首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
南亚热带不同树种人工林生物量及其分配格局   总被引:1,自引:1,他引:0       下载免费PDF全文
通过收获法和建立的单木相对生长方程研究了南亚热带5种树种人工林乔、灌、草不同组分的生物量及其分配。结果表明:在立地条件相似,林龄和经营管理措施相同的情况下,不同树种人工林生物量有较大差异,表现为米老排林(404.95 t·hm-2)火力楠林(376.61 t·hm-2)马尾松林(239.94 t·hm-2)红椎林(231.01 t·hm-2)铁力木林(181.06 t·hm-2)。林分生物量空间分布格局以乔木层为主,占总生物量的87.71%97.86%;其次为地表凋落物层,占1.96%10.90%;灌木层和草本层最低,仅占0.02%1.09%。林分乔木层各器官的生物量分配格局总体呈树干生物量所占比例最大,根或枝所占比例次之,再其次是干皮,叶生物量最低。林下灌木层、草本层和地表凋落物层生物量在不同林分间的差异均较大,其中,灌木层生物量以红椎林和马尾松林较高,火力楠林和米老排林较低,铁力木林最低;草本层和地表凋落物层表现出相似的规律,即马尾松林最高,红椎林其次,米老排林、火力楠林和铁力木林较低。  相似文献   

2.
四种人工林枯落物持水特性   总被引:1,自引:0,他引:1  
为了解木荷等4种人工林的枯落物水文特性,在广东省佛山市云勇林场,以木荷、杉木、藜蒴和火力楠人工林为研究对象,通过枯落物储存量调查和浸泡实验,分析枯落物持水特性,建立了枯落物持水量、吸水速率与浸泡时间的相互关系。结果表明:4种人工林林分枯落物总储存量介于2.82~10.92t/hm2,杉木林最大(10.92t/hm2),火力楠林最小(2.82t/hm2);最大持水量依次为:杉木林〉藜蒴林〉木荷林〉火力楠林;最大拦蓄量介于4.16—12.93t/hm2;有效拦蓄量介于2.46~8.92t/hm2,依次是杉木林〉藜蒴林〉火力楠林〉木荷林。枯落物浸泡实验表明:枯落物持水量与浸泡时间存在对数曲线关系,而吸水速率与浸泡时间则是幂函数关系。4种人工林枯落物持水率和吸水速率随时间的动态变化规律基本相似。随浸泡时间的延长,枯落物持水率呈增加趋势,在浸泡10—12h后,持水率增幅趋于平缓;枯落物吸水速率在前2h内变化最快,之后逐渐变缓,24h时吸水基本停止。  相似文献   

3.
Abstract

Rates of litter decomposition and nutrient release from litter provide valuable information on the capacity of different tree species to replenish soil nutrients in degraded tropical areas. Leaf litter decomposition, leaf litterfall, plantation floor leaf litter, and mulch performance were studied for four indigenous timber species, Virola koschnyiWarb, Dipteryxpanamensis(Pittier) Record and Mell, Terminalia amazonia(J.F. Gmel.) Exell., and Albizia gua-chapele(H.B.K.) Little, grown in mixed and monospecific plantations in the Atlantic humid lowlands of Costa Rica. Terminalia amazonialitter decomposed the fastest: no litter remained after 6 months. After 12 months, D. panamensis, A. guachapele, and the mixed litter decomposed completely, while 15% of the original weight of V. koschnyilitter remained. Differences in decomposition rates were closely related to leaf nutrient content. Total annual leaf litterfall was highest in T. amazonia(872.9 g/m2), followed by D. panamensis, V. koschnyi, and the mixed plots. A. guachapelehad the lowest leaf litterfall (236.0 g/m2). The highest plantation-floor leaf litter was found in V. koschnyiand D. panamensis.Both litterfall and plantation-floor litter accumulation fluctuated least in the mixed plots. A. guachapeleand D. panamensismulch most positively affected maize seedling growth, followed by the mixed mulch. Recommendations are drawn from the results to suggest species choice for sustainable land management in the region.  相似文献   

