首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cattle were immunized with vaccines containing modified-live or inactivated bovine respiratory syncytial virus (BRSV) and lymphocyte proliferative responses and cytokine secretion were monitored sequentially. Compared to pre-inoculated values, significant increases in proliferative responses to modified-live BRSV were detectable by Day 7 after the primary immunization with the vaccine containing inactivated BRSV, and by 7 days after the second immunization with modified-live virus. After a third immunization with the respective vaccines, proliferative responses to live BRSV were significantly higher in the group that received modified-live vaccine compared to the group that received inactivated vaccine. Proliferative responses to live BRSV corresponded with the presence of interleukin-2 (IL-2) in the supernatants from BRSV-stimulated leukocyte cultures and there were significantly higher levels of IL-2 in cultures from the group that received modified-live BRSV. An interferon species with the characteristics of interferon-alpha was also present in the supernatants from leukocyte cultures and there were no significant differences between the groups of vaccines. The predominant phenotype of proliferating cells in BRSV-stimulated leukocyte cultures derived from both groups of bovine vaccines was a BoCD4+ T-lymphocyte. These in vitro data suggest that both types of vaccines are capable of stimulating cell-mediated immune responses to BRSV in cattle.  相似文献   

2.
OBJECTIVE: To determine whether single-fraction and combination modified-live bovine respiratory syncytial virus (BRSV) vaccines commercially licensed for parenteral administration could stimulate protective immunity in calves after intranasal administration. DESIGN: Randomized controlled trial. ANIMALS: 39 calves. PROCEDURES: Calves were separated from dams at birth, fed colostrum with a minimal concentration of antibodies against BRSV, and maintained in isolation. In 2 preliminary experiments, 9-week-old calves received 1 (n = 3) or 2 (3) doses of a single-component, modified-live BRSV vaccine or no vaccine (8 control calves in each experiment), and were challenged with BRSV 21 days after vaccination. In a third experiment, 2-week-old calves received combination modified-live virus (MLV) vaccines with or without BRSV and calves were challenged with BRSV 8 days later. Calves were euthanized, and lung lesions were measured. Immune responses, including serum and nasal antibody and nasal interferon-alpha concentrations, were assessed. RESULTS: BRSV challenge induced signs of severe clinical respiratory tract disease, including death and pulmonary lesions in unvaccinated calves and in calves that received a combination viral vaccine without BRSV. Pulmonary lesions were significantly less severe in BRSV-challenged calves that received single or combination BRSV vaccines. The proportion of calves that shed virus and the peak virus titer was decreased, compared with control calves. Protection was associated with mucosal IgA antibody responses after challenge. CONCLUSIONS AND CLINICAL RELEVANCE: Single and combination BRSV vaccines administered intranasally provided clinical protection and sparing of pulmonary tissue similar to that detected in response to parenteral delivery of combination MLV and inactivated BRSV vaccines previously assessed in the same challenge model.  相似文献   

3.
The antibody response of cattle to bovine respiratory syncytial virus (BRSV) immunization was investigated using 4 different commercially available mixed vaccines. Forty, 5-6 month old, beef calves, randomly assigned to groups of 10, were vaccinated on day 0 and 21 with 1 of 3 inactivated vaccines, (3 groups), or a modified live virus (MLV) vaccine. BRSV-specific antibody responses were measured prior to vaccination and on day 35 by using an enzyme linked immunosorbent assay (ELISA), virus neutralization assay (VN), a fusion inhibition assay (FI); and responses were also measured for their ability to facilitate antibody dependent, complement mediated cytotoxicity (ADCMC) of BRSV infected cells. Sera from day 35 were, in addition, analyzed by use of an IgG1, IgG2 isotype specific ELISA. All vaccines induced significant increases in BRSV specific IgG antibody as measured by ELISA, but only one inactivated and the MLV vaccine induced significant increases in VN titers. Fusion inhibiting antibody titers were low or undetected in calves vaccinated with the inactivated vaccines. Vaccination with modified live virus induced significantly higher titers of fusion inhibiting antibodies, which are considered to be most highly correlated with protection. The VN to ELISA and FI to ELISA ratio of the calves that received MLV vaccine were significantly greater than the calves receiving the 3 inactivated vaccines. Vaccination with MLV induced the highest IgG2/IgG1 ratio. This difference was small, and only significant relative to 2 of the inactivated vaccine groups, which were not significantly different from each other. The higher proportion of IgG2 isotype in the MLV sera was not associated with lower ADCMC, a function not attributed to this isotype. The VN and FI titers, but not the ELISA value of the sera, were most predictive of ADCMC. The inactivation processes apparently alter epitopes and affect the induction of functional antibodies.  相似文献   

