首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Goldfish (Carassius auratus) exposed to 20 parts per billion [14C]photodieldrin in a static system absorbed 80% of the radioactivity within 20 hr. The absorbed radioactivity was eliminated slowly with a half-life of 3 weeks. Photodieldrin and a ketone derivative were the major form of the radiocarbon eliminated in water, accounting for, respectively, 59 and 10.4% of the eliminated radioactivity. The ketone derivative was characterized by cochromatography (thin-layer and gas chromatography, gc) and gc-mass spectrometry. Approximately, 15 other polar and nonpolar metabolites were detected in the aqueous medium. The radioactivity in the fish consisted of 13 metabolites along with photodieldrin. Photodieldrin and the ketone derivative were the most abundant residues in the fish, accounting for 77 and 5.4% of the radioactivity, respectively.  相似文献   

2.
The accumulation, persistence, and metabolism and/or elimination of methoprene (isopropyl (2E, 4E)-11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate) was examined for bluegill sunfish (Lepomis macrochirus) contained in a dynamic flow-through system and a model aquatic ecosystem. The fish in the dynamic flow-through system acquired moderate residues of largely unmetabolized methoprene when continuously exposed to about 30 times anticipated environmental levels of methoprene, but residues were rapidly eliminated (93–95%) within 2 weeks when fish were transferred to flowing uncontaminated water. When bluegill were treated with methoprene in a model aquatic ecosystem, fish showed a highly misleading accumulation of 14C residues since residual radioactivity was found almost exclusively in radiolabeled natural products, including cholesterol, free fatty acids, glycerides, and protein. Less than 0.1% of the total radioactivity in fish could be attributed to unmetabolized methoprene or its primary metabolites; thus, simple radioassay procedures in ecosystem studies can be severely compromised unless coupled with more sophisticated analytical techniques.  相似文献   

3.
The exposure of bluegill fish to 50 parts per billion [14C]dieldrin in a static system resulted in the absorption of 73.00% of the radioactivity in 48 hr. Following transfer of the fish to clean water, only 16.20% of the absorbed radiolabel was eliminated in 23 days. Out of the 93.65% of the absorbed radioactivity recovered, 9 radioactive spots were isolated which included unchanged dieldrin (74.39%), pentachloroketone (8.17%), and aldrin-trans-diol (8.04%) as major metabolites.  相似文献   

4.
Bluegill absorbed 85% of 1 ppb of endrin from water within 48 hr under static exposure conditions. The absorbed radiocarbon was eliminated linearly with a half-life of about 4 weeks. Analyses of eliminated radioactivity revealed only conjugated metabolites. 12-anti-Hydroxyendrin and 12-syn-hydroxyendrin were tentatively identified by cochromatography using thin-layer chromatography/autoradiography and gas chromatography. These metabolites were also present as conjugates in the fish organs. Seventy-three percent of the absorbed radioactivity recovered from fish extracts was in the form of unchanged endrin.  相似文献   

5.
A rat, given a single oral dose of [14C] cymoxanil, 1-(2-cyano-2-methoxyimino-[2-14C]-acetyl)-3-ethylurea, eliminated 91% of the radioactivity within 72 h. The urine contained 71%, the faeces 11%, and the expired air about 7% of the radiolabel; no 14C residue was found in the internal organs. Greater than 70% of the radioactivity in the urine was identified. The major metabolite was characterised as glycine, both free and conjugated, as hippuric acid and phenylaceturic acid [N-(phenylacetyl)-glycine], and probably in the form of polypeptides of low molecular weight. The other metabolites identified included 2-cyano-2-methoxyiminoacetic acid, 2-cyano-2-hydroxyiminoacetic acid and 1-ethylimidazolidine-2, 4, 5-trione. The minor metabolites included succinic acid and 2-oxoglutaric acid which indicated reincorporation of metabolic 14C. Cymoxanil, as such, was not detected in the urine.  相似文献   