4.
The effects of understory plant litter on dominant tree litter decomposition are not well documented especially in semi-arid forests. In this study, we used a microcosm experiment to examine the effects of two understory species (Artemisia scoparia and Setaria viridis) litter on the mass loss and N release of Mongolian pine (Pinus sylvestris var. mongolica) litter in Keerqin Sandy Lands, northeast China, and identified the influencing mechanism from the chemical quality of decomposing litter. Four litter combinations were set up: one monoculture of Mongolian pine and three mixtures of Mongolian pine and one or two understory species in equal mass proportions of each species. Total C, total N, lignin, cellulose and polyphenol concentrations, and mass loss of pine litter were analyzed at days 84 and 182 of incubation. The chemistry of pine litter not only changed with the stages of decomposition, but was also strongly influenced by the presence of understory species during decomposition. Both understory species promoted mass loss of pine litter at 84 days, while only the simultaneous presence of two understory species promoted mass loss of pine litter at 182 days. Mass loss of pine litter was negatively correlated with initial ratios of C/N, lignin/N and polyphenol/N of litter combinations during the entire incubation period; at 182 days it was negatively correlated with polyphenol concentration and ratios of C/N and polyphenol/N of litter combinations at 84 days of incubation. Nitrogen release of pine litter was promoted in the presence of understory species. Nitrogen release at 84 days was negatively correlated with initial N concentration; at 182 days it was negatively correlated with initial polyphenol concentration of litter combinations and positively correlated with lignin concentration of litter combinations at 84 days of incubation. Our results suggest that the presence of understory species causes substantial changes in chemical components of pine litter that can exert strong influences on subsequent decomposition of pine litter.  相似文献   

5.
2002年在马尾松残次林下套种红锥、米老排、火力楠、南酸枣、枫香、山杜英、荷木等7个乡土阔叶树种,5年后对其林分生长和土壤水分物理性质进行了研究。结果表明:改造5年后林分已近郁闭,形成复层针阔混交林,以套种南酸枣和枫香的生长表现最佳;混交林的土壤渗透系数、含水量均随着土层深度的增加而下降,水分入渗和涵养水源效能显著增强,土壤渗透系数和含水量比马尾松纯林分别增加31.8%~45.1%和40.2%~55.1%;土壤水分物理性质得到了明显改善,其土壤容重降低6.1%~8.9%,总孔隙度提高5.3%-7.8%,饱和持水量、毛管持水量和田间持水量分别提高16.6%~20.8%、9.5%-11.5%和12.7%~15.2%;总体而言,以套种枫香、红锥和南酸枣的生态效果最好。  相似文献   

6.
珠海市典型区域生态景观林树种资源构建研究   总被引:1,自引:0,他引:1  
以广东省珠海市2005-2009年间营建的生态景观林为研究对象,采用文献与理论、调查与评价的研究方法,对该地区的植物区系、植物资源进行初步研究,结果如下:(1)调查的24个典型样地以及沿途路线中,共有39种乔木,分属于19科31属;(2)有24种观赏性比较突出的植物:南洋楹、樟树、黎蒴、红锥、青冈、铁冬青、海南红豆、杨梅、红花荷、醉香含笑、大头茶、木荷、灰木莲、蓝花楹、海南蒲桃、银桦、山杜英、尖叶杜英、南酸枣、乌桕、山乌桕、木蜡树、枫香、楝叶吴茱萸;(3)将选取的24个样地利用SPSS软件进行组间平均距离连接法聚类,划分为6个群系:米老排群系、樟树群系、金合欢属群系、木荷群系、山杜英+马占相思群系、大头茶群系。  相似文献   

7.
11种乡土阔叶树在广州南沙的早期生长表现   总被引:2,自引:0,他引:2  
于2008—2011年连续监测了广州南沙黄山鲁森林公园11种乡土阔叶树种的高生长、胸径生长及冠幅生长,及与邻近白楸次生林的根区土肥力比较研究,探讨这些树种的生长特点及改良土壤的潜力。结果表明,千果榄仁和白锥生长不适,死亡率较高,其他树种大都生长良好。其中,楝叶吴茱萸、西南桦、米老排和山杜英等表现出较快的树高、胸径和冠幅生长。与邻近的白楸次生林相比,3年生试验林林木根区土的有机质较低;不同树种的根区土肥力比较结果表明,火力楠和米老排的根区土肥力较高,生长快速的西南桦和楝叶吴茱萸次之,生长缓慢的白锥的根区土肥力较低,反映了不同树种改良土壤的潜力有较大差异。初步研究结果表明,火力楠和米老排等树种有利于土壤肥力的改良,西南桦和楝叶吴茱萸等速生树种有利于快速提高植被的覆盖率。  相似文献   

