首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The volatile terpenoid fraction from needles in 13 cultivars of Tsuga canadensis L. (Carriere) was analyzed by gas chromatography with mass spectrometry (GC-MS). The results of this study are considered along with previously reported results for foliar terpenoid levels of the Asian (T. sieboldii, T. chinensis, T. diversifolia), western North American (T. mertensiana, T. heterophylla), and eastern North American species (T. canadensis, T. caroliniana) of hemlock to draw conclusions about the potential of cultivar host resistance to the hemlock woolly adelgid (Adelges tsugae Annand). It is suggested that hemlocks in eastern North America have adapted their terpenoid chemistry for protection against endemic defoliators and that this has made them vulnerable to non-native, sucking pests such as adelgids and scales. Some cultivars of T. canadensis have a terpenoid profile that resembles that of the resistant noneastern North American species and are candidates for biological screening for resistance. Among the cultivars, the variation in terpenoid chemistry did not absolutely correspond with the considerable differences in morphological characters observed, indicating that the terpenoid chemistry is not definitively coupled with hemlock morphology.  相似文献   

2.
The volatile composition of the headspace from Citrus unshiu Marcov. forma Miyagawa-wase blossom was investigated. The volatile constituents were absorbed by a solid-phase microextraction (SPME) fiber and directly transferred to a GC-MS. Volatile compositional changes of C. unshiu blossom prepared via different drying methods (shade, microwave, and freeze-drying methods) were also determined. A total of 96 volatile constituents were confirmed in the headspace from these samples. Monoterpene hydrocarbons were prominent in the headspace volatiles of C. unshiu blossom: fresh, 84.1%; shade-dried, 60.0%; microwave-dried, 88.4%; and freeze-dried, 29.9%. p-Cymene (23.3%) was the most abundant component in the headspace of fresh C. unshiu blossom; gamma-terpinene was the most abundant in shade- and microwave-dried samples (26.8 and 31.2%, respectively) and beta-caryophyllene (10.5%) in freeze-dried sample. By using an electronic nose consisting of six metal oxide sensors, principal component analysis of the volatile compounds showed a clear aroma discrimination of the fresh and all dried blossom samples.  相似文献   

3.
The sensorial quality of solid phase microextraction (SPME) flavor extracts from orange juice was measured by direct gas chromatogrphy-olfactometry (D-GC-O), a novel instrumental tool for evaluating odors from headspace extracts. In general, odor impressions emerging from SPME extracts poorly resembled that of the original orange juice. In an attempt to improve the sensorial quality of extracts, sample equilibration and exposure times were varied on Carboxen/polydimethylsiloxane (CAR/PDMS) and divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) SPME fibers. Best sensorial results were obtained with the DVB/CAR/PDMS fiber exposed for the shortest time; a trained panel of eight assessors judged its odor as the most representative of the reference orange juice. The analysis of odor active compounds by classical GC-O accounted for odor characteristics revealed by D-GC-O. A principal component analysis (PCA) was applied on SPME and headspace extracts using flavor recoveries as variables. Interestingly, PCA discriminated samples according to their odor representations described by D-GC-O analysis. This paper provides the first comprehensive methodology to "smell" SPME extracts and "evaluate" their sensorial quality. This method will enable future investigations to further improve SPME performance.  相似文献   

4.
A method for quantitative analysis of acrylamide has been developed for use with headspace solid-phase microextraction (SPME). In the method, acrylamide undergoes silylation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) to form the volatile N,O-bis(trimethylsilyl)acrylamide (BTMSA). Once formed, BTMSA is readily extracted from the headspace over the silylation reaction using a 100 microm poly(dimethylsiloxane) SPME fiber. A series of experiments was undertaken to optimize the amount of BSTFA, the silylation reaction temperature, the silylation reaction duration, and SPME sampling duration to maximize the analytical sensitivity for BTMSA. Acrylamide levels were quantified relative to a [13C3]-acrylamide internal standard using gas chromatography/ion-trap mass spectrometry (GC/MS) in the single ion monitoring mode. An analytical working curve was constructed and found to be linear over the 4 to 6700 ppb acrylamide range investigated with a limit of detection of 0.9 ppb. The native acrylamide levels of three commercial cereals were measured using the optimized analytical method. Quantitative standard additions of acrylamide to the cereal matrixes demonstrated complete recovery of the spiked acrylamide.  相似文献   