6.
[14C]ring-Bromoxynil octanoate was applied to the leaves of wheat seedlings, which were cultivated in a growth cabinet under controlled conditions for 14 days. Fractionation of the metabolites present in the treated leaves, which accounted for about 63% of the radioactivity applied, indicated a complex metabolic pathway resulting from initial hydrolysis to free bromoxynil, followed by three consecutive or concurrent steps (a) hydrolysis of the cyano group to the amide and carboxylic acid, followed by decarboxylation to 2,6-dibromophenol (0.5% of the 14C applied), (b) replacement of one or both bromine atoms by hydroxy groups to 3-bromo-4,5-dihydroxybenzonitrile (1.3 %) and 3,4,5-trihydroxybenzo-nitrile (0.6 %) or their hydrolysis products, (c) replacement of one or both bromine atoms by hydrogen, giving 3-bromo-4-hydroxybenzonitrile (1.9 %) and 4-hydroxy-benzonitrile (0.6%) or their hydrolysis products. Some of the phenolic acids or phenols formed are natural plant constituents. The metabolites identified represented in all about 11 % of the herbicide applied, but no individual metabolite accounted for more than a small proportion of it.  相似文献   

7.
[14C]Monolinuron was added to soil which was then successively cropped with spinach, cress, and potatoes. Incubation was carried out in a closed system which allowed recoveries even of volatile degradation products and gave an overall recovery of 96% of the applied radioactivity at the end of the experiment. The spinach was found to contain 4.1% of the applied activity; the cress, 5.6%; old potatoes + leaves, 9.5%; new tubers, 1%; and the soil, 68.6%. The total amount of [14C]carbon dioxide liberated was 5.3%. The quantitative separation and characterization of the extractable radioactivity in spinach yielded 10.6% as unaltered monolinuron, 12% as 4-chlorophenylurea plus 4-chlorophenyl-hydroxymethylurea, 3.7% as 4-chlorophenylmethylurea, 1.4% as 4-chlorophenyl-hydroxymethyl-methoxyurea, 1.1% as 4-chlorophenyl-methoxyurea, and 71.2% as polar metabolites. Of these polar metabolites, 67.1% were cleaved with β-glucosidase, resulting in 2.9% unknown aglucone, 48.1% 4-chlorophenyl-hydroxymethyl-methoxyurea, and 16.1% 4-chlorophenyl-hydroxymethylurea. Similar results have been obtained in cress and potatoes. The soil contained 58% of monolinuron residues and 4.7?6.5% of the same types of metabolites as were found in plants. Twenty-one percent were found as polar metabolites.  相似文献   

8.
Radiochemical studies of field soil treated with 14C oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide) indicated that the compound was readily degradable. One year after soil treatment with oryzalin, 45% of the original radioactivity had dissipated, 25% was extractable, and 30% was “soil bound”. The extractable fraction contained oryzalin and several degradation products, some of which were isolated and identified. No single degradation product accounted for more than 3% of the applied oryzalin. The “soil-bound” radioactivity was extractable with hot alkali. No significant radioactive residues were detectable in either seed or forage of soybean and wheat plants. No specific metabolites of oryzalin were identified in soybean plants. Trace amounts of radioactivity found in plant tissue appeared to be associated with the various plant constituents.  相似文献   

9.
A single oral dose of [14C]tridemorph was partly, but rapidly absorbed by rats. Most of the radioactivity was excreted with a half-life of about 15 h. During 5 days, 42.6% was excreted in the urine, 46.7% in the faeces, 1.5% in the expired air and 3.4 % was still retained. 24 % was excreted in the 48 h bile. Sequential wholebody autoradiography indicated that much of the radioactivity was confined to the gastrointestinal tract, liver and kidneys. There was no unexpected uptake of radioactivity. Urinary metabolites were more polar than tridemorph and were also detected in the bile and faeces. The major metabolite in 24 h urine, accounting for 22.3% of the dose appeared to be a side-chain hydroxylated derivative. Cleavage of the morpholine ring was limited to about 1.5 % of the dose.  相似文献   