8.
近自然化改造对杉木人工林物种多样性的影响   总被引:6,自引:1,他引:6       下载免费PDF全文
在广西凭祥市热林中心青山实验场设置杉木人工林近自然化改造样地,进行3种间伐强度处理(75%、55%、35%),均匀套种4种阔叶树。改造5年后,研究不同间伐强度近自然经营对群落组成、物种多样性和林分生长状况的影响。结果表明:近自然化改造5年后,乔、灌、草3层的物种数明显增加,灌草层的优势种有所变化,但各间伐处理的优势物种大致相同;各间伐处理的灌木层物种多样性指数无显著差异;改造后各处理草本层物种多样性指数均高于未改造的纯林,各处理草本层的Simpon指数和均匀度指数均显著高于改造前的纯林。杉木胸径随间伐强度的增大而增加且差异显著,但各处理间树高无显著差异;套种的4种阔叶树的胸径、树高随间伐强度的增大而增加,大叶栎、红椎的胸径、树高生长量在不同间伐处理林分中有显著差异;高间伐强度改造的杉木人工林适合套种阳性树种大叶栎、米老排和中性树种红椎,中等间伐强度改造的杉木人工林适合套种耐阴性树种润楠。  相似文献   

9.
From 2001 to 2003, the litter decomposition dynamics of dominant tree species were conducted using a litterbag burying method in the broadleaf-Korean pine forest, spruce-fir forest and Ermans birch forest, which represents three altitudinal belts in Changbai Mountain, northeast China. The spatial and temporal dynamics of litter decomposition and the effects of litter properties were examined. Furthermore, the decomposition trend of different species was simulated by the Olson model, and results showed that annual mass loss rates increased over time, but was not significantly correlated. Leaf decomposition rates increased after decomposing for 638 days (1.75 years), and the order of dry weight remaining rates of leaf litter for different species is: Asian white birch (Betula platyphylla) (24.56%) < Amur linden (Tilia amurensis) (24.81%) < Korean pine (Pinus koraiensis) (38.48%) < spruce (Picea jezoensis var. microsperma) (41.15%) < Ermans birch (Betula ermanii) (41.53%) < fir (Abies nephrolepis) (42.62%). The dry weight remaining rates of twig litter was smaller than that of leaf litter, and followed the order of Amur linden (44.98%) < fir (64.62%) < Korean pine (72.07%) < spruce (73.51%) < Asian white birch (77.37%) < Ermans birch (80.35%). The simulation results by the Olson model showed that, in leaf, the 95%-decomposition rates ranged from 4.5 to 8.0 years, and annual decomposition rate (k) followed the order of Amur linden (0.686) > Asian white birch (0.624) > Korean pine (0.441) > spruce (0.406) > fir (0.397) > Ermans birch (0.385); in twig, it ranged from 7.8 to 29.3 years, and k follows the order: Amur linden (0.391) > fir (0.204) > Korean pine (0.176) > spruce (0.157) > Asian white birch (0.148) > Ermans birch (0.102). In general, the differences of decomposition rate are evident between leaf and twig litter and among species, and were higher in broad-leaved species compared with coniferous species at the same elevation, and decreased with the ascending of elevation. __________ Translated from Acta Ecologica Sinica, 2006, 26(4): 1,037–1,046 [译自: 生态学报]  相似文献   

10.
[目的]研究外来引进树种日本落叶松林凋落物对土壤养分的影响。[方法]采用分解袋法分别对18年生和24年生日本落叶松林以及周围针阔混交林凋落物的分解和养分释放规律进行了研究。[结果]凋落物分解和养分释放速率均表现为针阔混交林日本落叶松纯林;24年生日本落叶松林18年生日本落叶松林。其中不同林分的凋落物残留率与时间呈指数相关,凋落物年分解系数(K)也表现为针阔混交林(0.555 6)24年生日本落叶松林(0.445 0)18年生日本落叶松林(0.366 2)。凋落物分解速率与初始N元素含量呈极显著正相关,而与C/N比呈显著负相关,高的木质素含量对凋落物的分解有一定影响。C元素、K元素表现为直接释放模式,而研究中C/N比和C/P比相对较高,使N元素和P元素均表现为先富集后释放的模式。各养分元素的残留率总体呈现出18年生日本落叶松林24年生日本落叶松林针阔混交林的格局。[结论]不同林分凋落物分解和养分释放速率差异较大。凋落物年分解系数表现为针阔混交林24年生日本落叶松林18年生日本落叶松林。  相似文献   

