems also accelerates leaching of water-soluble fractions in the soils. To evaluate these side-effects of the drainage systems on methane (CH4) production potential in the soils, soil samples taken from four pairs of paddy fields with or without drainage systems (D-soils and ND-soils, respectively) were compared. In general, total C and N, hot-water-extractable hexose, ammonification and Fe2+ production were lower in D-soils than in ND-soils. Decomposition of buried rice straw during a fallow period was also accelerated in D-soils. Hence, both electron acceptors, such as reducible Fe, and electron donors, such as easily decomposable organic matter, in D-soils decreased on a short-term and long-term basis. To compare the effect of decreased electron acceptors and donors on the same criterion (mg Ceq kg?1 dry matter (d.m.)), the oxidative capacity (OxiC) and reductive capacity (RedC) in each soil were calculated from the soil chemical and biological properties. Both OxiC and RedC decreased in D-soils, but the rate of decrease in RedC was 2.7-fold higher than that of OxiC. As the soil conditions became relatively oxidative, CH4 production potential in D-soils decreased by approximately 40%. Thus, the installation of subsurface drainage systems under poorly drained paddy fields relatively decreased RedC in soil, and that CH4 production potential in the soil also decreased.  相似文献   

15.
The effect of controlled drainage on methane (CH4) and nitrous oxide (N2O) emissions from a paddy field under controlled irrigation (CI) was investigated by controlling the sub-surface drainage percolation rate with a lysimeter. CI technology is one of the major water-saving irrigation methods for rice growing in China. Water percolation rates were adjusted to three values (2, 5, and 8 mm d?1) in the study. On the one hand, the CH4 emission flux and total CH4 emission from paddy fields under CI decreased with the increase of percolation rates. Total CH4 emissions during the growth stage of rice were 1.83, 1.16, and 1.05 g m?2 in the 2, 5, and 8 mm d?1 plots, respectively. On the other hand, the N2O emission flux and total N2O emissions from paddy fields under CI increased with the increase of percolation rates. Total N2O emissions during the growth stage of rice were 0.304, 0.367, and 0.480 g m?2 in the 2, 5, and 8 mm d?1 plots, respectively. The seasonal carbon dioxide (CO2) equivalent of CH4 and N2O emissions from paddy fields under CI was lowest in the 2 mm d?1 plot (1364 kg CO2 ha?1). This value was 1.4% and 19.4% lower compared with that in the 5 and 8 mm d?1 plots, respectively. The joint application of CI and controlled drainage may be an effective mitigation strategy for reducing the carbon dioxide equivalents of CH4 and N2O emissions from paddy fields.  相似文献   

16.
Paddy fields are one of the largest anthropogenic sources of global CH4 emission. A decrease in paddy CH4 emission can contribute significantly towards the control of global warming. Recent studies have demonstrated that the application of biochar in paddy soils has such a capability, but its underlying mechanism has yet to be elucidated. In this investigation, we studied CH4 emission, methanogenic archaeal, as well as methanotrophic proteobacterial communities, from microcosms derived from two paddy soils, Inceptisol and Ultisol. Both soils were amended with biochar at different pyrolysis temperatures (300 °C, 400 °C and 500 °C) at field condition. The soil CH4 flux was monitored across whole rice season in 2010; the functional guilds communities were analyzed by PCR–DGGE and real-time quantitative PCR (qPCR). It is found that paddy CH4 emissions significantly decreased under biochar amendments, which, interestingly, didn't result from the inhibition of methanogenic archaeal growth. qPCR further revealed that biochar amendments (1) increased methanotrophic proteobacterial abundances significantly, and (2) decreased the ratios of methanogenic to methanotrophic abundances greatly. These results shed insight on the underlying mechanism of how biochar decreases paddy CH4 emission. This knowledge can be applied to develop a more effective greenhouse gas mitigation process for paddy fields.  相似文献   