10.
The aim of this work was to study the absorption, biotransformation, and excretion of malathion (14C-methoxy) and its metabolites in larval stages of the toad Bufo arenarum (Hensel). Also, changes in malathion metabolization by the action of the exogenous polyamine spermidine were studied. Malathion clearance from the media was uniexponential, and spermidine reduced the uptake in the larvae, causing an increase in the apparent half-life of the toxicant. Concomitant with this effect, spermidine increased the level of induction of mixed-function oxidases due to malathion and caused a progressively higher malaoxon/malathion ratio. As a consequence of the higher conversion to the active metabolite malaoxon, spermidine also provoked a significant enhancement in the inhibitory effect of Malathion on acetylcholinesterase activity. [methoxy14C]malathion metabolites, such as carboxylesterase and glutathione S-transferase products, were detected in the toad larvae and in the media. The excreted products of carboxylesterase activity were about 70% of the total radioactivity, and the glutathione S-transferase products (methyl glutathione) were 20–30% of the total radioactivity. No significant variations in the levels of excreted products due to the action of exogenous spermidine were detected. Malathion inhibited carboxylesterase activity, independent of the presence of spermidine in the media. In turn, glutathione S-transferase activity was induced by spermidine, but was not affected by the exposure to low concentrations of malathion for 48 h. We conclude that the presence of spermidine in the medium modifies malathion toxicokinetics, increasing its toxicity in B. arenarum larvae.  相似文献   

11.
The excretion patterns and tissue residues were determined after single and repeated oral dosing of rats with triazophos-14C Within 4 days after a single oral dose 76.3 % of the 14C was excreted in the urine and 21.0% in the faeces. After daily application for 12 days 69.5–83.4% of the label was eliminated in urine and 30.9–18.1 % in the faeces. Following prolonged application, however, elimination is distinctly slower. Distribution of radioactive residues in organs and tissue in both test series showed no appreciable or critical concentrations of radioactivity, with the exception of the gastrointestinal tract (contents and walls). Unchanged triazophos and l-phenyl-1,2,4-triazol-3-ol-3-14C were excreted in the faeces. Renewed release of other metabolites into the gastrointestinal tract apparently does not take place. The following metabolites are detected in the urine: urea-14C (approx. 85% of the radioactivity excreted with the urine); and three compounds as conjugates with glucuronic acid, i.e. 1-phenyl-l,2,4-triazol-3-ol-3-14C (approx. 3%), l-phenylsemicarbazide-3-14C (approx. 5%), and semicarbazide-14C (approx. 5%). Two further metabolites, so far unidentified, occurred in small quantities.  相似文献   

12.
Barley was sown and grown normally in an experimental field. At the growth stage J,
  • 1 Growth stage J: during the stem extension stage; second node of stem formed and next-to-last leaf just visible.
  • the aerial part of the plants was sprayed with an aqueous emulsion of a mixture of triforine and [3H]triforine (uniformly labelled in the piperazine ring) using the recommended dose rate of about 240g triforine ha?1. The barley was harvested when ripe and the straw and grain were analysed separately. The total radioactivity concentration was 20 times higher in straw than in grain. In straw and grain, 12 and 25% respectively of the total incorporated radioactivity in each of these tissues was methanol soluble. The composition of the methanol-soluble radioactive residue was investigated and was shown to contain triforine and its metabolites which were free and unbound in barley straw and grain. No radioactive piperazine was observed, in spite of the high detection sensitivity for radioactivity. The concentrations of triforine and its identified metabolites in straw and grain respectively (mg kg?1, relative to the fresh weight of tissue) were: triforine, 0.034 and 0.0018; N-[(2,2,2-trichloro-1-(piperazin-1-yl)ethyl]formamide), 0.009 and 0.0006; iminodiacetic acid, 0.021 and 0.001; glycine, 0.043 and 0.0033. Other radioactive water-soluble and very polar, unidentified compounds were observed, corresponding to advanced metabolic products of triforine.  相似文献   

    13.
    The effects of piperonyl butoxide on metabolism of 14C-labeled methoxychlor, aldrin, and trifluralin were investigated in green sunfish, Lepomis cyanellus. Piperonyl butoxide inhibited epoxidation of aldrin to dieldrin, O-dealkylation of methoxychlor, and N-dealkylation of trifluralin, resulting in higher levels of total radioactivity in animals exposed to the combination compared to those exposed to pesticide alone. Where piperonyl butoxide was present a greater proportion of the total radioactivity in the fish extract occurred as parent compound compared to metabolites than in fish exposed to pesticide alone. After 16 days of exposure piperonyl butoxide increased the proportion of parent compound eight times for methoxychlor, 17 times for aldrin, and 15 times for trifluralin.  相似文献   