11.
粤北10种乡土阔叶树种生长及根际养分比较   总被引:2,自引:0,他引:2  
2003年在始兴县进行10种粤北乡土阔叶树种选择研究。结果表明:造林3年后幼树的成活率均达到95%;平均树高生长最快的是红荷木Schima wallichi、i火力楠M ichelia macclurei和金叶含笑M icheliafoveolata,平均树高为4.5~5.5 m;樟树C innamomum camphora和深山含笑M ichelia maudiae生长较慢,树高生长不足3 m。冠幅生长最快的是红荷木、枫香Diquidambar formosana、金叶含笑和火力楠,平均为2.5~2.8 m;江南桤木Alnus trabeculosa、木荷Schima superba、深山含笑和樟树的冠幅生长较慢,平均冠幅仅1.6~1.8 m。生长最佳的前5名树种依次是红荷木>火力楠>金叶含笑>枫香>山杜英。土壤根际土速效N、P、K养分含量较高的前5名树种依次是樟树>红荷木>石栎>火力楠>深山含笑,木荷和山杜英根际土速效养分较低。研究结果揭示了红荷木、火力楠和金叶含笑在粤北地区生长较快,保持水肥能力较强,适于在粤北生态公益林建设中应用和推广。  相似文献   

12.
UV-B辐射对亚热带森林凋落叶分解的影响   总被引:3,自引:0,他引:3  
采用分解袋法研究自然和UV-B辐射滤减2种环境下6种亚热带代表性树种(杉木、马尾松、木荷、香樟、青冈和甜槠)凋落叶的分解情况。结果表明:除个别分解阶段外,各树种凋落叶在2种UV-B辐射环境下的干质量剩余率均存在显著差异,且随着分解时间延长,差异逐渐加大;与对照相比,UV-B辐射滤减显著降低了6个树种凋落叶的分解速率(P<0.01),降幅为33.3%~69.6%,对香樟凋落叶分解的影响最小,对杉木凋落叶分解的影响最大;UV-B辐射处理和凋落物类型对凋落叶的分解速率均有极显著影响(P<0.001),以UV-B辐射的影响更强烈;自然和UV-B辐射滤减环境下凋落叶的分解速率均与C∶N呈显著负相关(P<0.05)。  相似文献   

13.
Mixtures of litter from different plant species often show non-additive effects on decomposition and net N release (i.e., observed effects in mixtures differ from predictions based on litter of the component species), with positive non-additive (i.e., synergistic effects) being most common. Although large amounts of C and N reside in soil organic matter that contribute significantly to the overall C and N cycle, only a few studies have compared species monoculture vs. mixture effects on soil C and N dynamics. We studied the interactive effects of black spruce (Picea mariana), tamarack (Larix laricina), and white pine (Pinus strobus) on soil C respiration and net N mineralization in a plantation in northern Minnesota, USA. The trees were planted in monoculture and in all three possible two-species combinations (mixtures). After 10 years, we measured aboveground plant biomass and soil C respiration and net N mineralization rates in long-term (266 days) and short-term (13 days) laboratory incubations, respectively. Soil C respiration and net N mineralization were significantly lower in mixtures with tamarack than would be predicted from the monocultures of the two component species. Possibly, mixing of lignin rich litter from black spruce or white pine with N rich litter from tamarack suppressed the formation of lignolytic enzymes or formed complexes highly resistant to microbial degradation. However, these antagonistic effects on soil C respiration and net N mineralization in mixtures with tamarack did not result in reduced aboveground biomass in these plots after 10 years of growth. It remains to be seen if these antagonistic effects will affect long-term forest productivity and dynamics in boreal forests.  相似文献   