4.
OBJECTIVE: To determine whether immunity against bovine respiratory syncytial virus (BRSV) mitigates the effects of 3-methylindole (3MI) on occurrence of bovine respiratory tract disease (BRD) and rate of gain in feedlot cattle. ANIMALS: 254 mixed-breed beef cattle. PROCEDURE: Cattle were randomly assigned to 1 of 3 groups at the time of arrival at the feedlot. One group was vaccinated with an inactivated BRSV vaccine, another was vaccinated with a modified-live BRSV vaccine, and the third was maintained as unvaccinated control cattle. On days 0 and 28, serum BRSV antibody concentrations were measured, using serum neutralizing and ELISA techniques. Serum 3MI concentrations were measured at feedlot arrival and 3 days later. Cattle were monitored for development of BRD. At slaughter, lungs were evaluated grossly for chronic lesions. RESULTS: Higher serum 3MI concentrations early in the feeding period were associated with lower mean daily gain. Control cattle were more likely to be treated for BRD after day 3, compared with cattle vaccinated with the modified-live BRSV vaccine. Humoral immunity against BRSV did not appear to modify the effect of 3MI on development of BRD or mean daily gain. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that abrogating the effects of 3MI and BRSV infection may improve the health and growth performance of feedlot cattle. However, in this study, immunity against BRSV did not appear to protect against the potential synergism between 3MI and BRSV infection, possibly because of the slow rates of gain of cattle included in the study or timing of sample collection.  相似文献   

5.
A field trial was conducted to compare the serological responses in calves to eight commercial vaccines against infectious bovine rhinotracheitis virus (IBRV), parainfluenza-3 virus (PI3V), bovine respiratory syncytial virus (BRSV), and/or bovine viral diarrhea virus (BVDV). Calves given IBRV, P13V, BRSV, and BVDV vaccines had significantly higher antibodies to these viruses than unvaccinated controls; however, serological responses to killed BVDV vaccines were low. Calves with preexisting antibodies to IBRV, PI3V, BRSV, and the Singer strain of BVDV had lower seroconversion rates following vaccination than calves that were seronegative initially.

Serological responses in calves to IBRV, PI3V, BRSV, and BVDV differed among various commercial vaccines. Antibody titers to IBRV were higher in calves vaccinated with modified-live IBRV vaccines than in those vaccinated with killed IBRV vaccines. Following double vaccination with modified-live IBRV and PI3V vaccines, seroconversion rates and antibody titers to IBRV and PI3V were higher in calves vaccinated intramuscularly than in those vaccinated intranasally. Calves given Cattlemaster 4 had significantly higher titers to BRSV and PI3V, and lower titers to BVDV, than calves given Cattlemaster 3, suggesting that the addition of BRSV to Cattlemaster 4 caused some interaction among antigens.