5.
This paper presents the design, optimization, and evaluation of a mass spectrometry-based electronic nose (MS e-nose) for early detection of unwanted fungal growth in bakery products. Seven fungal species (Aspergillus flavus, Aspergillus niger, Eurotium amstelodami, Eurotium herbariorum, Eurotium rubrum, Eurotium repens, and Penicillium corylophillum) were isolated from bakery products and used for the study. Two sampling headspace techniques were tested: static headspace (SH) and solid-phase microextraction (SPME). Cross-validated models based on principal component analysis (PCA), coupled to discriminant function analysis (DFA) and fuzzy ARTMAP, were used as data treatment. When attempting to discriminate between inoculated and blank control vials or between genera or species of in vitro growing cultures, sampling based on SPME showed better results than those based on static headspace. The SPME-MS-based e-nose was able to predict fungal growth with 88% success after 24 h of inoculation and 98% success after 48 h when changes were monitored in the headspace of fungal cultures growing on bakery product analogues. Prediction of the right fungal genus reached 78% and 88% after 24 and 96 h, respectively.  相似文献   

6.
SPME was employed to characterize the volatile profile of virgin olive oils produced in two geographical areas of northern Italy: the region of the Gulf of Trieste and the area near Lake Garda. There are as yet no data on the headspace composition of virgin olive oils from these regions, characterized by particular conditions of growth for Olea europaea. Using the SPME technique coupled to GC-MS and GC-FID, the volatile components of 42 industrially produced virgin olive oil samples were identified and the principal compounds quantitatively analyzed. Significant differences in the proportion of volatile constituents from oils of different varieties and geographical origins were detected. The results suggest that besides the genetic factor, environmental conditions influence the volatile formation.  相似文献   

7.
A dynamic solid-phase microextraction (SPME) method to sample fresh headspace volatile compounds released during the grinding of roasted coffee beans was described and the analytical results using gas chromatography/mass spectrometry (GC/MS) and GC/olfactometry (GC/O) were compared to those of the conventional static SPME sampling methods using ground coffee. Volatile compounds released during the grinding of roasted coffee beans (150 g) were obtained by exposing the SPME fiber (poly(dimethylsiloxane)/divinylbenzene, PDMS/ DVB) for 8 min to nitrogen gas (600 mL/min) discharged from a glass vessel in which the electronic coffee grinder was enclosed. Identification and characterization of volatile compounds thus obtained were achieved by GC/MS and GC/O. Peak areas of 47 typical coffee volatile compounds, separated on total ion chromatogram (TIC), obtained by the dynamic SPME method, showed coefficients of variation less than 5% (n = 3) and the gas chromatographic profile of volatile compounds thus obtained was similar to that of the solvent extract of ground coffee, except for highly volatile compounds such as 4-hydroxy-2,5-dimethyl-3(2H)-furanone and 4-ethenyl-2-methoxyphenol. Also, SPME dilution analysis of volatile compounds released during the grinding of roasted coffee beans showed linear plots of peak area versus exposed fiber length (R (2) > 0.89). Compared with those of the headspace volatile compounds of ground coffee using GC/MS and GC/O, the volatile compounds generated during the grinding of roasted coffee beans were rich in nutty- and smoke-roast aromas.  相似文献   