14.
Studies on litterfall and decomposition provide estimations of decomposition rates of different ecosystems.This is key information to understanding ecosystem dynamics and changes in a scenario of global warming.The objective of this research was to assess litterfall production,the potential deposition of macro and micronutrients through leaf and twig fall as well as macronutrient—use efficiency in three forest ecosystems at different altitudes: a pine forest mixed with deciduous species(S1); a Quercus spp.forest(S2); and,a Tamaulipan thornscrub forest(S3).Total annual litterfall deposition was 594,742 and 533 g m~(-2) for S1,S2 and S3.Leaf litter was higher (68%) than twigs(18%),reproductive structures(8%) or miscellaneous material(6%).Micronutrient leaf deposition was higher for Fe followed by Mn,Zn and Cu.Macronutrient leaf deposition was higher for Ca followed by K,Mg and P.Even though P deposition in leaves and twigs was lower than other macronutrients,its nutrient use efficiency was higher than Ca,Mg or K.Altitude and species composition determine litter and nutrient deposition,with higher values at mid-altitudes(550 m).Altitude is an important factor to consider when analyzing litter production as well as nutrient deposition as shown in this study.Litter production and nutrient deposition are expected to change in a scenario of global warming.  相似文献   

15.
  • ? The effect of nitrogen (N) deposition on the decomposition of pine (Pinus massoniana) needles in a tropical pine plantation was studied. The pine needles with two different nutrient status (nutrient-rich and nutrient-poor) were used, followed by 3-levels of N treatments (Control: no N addition, Low- N: 5 g N m?2 y?1, and Medium-N: 10 g N m?2 y?1 experimental inputs), which had been applied for 26 months continuously before this experiment and continued throughout the decomposition measurement.
  • ? The main objective was to test the hypothesis that decomposition of nutrient-rich needles would be more sensitive to cumulative N deposition than the decomposition of nutrient-poor needles.
  • ? Nitrogen addition had negative effect on mass loss, and the release of N and P from decomposing nutrient-rich needles but little or no effect on the decomposition of nutrient-poor needles. In addition, a negative effect in the initial decomposition phase and a positive effect in later decay stages were found on C release. The negative effect was stronger on nutrient-rich needles than on nutrient-poor needles, but the reverse was true for the positive effect.
  • ? Our results suggest that response of litter decomposition to N deposition may vary depending on the nutrient status of the litter.
  •   相似文献   

    16.
    Scots pine (Pinus sylvestris) and lodgepole pine (Pinus contorta) needle litters were compared in terms of nutrient composition and its change during decomposition. Initial nutrient composition differed between the species, with lodgepole pine needle litter having significantly higher concentrations of P, Mg and Mn. However, no difference was found for concentrations of N, Ca or K. Increases in concentrations of N, P and K during decomposition were significant in both litter types. For Ca the pattern of concentration changes followed a quadratic function as decomposition proceeded. Concentrations of Mg and Mn decreased in lodgepole pine needle litter. In Scots pine litter there was also an initial decrease, but it was followed by an increase in most incubations. For both Mg and Mn, changes in concentrations during decomposition differed significantly between species. In the late decomposition stages, concentrations of Mg and Mn became similar in both litter types. Nutrient concentrations generated by the models were compared with those of the humus (F and H) layer in the stands. The model was quite accurate in predicting concentrations of N and P for both species and the concentration of Mg for lodgepole pine. By contrast, it was not accurate in predicting concentrations of Ca and Mn. Nutrient release was estimated for the two species using both measured litterfall data and long‐term estimates, and regression models were used to predict concentration changes. Rates of release of P, Mg and Mn in the lodgepole pine stands were found to be about twice as high compared with those in Scots pine. Calcium was also released to a greater extent although the difference was not significant.  相似文献   

    17.

    Aims

    Globally, extensive areas of native forest have been almost replaced by plantations to meet the demands for timber, fuel material and other forest products. This study aimed to evaluate the effects of forest conversion on labile soil organic C (SOC), soil respiration, and enzyme activity, and to quantify their relationship in subtropical forest ecosystems.

    Methods

    Surface mineral soil (0–20 cm) was collected from a Cunninghamia lanceolata Hook. plantation, Pinus massoniana Lamb. plantation, Michelia macclurei Dandy plantation, and an undisturbed native broadleaf forest. Soil microbial biomass C, dissolved organic C, permanganate-oxidizable C, basal respiration, and six enzyme activities were investigated.