  相似文献   

6.
T cell activity is a critical component of immunity to bovine respiratory syncytial virus (BRSV). We tested the effects of immunization by modified-live and inactivated BRSV vaccines on cell-mediated and humoral immunity in young calves. The two forms of vaccine stimulated similar serum neutralizing antibody production, although the early kinetics of those responses differed. CD4+, CD8+, and gammadelta T cells were analyzed before and after immunization for BRSV-specific in vitro recall responses, as evaluated by CD25 upregulation measured by flow cytometry. Modified-live virus (MLV) primed each of the three subsets for statistically significant in vitro responses to antigen. Inactivated vaccine also primed each T cell population for significant antigen-driven CD25 upregulation, including responses by CD4+ and gammadelta T cells that were stronger and longer-lasting than those primed by MLV. Monoclonal antibody was used in additional assays to block MHC class I during incubation of BRSV antigen with peripheral blood mononuclear cells from an animal in the inactivated vaccine group. The recall response by CD8+ T cells was more inhibited by this treatment than the other subsets, further suggesting that the inactivated vaccine had primed antigen-specific CD8+ T cells. In summary, the data indicate that balanced BRSV-specific T cell responses can be induced by inactivated, as well as modified-live, conventional vaccines, which may implicate an alternative pathway of MHC class I antigen presentation.  相似文献   

7.
The objective of this study was to determine whether a commercially available, saponin-adjuvanted, inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from experimental infection with virulent BRSV. This was a randomized controlled trial comprising 14, 8- to 9-week-old calves seronegative for BRSV Group 1 calves (n = 8) were not vaccinated and group 2 calves (n = 6) were vaccinated on days 0 and 19 with an inactivated BRSV vaccine. All calves were challenged with virulent BRSV on day 46. Clinical signs, arterial PO2, and immune responses were monitored after challenge. Calves were euthanatized on day 54 (8 d after challenge) and lungs were examined for lesions. Vaccination elicited increases in BRSV-specific immunoglobulin (Ig) G and virus neutralizing antibody titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, but no signs of clinical disease and minimal or no pulmonary lesions in vaccinated calves. Arterial blood oxygen values on day 53 (7 d after challenge) in control calves were significantly lower than those in vaccinated calves, which remained within normal limits. Control calves shed BRSV for several days after challenge, whereas BRSV was not detected on deep nasal swabs from vaccinated calves. In summary, the results indicated that this inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus 27 d after vaccination and significantly decreased the prevalence and severity of pulmonary lesions. Efficacy was similar to that reported for other commercial inactivated and modified-live BRSV vaccines.  相似文献   

8.
OBJECTIVE: To determine whether an inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from infection with virulent BRSV. DESIGN: Randomized controlled trial. ANIMALS: 27 nine-week-old calves seronegative for BRSV exposure. PROCEDURE: Group-1 calves (n = 9) were not vaccinated. Group-2 calves (n = 9) were vaccinated on days 0 and 21 with an inactivated BRSV vaccine containing a minimum immunizing dose of antigen. Group-3 calves (n = 9) were vaccinated on days 0 and 21 with an inactivated BRSV vaccine containing an amount of antigen similar to that in a commercial vaccine. All calves were challenged with virulent BRSV on day 42. Clinical signs and immune responses were monitored for 8 days after challenge. Calves were euthanatized on day 50, and lungs were examined for lesions. RESULTS: Vaccination elicited increases in BRSV-specific IgG and virus neutralizing antibody titers and in production of interferon-gamma. Virus neutralizing antibody titers were consistently less than IgG titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, whereas vaccinated calves had less severe signs of clinical disease and less extensive pulmonary lesions. The percentage of vaccinated calves that shed virus in nasal secretions was significantly lower than the percentage of control calves that did, and peak viral titer was lower for vaccinated than for control calves. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus and decreased the severity of pulmonary lesions. Efficacy was similar to that reported for modified-live BRSV vaccines.  相似文献   

