首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
WNV encephalitis in horses, previously reported in Africa, Asia, and Europe, occurred for the first time in the Western Hemisphere in 1999. The causative agent, WNV, is a flavivirus maintained in nature by a bird-mosquito cycle. The disease in horses is manifested primarily by ataxia of variable severity. Outbreaks of encephalitis may have a case fatality rate in excess of 40%, although this virus infection is inapparent in some horses. Early evidence indicates that WNV has overwintered in the northeastern United States and poses a threat for future disease occurrences in horses. No vaccine is available to protect against WNV infection in horses; disease control is predicated on mosquito abatement.  相似文献   

2.
A prospective cohort study was used to estimate the incidence of West Nile virus (WNV) infection in a group of unvaccinated horses (n = 37) in California and compare the effects of natural WNV infection in these unvaccinated horses to a group of co-mingled vaccinated horses (n = 155). Horses initially were vaccinated with either inactivated whole virus (n = 87) or canarypox recombinant (n = 68) WNV vaccines during 2003 or 2004, prior to emergence of WNV in the region. Unvaccinated horses were serologically tested for antibodies to WNV by microsphere immunoassay incorporating recombinant WNV E protein (rE MIA) in December 2003, December 2004, and every two months thereafter until November 2005. Clinical neurologic disease attributable to WNV infection (West Nile disease (WND)) developed in 2 (5.4%) of 37 unvaccinated horses and in 0 of 155 vaccinated horses. One affected horse died. Twenty one (67.7%) of 31 unvaccinated horses that were seronegative to WNV in December, 2004 seroconverted to WNV before the end of the study in November, 2005. Findings from the study indicate that currently-available commercial vaccines are effective in preventing WND and their use is financially justified because clinical disease only occurred in unvaccinated horses and the mean cost of each clinical case of WND was approximately 45 times the cost of a 2-dose WNV vaccination program.  相似文献   

3.
4.
One hundred and ninety-one sera from horses that recently were exposed to West Nile virus (WNV) by either vaccination or natural infection or that were not vaccinated and remained free of infection were used to evaluate fluorescent microsphere immunoassays (MIAs) incorporating recombinant WNV envelope protein (rE) and recombinant nonstructural proteins (rNS1, rNS3, and rNS5) for detection of equine antibodies to WNV. The rE MIA had a diagnostic sensitivity and specificity, respectively, of 99.3% and 97.4% for detection of WNV antibodies in the serum of horses that were recently vaccinated or naturally infected with WNV, as compared to the plaque reduction neutralization test (PRNT). The positive rE MIA results were assumed to be WNV-specific because of the close agreement between this assay and the PRNT and the fact that unvaccinated control horses included in this study were confirmed to be free of exposure to the related St Louis encephalitis virus. The NS protein-based MIA were all less sensitive than either the rE MIA or PRNT (sensitivity 0-48.0), although the rNSI MIA distinguished horses vaccinated with the recombinant WNV vaccine from those that were immunized with the inactivated WNV vaccine (P < 0.0001) or naturally infected with WNV (P < 0.0001). The rE MIA would appear to provide a rapid, convenient, inexpensive, and accurate test for the screening of equine sera for the presence of antibodies to WNV.  相似文献   

5.
OBJECTIVE: To determine the onset of immunity after IM administration of a single dose of a recombinant canarypox virus vaccine against West Nile virus (WNV) in horses in a blind challenge trial. ANIMALS: 20 mixed-breed horses. PROCEDURE: Horses with no prior exposure to WNV were randomly assigned to 1 of 2 groups (10 horses/group). In 1 group, a recombinant canarypox virus vaccine against WNV was administered to each horse once (day 0). The other 10 control horses were untreated. On day 26, 9 treated and 10 control horses were challenged via the bites of mosquitoes (Aedes albopictus) infected with WNV. Clinical responses and WNV isolation were monitored for 14 days after challenge exposure; antibody responses against WNV after administration of the vaccine and challenge were also assessed in both groups. RESULTS: Following challenge via WNV-infected mosquitoes, 1 of 9 treated horses developed viremia. In contrast, 8 of 10 control horses developed viremia after challenge exposure to WNV-infected mosquitoes. All horses seroconverted after WNV challenge; compared with control horses, antibody responses in the horses that received the vaccine were detected earlier. CONCLUSIONS AND CLINICAL RELEVANCe: In horses, a single dose of the recombinant canarypox virus-WNV vaccine appears to provide early protection against development of viremia after challenge with WNV-infected mosquitoes, even in the absence of measurable antibody titers in some horses. This vaccine may provide veterinarians with an important tool in controlling WNV infection during a natural outbreak or under conditions in which a rapid onset of protection is required.  相似文献   