8.
Optimum conditions of solid phase microextraction (SPME) analysis of the headspace volatile compounds of Parmesan cheese in airtightly sealed 100-mL bottles were developed. The coefficient of variation of SPME analysis on the headspace volatile compounds of Parmesan cheese was 2%. The reproducibility of SPME was improved by a combination of sampling at -10 degrees C, controlling the sample temperature, and uniform magnetic stirring of samples during equilibrium and isolation steps. The sensitivity of SPME increased by 125% in total peak areas by a combination of 40 min of sonication and 25% (w/v) sodium phosphate solution, compared with that of samples containing deionized water only (P < 0.05). The addition of salt solution or sonication treatment in samples increased the headspace volatile compounds of cheese quantitatively without producing any new volatile compounds.  相似文献   

9.
Changes in the volatility of selected flavor compounds in the presence of nonvolatile food matrix components were studied using headspace solid-phase microextraction (HS-SPME) combined with GC-MS quantification. Time-dependent adsorption profiles to the SPME fiber and the partition coefficients between different phases were obtained for several individual volatiles, showing that HS-SPME analysis with a short sampling time can be used to determine the "true" headspace concentration at equilibrium between the headspace and a sample matrix. Equilibrium dialysis followed by HS-SPME/GC-MS was carried out to confirm the ability of HS-SPME extraction for monitoring the free volatile compounds in the presence of proteins. In particular, a short sampling time (1 min) avoided additional extraction of volatiles bound to the protein. Interactions between several selected flavor compounds and nonvolatile food matrix components [beta-lactoglobulin or (+)-catechin] were also studied by means of HS-SPME/GC-MS analysis. The volatility of ethyl hexanoate, heptanone, and hexanal was significantly decreased by the addition of beta-lactoglobulin compared to that of isoamyl acetate. Catechin decreased the volatility of ethyl hexanoate and hexanal by 10-20% and increased that of 2-heptanone by approximately 15%. This study indicates that HS-SPME can be a useful tool for the study of the interactions between volatile compounds and nonvolatile matrix components provided the kinetic and thermodynamic behavior of the volatiles in relation to the fiber chosen for the studies is carefully considered.  相似文献   

10.
Solid phase microextraction (SPME) is used to collect and concentrate the compounds in the headspace of rice. This research describes optimization parameters of temperature, moisture, and sampling time. Optimization was based upon the recovered levels of 2-acetyl-1-pyrroline (2-AP), the popcorn aroma in aromatic rice. The method uses a sampling temperature of 80 degrees C and adds 100 microL of water to a 0.75 g sample of rice. The rice was preheated for 25 min, a carboxen/DVB/PDMS SPME fiber was exposed to the headspace for 15 min, and a subsequent GC-MS analysis took 35 min. Samples of rice can be analyzed as the flour, milled kernels, or brown rice. Twenty-one experimental rice varieties were analyzed by the SPME method and compared to a wet technique. Recoveries of several nanograms of 2-AP from 0.75 g samples of aromatic rice were observed, whereas only trace amounts of 2-AP were recovered from nonaromatic rice. Recovery from a single SPME headspace analysis is calculated to be 0.3% of the total 2-AP in the sample.  相似文献   

11.
Static headspace (SHS), headspace solid phase microextraction (HS-SPME), headspace sorptive extraction (HSSE), and direct thermal desorption (DTD) were applied to the analysis of four French virgin olive oils from Corsica. More than 60 compounds were isolated and characterized by GC-RI and GC-MS. SHS was not suited to the characterization of olive oil volatile compounds because of low sensitivity. The SPME and HSSE techniques were successfully applied to olive oil headspace analysis. Both methods allow the characterization of volatile compounds (mainly C(6) aldehydes and alcohols), which contribute significantly to the "green" flavor note of virgin olive oils. The PDMS stir bar showed a higher concentration capacity than a DVB/CAR/PDMS SPME fiber due to the higher volume of polymeric coating. DTD was a very good tool for extracting volatile and especially semivolatile compounds, such as sesquiterpenes, but requires a significant investment like that for HSSE. Finally, SPME may be a more appropriate technique for routine quality control due to its operational simplicity, repeatability, and low cost.  相似文献   