9.
Immunoaffinity-purified bovine respiratory syncytial virus (BRSV) fusion (F) protein elicited anti-BRSV-specific antibody responses in BRSV-seronegative calves. After primary vaccination, all calves seroconverted to BRSV as determined by the virus neutralization (VN) test and developed anti-F protein antibodies detectable by protein immunoblot analyses. Subsequent vaccinations induced greater than twofold increase in VN titer in 3 of 9 (33%) calves, and 1 calf became VN-negative, but still had nonneutralizing antibody detectable by protein immunoblot analysis. This calf remained seronegative after challenge exposure. Two groups of calves were vaccinated IM with immunoaffinity-purified BRSV F protein. Each dose was 2 ml containing 20 micrograms of purified F protein. Freund's adjuvants were used for all vaccinations, with Freund's complete adjuvant used for the primary vaccination and Freund's incomplete adjuvant for subsequent vaccinations. The vaccine was administered to both groups at weeks 0 and 3; the first group received a third vaccination at weeks 21. Group-1 and -2 vaccinated calves and non-vaccinated contact controls were intranasally aerosol challenge-exposed with low cell culture-passage BRSV on weeks 22 and 9, respectively. Eight of 9 vaccinated calves did not develop a humoral anamnestic response following challenge exposure, as demonstrated by VN test and protein immunoblot analyses. Calf 14 from group 1 which had a 1:2 VN antibody titer prior to vaccination, was the only calf that developed an anamnestic response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Seroprevalence of bovine respiratory syncytial virus (BRSV) infection in both exotic and crossbred cattle were described. A baculovirus expressed recombinant purified nucleocapsid (N) protein was used in indirect and sandwich ELISA for screening of 499 bovine sera samples from all over the state for the presence of BRSV antibodies. The seroprevalence rate of BRSV was found to be 46.09% through indirect ELISA while it would found to be 65.33% by sandwich ELISA. The result also indicated that exotic breeds were more susceptible to BRSV infection compared to crossbred cattle. A comprehensive analysis on susceptibility to BRSV as regards to various factors like age and sex was also summarized.  相似文献   

11.
A blocking enzyme-linked immunosorbent assay (ELISA) has been adapted to detect specific antibodies in bovine sera to respiratory syncytial virus using a horseradish peroxidase-labeled monoclonal antibody to the fusion protein of the virus. This assay plus an indirect blocking ELISA and indirect ELISA were used to detect antibodies to the bovine respiratory syncytial virus (BRSV) in 159 field-origin bovine sera. Results of these assays were compared with serum antibody titers measured by the serum neutralization (SN) test. Over a 56-day period, the mean neutralization titers and the mean delta absorbance values for the blocking ELISA, on the same sera, showed similar declines. However, the calculated correlation coefficients between mean SN titer and mean absorbance value for the blocking ELISA of the individual sera ranged from -0.2 to -0.5 depending on the source of sera. Similar values were obtained whether using crude or purified viral antigen in the assays. Corresponding calculated correlation coefficients were generally higher for the indirect blocking ELISA or indirect ELISA than for the blocking ELISA. The blocking ELISA was between 70 and 64% as sensitive as the serum neutralization test with a specificity of 100 or 90% using the crude and purified viral antigen, respectively. The indirect blocking ELISA and indirect ELISA had similar calculated sensitivities and specificities. The blocking ELISA was faster to run than either of the other ELISA's or the neutralization test. Further, nonspecific background absorbance was obviated because the blocking ELISA detects antibodies to 1 specific viral protein, the fusion protein. These studies suggest that the blocking ELISA should be useful as a serological test for BRSV antibodies.  相似文献   