    Results

    Soil microbial biomass C was higher by 45.9 % in native broadleaf forest than that in M. macclurei Dandy plantation. The ratio of soil microbial biomass C to total SOC was 27.6 % higher in the M. macclurei Dandy plantation than in the native broadleaf forest. The soil respiration increased by 25.2 % and 21.7 % after conversion from native broadleaf forest to P. massoniana Lamb. and M. macclurei Dandy plantations respectively. The effects of forest conversion on the soil enzyme activities differed among the tree species. Soil microbial biomass C had higher correlation with soil respiration than with the other SOC fractions. Moreover, soil microbial biomass C was positively correlated with urease and negatively correlated with cellulase activity. Soil respiration had higher correlation with soil microbial biomass C, dissolved organic C and permanganate-oxidizable C.

    Conclusion

    Forest conversion affected the soil microbial biomass C, soil respiration, invertase, cellulase, urease, catalase, acid phosphatase, and polyphenol oxidase activities, but their response depended on tree species. Soil respiration was mainly controlled by labile SOC, not by total SOC.  相似文献   

    18.
    通过对广东省东江林场7 a生人工林20个树种的生长表现调查及综合分析,结果显示:不同树种间的树高、胸径、冠幅均差异极显著(P<0.01),而且3个指标间显著正相关,通过聚类分析可将20个树种分为4类,红花荷和南酸枣生长表现最优,属于速生树种;西南桦、深山含笑、山杜英、翻白叶、山桂花、青冈、红锥、大叶紫薇生长表现次之;阴香、荷木、枫香、火力楠、海南红豆、黎蒴、樟树属中等速生树种;格木、楝叶吴茱萸、麻楝生长较慢.  相似文献   

    19.
    The productivity of Robinia pseudoacacia (R.p.) pure forest usually declines at the late growth stage, and reforming it into mixed forests could be a promising way to resolve this problem. When choosing a suitable tree species that can be mixed with R.p., the interspecific relationship is an important issue. Therefore, we gathered the autumn litter fall from R.p. and 10 other species from the Loess Plateau of China were mixed in dual species litterbags (R.p. + each other species) and buried them in soil for a 345 days lab decay incubation. We measured the litter mass loss and nutrient contents to determine whether the nutrient release was affected by mixed species litter decomposition. The impacts of mixed litter decomposition on macro-elements release were more obvious than on micro-elements. The litters with similar substrate quality might show variable impacts on nutrients release in mixed decomposition. The C loss and release of nutrient was improved by descending order when R.p. litter was mixed with Hippophae rhamnoides, Ulmus pumila, Populus simonii, Larix principis-rupprechtii and Quercus liaotungensis (Q.l.). But, except for Q.l., only the other species were recommended as suitable mix-plants for R.p. since promoting a high turnover of the nutrient in the litter compartment and a rapid availability for tree.  相似文献   

    20.
    Rates of weight loss and nutrient (N and P) release patterns were studied in the leaf litter of the dominant tree species (Ailanthus grandis, Altingia excelsa, Castanopsis indica, Duabanga sonneriatioides, Dysoxylum binectariferum, Mesua ferrea, Shorea assamica, Taluma hodgsonii, Terminalia myriocarpa and Vatica lancefolia) of a tropical wet evergreen forest of northeast India. Nitrogen and phosphorus mineralization rate and decay pattern varied significantly from species to species. In general, the decay pattern, characterized by using a composite polynomial regression equation, exhibited three distinct phases of decay during litter decomposition—an initial slow decay phase (0.063% weight loss day−1), followed by a rapid decay phase (0.494% weight loss day−1) and a final slow decay phase (0.136% weight loss day−1). The initial chemical composition of the litter affected decomposition rates and patterns. Species like D. sonneriatoides, D. binectariferum, and T. hodgsonii with higher N and P content, lower carbon and lignin content, and lower C:N ratio and lignin:N ratio exhibited relatively faster decomposition rates than the other species, for example M. ferrea, C. indica and A. grandis. A slow decay rate was recorded for species such as M. ferrea, C. indica, and A. grandis. The initial N and P content of litter showed significant positive correlations with decay rates. Carbon and lignin content, lignin:N, and C:N showed significant negative correlations with decay rates. Soil total N and P, and rainfall, soil temperature, and soil moisture had positive correlations with decay rates. The rapid decomposition rates observed in comparison with other different forest litter decay rates confirm that tropical wet evergreen forest species are characterized by faster decomposition rates, indicating a faster rate of organic matter turnover and rapid nutrient cycling.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号