    14.
    The metabolism of the pyrethroid insecticide α-cyano-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate (WL 41706) has been studied in rats using two forms of 14C-labelling (benzyl- and cyclopropyl-). Excretion of benzyl?14C was rapid, 57% of the administered dose being eliminated in the urine 48 h after treatment and 40% in the faeces. No significant sex difference was observed. The amount of radioactivity excreted via expired gases was 0.005% of the administered dose and less than 1.5% of the dose remained in the animals 8 days after treatment. The mean percentage recovery of administered dose was 104% for male rats and 97% for female rats. Urinary and faecal metabolites from these rats, and from rats dosed similarly with [cyclopropyl?14C]-WL 41706 were studied. The rapid metabolism of WL 41706 is due to efficient cleavage of the ester bond by rats in vivo to afford 2,2,3,3-tetramethylcyclopropanecarboxylic acid (partly as glucuronide) and the 3-phenoxybenzyl moiety. Before this cleavage occurs, however, about half of the intake suffers aryl hydroxylation giving the α-cyano-3-(4-hydroxyphenoxy)benzyl ester, part of which is excreted in the bile as a conjugate(s) and part of which is cleaved and eliminated as the O-sulphate of 3-(4-hydroxyphenoxy)benzoic acid and the glucuronide of 2,2,3,3-tetramethylcyclopropanecarboxylic acid. A minor amount of hydroxylation occurs at a trans-methyl group on the cyclopropane acid moiety. The metabolism of WL 41706 by rat liver occurs mainly in the microsomes and mainly via oxidative processes.  相似文献   

    15.
    Metabolism of Phenylurea Herbicides. VII. Metabolism Studies and Balance of the Fate of Buturon-14C after Application to Wheat. Radioactivity counts at harvest showed that 89.1% of the label was recoverable. Of this 50.1% was detected in the soil, 12.6% in the straw, 3.7% in the roots and 1.3% in the grain, while 16.2% was converted to radioactive CO2. Only about 50% of the radioactivity in the plant material was extractable. This part of the activity consisted mainly of strongly polar metabolites, while the four less polar buturon metabolites accounted for only up to 12% each.  相似文献   

    16.
    Upon intravenous application of dihydrochlordene dicarboxylic acid-14C to rats, the radioactivity is quickly excreted, and 44% of the excreted radioactivity consists of metabolites. Nine metabolites have been isolated from feces and urine extracts. Three metabolites could be identified by means of authentic samples by thin layer chromatography, gas chromatography, and mass spectrometry: two isomers of dechlorodihydrochlordene-dicarboxylic acid (metabolites I and II, total 22.5%) and dihydrochlordene-dicarboxylic acid-dimethyl-ester (metabolite III, 11.3%).  相似文献   

    17.
    The excretion and metabolism of cis + trans-[14C-benzyl] cypermethrin has been compared in quail, rat and mouse. Radioactivity was rapidly eliminated by quail dosed orally with [14C]cypermethrin (2 mg kg?1), as was the case in the rat and the mouse. When the birds were dosed intraperitoneally (IP) with the 14C-labelled pyrethroid, radioactivity was excreted more slowly than after oral dosing, and almost 20% of the IP dose of 14C remained in the tissues after 7 days. Both mammalian species excreted [14C]cypermethrin more rapidly than did the avian species after IP administration, and less than 6% of the dose remained in their tissues after several days. The biotransformation of the pyrethroid was more complex in the avian species (34 metabolites) than in the two mammals (some 10 metabolites in each species). In quail the predominant reactions were ester bond cleavage of cypermethrin together with either aromatic hydroxylation or amino acid conjugation of the 3-phenoxybenzyl moiety. The hydroxylated derivatives were eliminated mainly as sulphates. 3-Phenoxybenzoic acid was conjugated with a variety of amino acids including glycine, taurine, glutamic acid, serine, α-N-acetylornithine and the dipeptide glycylualine. The last two conjugations are unique to avian species. The major metabolite of cypermethrin in the rat was the sulphate conjugate of 3-(14-hydroxyphenoxy)benzoic acid, whereas in the mouse the major products were 3-phenoxybenzoic acid and its taurine conjugate. Thus, in the mammalian species where hydroxylation was maximal, amino acid conjugation was a minor metabolic route und vice versa. However, in the quail, aromatic hydroxylation and amino acid conjugation of the 3-phenoxybenzyl moiety of cypermethrin were both major reactions. The influence of the rates and sites of metabolism, and of the enzymology of amino acid conjugation, in determining this species difference are discussed. The rapid metabolism of cypermethrin to a variety of polar conjugates that are readily excreted, together with the low brain sensitivity of birds compared with mammals to its neurotoxic effects, explains the low acute toxicity of this pyrethoid to avian species.  相似文献   