12.
A blocking enzyme-linked immunosorbent assay (ELISA) test has been developed to distinguish pseudorabies virus (PRV) (Aujeszky's disease virus) -infected pigs from those immunized with a glycoprotein g92 (gIII) deletion mutant, PRV (dlg92dltk) [OMNIMARK-PRV]. This blocking ELISA test utilizes an anti-PRV gIII monoclonal antibody (mAbgIII)-horseradish peroxidase (HRPO) conjugate, TMB for color development and a cloned PRVg92 (gIII) antigen to coat wells of microtiter test plates. Undiluted sera are used to block the binding of the mAbgIII-HRPO conjugate to the antigen. The gIII blocking ELISA is specific and has a sensitivity comparable to screening ELISA and latex agglutination tests. PRV-negative sera and sera from pigs vaccinated once, twice, or four times with the gIII-negative vaccine all showed negative S/N values of greater than 0.70 (S/N defined as the optical density at 630 nm of test sera/optical density at 630 nm of negative control sera). Sera from PRV-infected herds, sera from pigs experimentally infected with virulent PRV, and sera from pigs vaccinated with modified-live or inactivated gIII+ vaccines were positive for gIII antibodies (S/N less than 0.7). Sera from pigs experimentally infected with 200 PFU virulent PRV seroconverted to gIII+ antibodies 7-10 days postinfection. Sera from pigs vaccinated with gpX- and gI- vaccines seroconverted to gIII+ antibodies 7-8 days after vaccination. The gIII antibodies persisted after gIII+ vaccinated for at least 376 days postvaccination. Sera from pigs protected by vaccination with PRV (dlg92dltk) and then challenge exposed to virulent PRV at 21 days postvaccination showed gIII+ antibodies by 14 days postchallenge. The specificity and sensitivity of the gIII blocking ELISA assay was further demonstrated on the United States Department of Agriculture-National Veterinary Services Laboratory (USDA-NVSL) sera from the 1988 PRV check set and the 1989 gIII PRV check set by comparing the gIII blocking ELISA assay with virus neutralization, screening/verification ELISA and latex agglutination assays.  相似文献   

13.
Nine steers persistently infected with noncytopathic bovine viral diarrhea (BVD) virus were allotted into 3 groups (3 cattle/group). Cattle in group A were vaccinated with a modified-live BVD virus vaccine of porcine cell origin, cattle in group B with a modified-live BVD virus vaccine of bovine cell origin, and cattle in group C with a killed BVD virus vaccine of bovine cell origin. Detrimental effects due to vaccination were not seen. Six weeks after vaccination, the steers were challenge exposed with a cytopathic BVD virus. All steers developed mucosal disease after challenge exposure, produced antibodies that neutralized various isolates of BVD virus, and remained persistently infected until death. Steers given killed virus vaccine had a minimal neutralizing-antibody response and developed mucosal disease as quickly as reported for challenge-exposed, nonvaccinated, persistently infected cattle. Steers given modified-live virus vaccines had higher neutralizing-antibody response and longer intervals from challenge exposure to development of mucosal disease. The specificity of the neutralizing-antibody response differed between groups of vaccinated cattle.  相似文献   

14.
Virus shedding was monitored in nasal secretions of 12 calves experimentally infected with bovine respiratory syncytial virus (BRSV) using an antigen capture enzyme-linked immunosorbent assay (ELISA) detecting the nucleoprotein (NP) antigen of BRSV, by a polymerase chain reaction (PCR) amplifying the fusion protein of BRSV, and by a microisolation assay combined with immunoperoxidase staining for the F protein of BRSV. Under the conditions of this study, similar limits of detection and quantitative results were obtained from all three assays. BRSV was detected in nasal secretions of all calves for a minimum of 4 d. Virus shedding began on Day 2 after infection, peaked on Days 3-5, and was cleared in most calves by Day 8. The PCR, and to a lesser extent the ELISA, may detect virus shedding for a longer period after infection than virus isolation, possibly due to neutralization of the virus by rising mucosal antibody. Simulated environmental conditions likely to be experienced during transport of clinical field specimens markedly reduced the sensitivity of virus isolation but had a minimal effect on the results of the NP ELISA. Actual field transport conditions (overnight on ice) had minimal apparent effect on the results of the PCR assay. The less stringent specimen handling requirements, combined with low limits of detection, of both the nucleoprotein ELISA and PCR, indicate either of these assays are more suitable for diagnostic applications than virus isolation.  相似文献   