17.
Intermittent irrigation is an important option for mitigating CH4 emissions from paddy fields. In order to better understand its controlling processes in CH4 emission, CH4 fluxes, CH4 production and oxidation potentials in paddy soils, and 13C-isotopic signatures of CH4 were observed in field and incubation experiments. The relative contribution of acetate to total CH4 production (fac) and fraction of CH4 oxidized (fox) in the field was also calculated using the isotopic data. At the beginning of the rice season, the theoretical ratio of acetate fermentation: H2/CO2 reduction = 2:1 was reached, however, in the late season H2/CO2-dependent methanogenesis became dominant. Compared to continuous flooding, intermittent irrigation significantly reduced CH4 production potential and slightly decreased fac-value, indicating methanogens, particularly acetate-utilizing methanogens, were inhibited. CH4 oxidation was very important, especially in paddy fields under intermittent irrigation where 19–83% of the produced CH4 was oxidized. Intermittent irrigation enhanced CH4 oxidation potential slightly and raised fox-value significantly relative to continuous flooding. Intermittent irrigation significantly decreased CH4 flux creating a more positive δ13C-value of emitted CH4 by 12–22‰. A significant negative correlation was found between CH4 fluxes and values of δ13CH4 suggesting that the less the CH4 oxidation, the higher the CH4 emission, and the lower the δ13C-value of emitted CH4. Collectively, the findings show that intermittent irrigation reduced the seasonal CH4 production potential by 45% but increased the fraction of CH4 oxidized by 45–63%, thus decreasing the seasonal CH4 emission from the paddy fields by 71%, relative to continuous flooding.  相似文献   

18.
生物质炭和腐殖质对稻田土壤CH4和N2O排放的影响   总被引:1,自引:0,他引:1  
为探讨生物质炭与腐殖质单独施用与配合施用对稻田土壤CH4和N2O气体排放以及水稻产量的影响。以浙江临安潜育性水稻土的稻田系统为研究对象,设置2个水稻秸秆生物质炭添加水平(0,20 t/hm2)和3个腐殖质水平(0,0.6,1.2 t/hm2),共6个处理,分别为:(1)B0F0(对照,不添加生物质炭和腐殖质);(2)B0F1(腐殖质用量为0.6 t/hm2);(3)B0F2(腐殖质用量为1.2 t/hm2);(4)B1F0(生物质炭用量为20 t/hm2);(5)B1F1(生物质炭和腐殖质用量分别为20,0.6 t/hm2);(6)B1F2(生物质炭和腐殖质用量分别为20,1.2 t/hm2),研究生物质炭和腐殖质输入对水稻产量、稻田CH4和N2O气体排放的影响。结果表明:(1)与B0F0相比,单独施用生物质炭和腐殖质或生物质炭与腐殖质配施均降低了土壤CH4累积排放量,但增加了土壤N2O累积排放量;(2)生物质炭处理对GWP(global warming potential)和GHGI(greenhouse gas intensity)没有显著影响(P>0.05),腐殖质处理显著降低了GWP和GHGI(P<0.05),生物质炭和腐殖质对GWP和GHGI存在显著交互作用(P<0.05);(3)与B0F0相比,单独施用生物质炭和腐殖质或者生物质炭与腐殖质配施均能在一定程度上减少单位水稻产量的温室气体排放强度(GHGI),B0F2处理的GHGI最低,表明单施腐殖质处理(腐殖质用量为1.2 t/hm2)稻田土壤的减排效果和环境效应最好。研究结果为进一步探讨稻田土壤固碳减排提供数据支撑和理论依据。  相似文献   

19.
This study evaluated the effects of rice straw and water regimes on CH4 and N2O emissions from paddy fields for two rice growing seasons (summer 2014 and spring 2015). Water regimes included alternating wet–dry irrigation (AWD) maintained at three levels (–5 cm, – 10 cm and –15 cm) in comparison to continuous flooding irrigation (CF). Rice straw (5 t ha–1) was incorporated into the top soil (0 – 15 cm), distributed and burned in situ. Results showed that using burned in situ rice straw was found to reduce seasonal cumulative CH4 emission (24–34% in summer; 18–28% in spring), N2O emission (21–32% in summer; 22–29% in spring) and lower rice yield (8–9%) than rice straw incorporation into top soil. AWD methods reduced the amount of CH4 production (22.6–41.5%) and increased N2O emission (25–26%) without any decrease in rice yield. Rice straw incorporation into the top soil with AWD had higher water productivity (23–37%) than rice straw when burned in situ with CF. The results conclude that AWD and rice straw management can be employed as mitigation strategy for CH4 and N2O emissions from paddy fields in Central Vietnam.  相似文献   

20.
Rice fields are a major source of greenhouse gases,such as nitrous oxide (N2O) and methane (CH4).Organic fertilizers may potentially replace inorganic fertilizers to meet the nitrogen requirement for rice growth;however,the simultaneous effects of organic fertilizers on N2O and CH4emissions and crop yield in paddy fields remain poorly understood and quantified.In this study,experimental plots were established in conventional double-cropping paddy field...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号