    18.
    The metabolites isolated and purified from the excreta of the rats treated with [14C]photoheptachlor were analyzed by gc-mass spectrometry. Molecular structure of two of the major metabolites indicated that they were produced by hydroxylations at two different CCl bonds of photoheptachlor. One of these metabolites was conjugated with glucuronic acid, the other with an unknown compound. Hepatic origin of the products was shown by concordance of the in vitro and in vivo study. Most of the radioactivity in fat, skin, liver, kidney, and muscle tissues of male and female rats was organosoluble containing photoheptachlor and its nonpolar metabolites.  相似文献   

    19.
    Ring- and carboxyl-labelled [14C]2,4-D were incubated under laboratory conditions, at the 2 g/g level, in a heavy clay, sandy loam, and clay loam at 85% of field capacity and 20 1C. The soils were extracted at regular intervals for 35 days with aqaeous acidic acetonitrile, and analysed for [14C]2,4-D and possible radioactive degradation products. Following solvent extraction, a portion of the soil residues were combusted in oxygen to determine unextracted radioactivity as [14C]carbon dioxide. The remaining soil residues were then treated with aqueous sodium hydroxide, and the radioactivity associated with the fulvic and humic soil components determined. In all soils there was a rapid decrease in the amounts of extractable radioacitivity, with only 5% of that applied being recoverable after 35 days. All recoverable radioactivity was attributable to [14C]2,4-D, and no [14C]-containing degradation products were observed. This loss of extractable radioactivity was accompanied by an increase in non-extractable radioactivity. Approximately 15% of the applied radioactivity, derived from carboxyl-labelled [14C]2,4-D, and 30% from the ring-labelled [14C]2,4-D was associated with the soil in a non-extractable form, after 35 days of incubation. After 35 days, less than 5% of the radioactivity from the carboxyl-labelled herbicide, and less than 10% of the ringlabelled material, was associated with the fulvic components derived from the three soils. Less than 5% of the applied radioactivities were identifiable with any of the humic acid components. It was considered that during the incubation [14C]2,4-D did not become bound or conjugated to soil components, and that non-extractable radioactivity associated with the three soil types resulted from incorporation of radioactive degradation products, such as [14C]carbon dioxide, into soil organic matter.  相似文献   

    20.
    The in vivo metabolism of acetamiprid was studied in the honeybee, Apis mellifera L. The distribution of acetamiprid and its metabolites was monitored over a 72-h period in six biological compartments: head, thorax, abdomen, haemolymph, midgut and rectum. Honeybees were treated orally with 100 microg [14C]-acetamiprid kg(-1) bee, a dose which is about 1500 times lower than the median lethal dose. After 72 h, only 40% of the total radioactivity was eliminated, suggesting that acetamiprid and its metabolites tended to persist in the honeybee. Acetamiprid was rapidly distributed in all compartments and metabolized. Just after administration, radioactivity was mainly localized in the abdomen and subsequently in the rectum. After 72 h, the maximum amount of radioactivity (about 20% of the ingested dose) was detected again in the abdomen, whereas the lowest level of total radioactivity was detected in the haemolymph. Radioactivity in the head did not exceed 7.6% of total ingested radioactivity. More than 50% of acetamiprid was metabolised in less than 30 min, indicating a very short half-life for the compound. During the first hours, acetamiprid was mainly detected in nicotinic acetylcholine receptor-rich tissues: abdomen, thorax and head. Of the seven metabolites detected, the major ones were 6-choronicotinic acid and an unknown metabolite called U1, which was present mainly in the rectum, the thorax and the head. Our results indicate that the low toxicity of acetamiprid may reflect its rapid metabolism.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号