15.
OBJECTIVE: To determine whether a single intranasal dose of modified-live bovine respiratory syncytial virus (BRSV) vaccine protects calves from BRSV challenge and characterize cell-mediated immune response in calves following BRSV challenge. ANIMALS: 13 conventionally reared 4- to 6-week-old Holstein calves. PROCEDURES: Calves received intranasal vaccination with modified live BRSV vaccine (VC-group calves; n = 4) or mock vaccine (MC-group calves; 6) 1 month before BRSV challenge; unvaccinated control-group calves (n = 3) underwent mock challenge. Serum virus neutralizing (VN) antibodies were measured on days -30, -14, 0, and 7 relative to BRSV challenge nasal swab specimens were collected for virus isolation on days 0 to 7. At necropsy examination on day 7, tissue specimens were collected for measurement of BRSV-specific interferon gamma (IFN-gamma) production. Tissue distribution of CD3+ T and BLA.36+ B cells was evaluated by use of immunohistochemistry. RESULTS: The MC-group calves had significantly higher rectal temperatures, respiratory rates, and clinical scores on days 5 to 7 after BRSV challenge than VC-group calves. No difference was seen between distributions of BRSV in lung tissue of VC- and MC-group calves. Production of BRSV-specific IFN-gamma was increased in tissue specimens from VC-group calves, compared with MC- and control-group calves. Virus-specific IFN-gamma production was highest in the mediastinal lymph node of VC-group calves. Increased numbers of T cells were found in expanded bronchial-associated lymphoid tissue and airway epithelium of VC-group calves. CONCLUSIONS AND CLINICAL RELEVANCE: An intranasal dose of modified-live BRSV vaccine can protect calves against virulent BRSV challenge 1 month later.  相似文献   

16.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

17.
The effect of maternal antibodies (MatAb) on immunological priming by neonatal parenteral vaccination for bovine respiratory syncytial virus (BRSV) was addressed for the first time in experimental infection in 34 Holstein calves. Both vaccinated and control calves developed moderate to severe respiratory disease characteristic of acute BRSV infection. There were no differences in clinical signs, BRSV shed, arterial oxygen concentrations, or mortality between vaccinated and control calves after BRSV challenge approximately 11 wk after vaccination. There were no anamnestic antibody or cytokine responses in the vaccinates after challenge. Lung lesions were extensive in both groups, and although there was a statistically significant (P = 0.05) difference between groups, this difference was considered not biologically significant. These data indicate that stimulation of protective immune responses was inhibited by maternal antibodies when a combination modified-live BRSV vaccine was administered parenterally to young passively immune calves. Alternate routes of administration or different vaccine formulations should be used to successfully immunize young calves with good passive antibody transfer.  相似文献   

18.
N M Ismail  Y M Saif 《Avian diseases》1990,34(4):1002-1004
The usefulness of the virus neutralization (VN) test, the enzyme-linked immunosorbent assay (ELISA), and the agar gel precipitin (AGP) test in differentiating antibodies to infectious bursal disease virus serotypes 1 and 2 was investigated. Sera examined were from chickens that were challenged with live virus or inoculated with inactivated oil-emulsion IBDV vaccines or were both challenged and inoculated. Antibodies to serotypes 1 and 2 were differentiated by the VN test but not by the ELISA, and the AGP test was less than satisfactory.  相似文献   

19.
20.
To characterize the immune response of cattle to bovine viral diarrhea virus (BVDV) glycoprotein gp48, we have produced a large amount of recombinant glutathione-s-transferase-gp48 (GST-gp48) fusion protein in Escherichia coli. Antibodies to gp48 were present in cattle vaccinated with killed or modified-live virus vaccination, or following natural infection. These results were in agreement with results of serum neutralization (SN) test which detected gp53 of BVDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号