12.
Determination of the botanical origin of raw spirit used for alcoholic beverage production is of great importance for rectifying units, control laboratories, and proper product labeling. Raw spirit samples (138) produced from rye, corn, and potato were analyzed using a solid phase microextraction-mass spectrometry (SPME-MS) method, which involved volatiles preconcentration by SPME with subsequent volatile fraction characterization by MS without particular compounds separation by GC. Obtained data were treated using principal component analysis and linear discriminant analysis (LDA) to test the possibility of sample classification. SPME sampling conditions allowed rapid extraction in 2 min at 50 °C using a carboxen/divinylbenzene/polydimethylsiloxane fiber, followed by rapid MS analysis. Use of LDA made possible the classification of raw spirits based on the material they were produced from. The classification ability of the developed SPME-MS method was 100%, whereas its prediction ability was 96%.  相似文献   

13.
Aroma-active components in fermented bamboo shoots.   总被引:4,自引:0,他引:4  
Bamboo shoots (Phyllostachys pubescens) were fermented and prepared in a traditional Taiwanese manner. Static and dynamic headspace extractions of volatile compounds were conducted by solid phase microextraction (SPME) and by cryogenic focusing purge and trap, respectively. Volatile analysis was conducted with gas chromatography and mass spectrometry. Gas chromatography-olfactometry (GCO) was conducted utilizing the Osme time-intensity method. Of 70 volatile compounds detected, 29 possessed aroma activity, and the most odor active included p-cresol (barn-like), 2-heptanol (mushroom), acetic acid (vinegar), and 1-octen-3-ol (mushroom). SPME extracted 66 compounds, purge and trap extracted 14 compounds, and 12 compounds were common to both methods. The Osme GCO technique coupled with SPME is an effective tool for the extraction and evaluation of aroma-active headspace volatiles.  相似文献   

14.
The flavor volatiles in three Japanese rice cultivars, Nihonbare, Koshihikari, and Akitakomachi, during cooking were directly extracted by using a modified headspace solid‐phase microextraction (SPME) method and analyzed by gas chromatography‐mass spectrometry (GC‐MS). A total of 46 components were identified, including aldehydes, ketones, alcohols, and heterocyclic compounds, as well as fatty acids and esters, phenolic compounds, hydrocarbons, etc. The amount of key odorant compounds increased with cooking, while the amount of low‐boiling volatiles decreased. The similarities and differences of the three rice cultivars were determined through a comparison of their volatile components. Nihonbare was characterized by a higher amount of indole but an absence of the chemical class of fatty acid esters. In contrast, both Koshihikari and Akitakomachi had a higher amount of 4‐vinylphenol and an abundance of those esters. Koshihikari and Akitakomachi were quite similar in regard to those flavor volatiles. Furthermore, the observations in the research may suggest that the volatile components at cooking stage (I) were the representatives of the flavor volatiles of uncooked rice, while the volatile constituents at cooking stage (IV) were the representatives of the flavor volatiles of cooked rice.  相似文献   

15.
Solid-phase microextraction (SPME) fibers were evaluated for their ability to adsorb volatile flavor compounds under various conditions with coffee and aqueous flavored solutions. Experiments comparing different fibers showed that poly(dimethylsiloxane)/divinylbenzene had the highest overall sensitivity. Carboxen/poly(dimethylsiloxane) was the most sensitive to small molecules and acids. As the concentrations of compounds increased, the quantitative linear range was exceeded as shown by competition effects with 2-isobutyl-3-methoxypyrazine at concentrations above 1 ppm. A method based on a short-time sampling of the headspace (1 min) was shown to better represent the equilibrium headspace concentration. Analysis of coffee brew with a 1-min headspace adsorption time was verified to be within the linear range for most compounds and thus appropriate for relative headspace quantification. Absolute quantification of volatiles, using isotope dilution assays (IDA), is not subject to biases caused by excess compound concentrations or complex matrices. The degradation of coffee aroma volatiles during storage was followed by relative headspace measurements and absolute quantifications. Both methods gave similar values for 3-methylbutanal, 4-ethylguaiacol, and 2,3-pentanedione. Acetic acid, however, gave higher values during storage upon relative headspace measurements due to concurrent pH decreases that were not seen with IDA.  相似文献   

16.
The volatile components from nine plants growing on natural grasslands in Auvergne, central France, selected for the broad qualitative and quantitative diversity of their terpenoid fractions, were analyzed by high-resolution gas-phase chromatography and mass spectrometry (HRGC-MS) after static headspace solid-phase microextraction (SHS-SPME). SHS-SPME allowed all the plant material to be analyzed under the same conditions despite its wide-ranging composition. This is not always possible with other extraction methods. Using an apolar poly(dimethylsiloxane) (PDMS) phase, numerous terpenoid hydrocarbons, together with alcohols, cyclic ethers, and esters, were extracted. Its ease of use and the high resolution of the chromatographic profiles obtained make SHS-SPME well suited to the rapid characterization of the main components of the volatile fraction of plants. Of the nine plants studied, four (Meum athamanticum, Pimpinella saxifraga, Achillea millefolium, and Thymus pulegioides) exhaled more than 60 different volatile components. Certain terpenes present in large amounts in these plants might help link dairy products to grazing pasture, thus improving food traceability.  相似文献   

17.
18.
The development and application of a solid-phase microextraction (SPME) method in the analysis of vanilla extracts and vanilla flavorings was studied. The SPME method was developed to be used in conjunction with gas chromatography mass spectrometry (GC-MS). The optimized SPME sampling parameters for the determination of the volatile components included a poly(acrylate) fiber, a 40-min sampling time at room temperature, and a 2-min desorption time. The reproducibility of the method was good, with a percent relative standard deviation between 2.5 and 6.4% for the target compounds. The data suggest that the origin of natural extracts can be readily determined from the GC profile and that differences exist between nature-identical and synthetic flavorings and the natural extracts. The method also has potential for identifying the type of vanilla extract/flavoring used to flavor food.  相似文献   

19.
A fast, simple, cost-effective, and reliable method based on stir bar sorptive extraction (SBSE) in the headspace mode was used for the analysis of 39 volatile components in Pinotage wines. The method was sensitive, with LODs ranging from 50.0 pg/L to 281 ng/L and LOQs between 180 pg/L and 938 ng/L. Precision was between 6 and 20%. The intermediate precision was within the acceptable range. Moreover, good calibration curves with R(2) > 0.99 for all compounds were achieved. The method was successfully applied for the analysis of 87 young Pinotage wines of vintages 2005 and 2006 collected from various South African regions. To characterize the results based on vintage and origin, the obtained concentrations of the compounds were subjected to chemometric analysis. Exploratory factor analysis (FA), principal component analysis (PCA), and analysis of variance (one-way ANOVA) were consecutively done. The chemometrics approach revealed a reasonable correlation among the volatile components of these wines, as well as with respect to their year of production.  相似文献   

20.
Monoterpene compounds of leaf pairs and flowers of Mentha x piperita have been studied by direct headspace sampling using solid-phase microextraction coupled with gas chromatography/mass spectrometry (SPME-GC/MS). The content of peppermint-characteristic compounds such as menthol, menthyl acetate, and neomenthol increased in a basipetal direction (older plant parts), whereas menthone and isomenthone showed higher levels in the acropetal direction (younger plant parts). Higher levels of menthofuran were found in peppermint flowers in contrast to the leaves. SPME sampling resulted in relatively higher amounts of high-volatile monoterpenes and lower detection of less volatile compounds such as menthol and menthone, compared to solvent-based samples from essential oil distillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号