6.
A new recombinant West Nile virus (WNV) vaccine has been licensed for use in horses. Prior to the availability of the recombinant vaccine in 2004, the only equine WNV vaccine available on the market had been an inactivated vaccine. Since the recombinant vaccine only expresses selected viral genes, the question could be posed as to whether a single dose of the recombinant vaccine would be effective in producing an anamnestic serologic response in horses previously vaccinated with an inactivated WNV vaccine. In this study we demonstrate that vaccination of horses with a canarypox-vectored recombinant vaccine, under field conditions, results in a marked anamnestic response in horses previously vaccinated with an inactivated WNV vaccine.  相似文献   

7.
The pathologic and peroxidase immunohistochemical features of West Nile flavivirus (WNV) infection were compared in four horses from the northeastern United States and six horses from central Italy. In all 10 animals, there were mild to severe polioencephalomyelitis with small T lymphocyte and lesser macrophage perivascular infiltrate, multifocal glial nodules, neutrophils, and occasional neuronophagia. Perivascular hemorrhages, also noted macroscopically in two animals, were observed in 50% of the horses. In the four American horses, lesions extended from the basal nuclei through the brain stem and to the sacral spinal cord and were more severe than the lesions observed in the six Italian horses, which had moderate to severe lesions mainly in the thoracolumbar spinal cord and mild rhombencephalic lesions. WNV antigen was scant and was identified within the cytoplasm of a few neurons, fibers, glial cells, and macrophages. WNV infection in horses is characterized by lesions with little associated antigen when compared with WNV infection in birds and some fatal human infections and with other important viral encephalitides of horses, such as alphavirus infections and rabies.  相似文献   

8.
West Nile virus (WNV) is a single-stranded, enveloped RNA virus capable of causing encephalitic disease in horses. Unvaccinated horses are at risk for developing WNV disease in endemic geographic regions. Effective vaccination reduces disease frequency and diminishes disease severity in vaccinated individuals that become infected with WNV. Recent data indicate CD4+ lymphocytes are required for effective protection against disease; in particular, cross talk between CD4+ and CD8+ lymphocytes must be functional. The objective of this project was to investigate immune responses in horses throughout a series of three vaccinations using a commercial inactivated vaccine under natural conditions. Immune responses to vaccination were determined by neutralizing antibody titers with plaque reduction neutralization test (PRNT), IgM titer (capture ELISA), WNV specific antibody Ig subclass responses, WNV lymphocyte proliferative responses and intracellular cytokine expression. Horses were vaccinated with a series of three vaccines at 3-week intervals using an inactivated product. An initial measure of immune activation following vaccination was determined by evaluating changes in lymphocyte cytokine expression. Interferon (IFN) gamma and interleukin (IL)-4 expressing CD4+ lymphocytes significantly increased 14 days following initial vaccination compared to unvaccinated horses (P<0.05). IFN-gamma expressing CD8+ lymphocytes also increased and remained elevated for 110 days. Antigen specific lymphocyte proliferative responses were significantly increased up to 90 days following the third vaccination (P<0.05). As expected, vaccinated horses produced increased neutralizing antibody based on PRNT data and WNV antigen-specific Ig subclass responses compared with unvaccinated horses (P<0.05). Our data indicate that WNV vaccination with an inactivated product effectively induced an antigen-specific antibody responses, as well as CD4+ and CD8+ lymphocyte activation.  相似文献   

9.
REASONS FOR PERFORMING STUDY: West Nile virus (WNV) infection is endemic in southern Africa. With the recent emergence of WNV infection of horses in Europe and the USA the present study was performed to estimate the risk of seroconversion to WNV in a cohort of 488 young Thoroughbred (TB) horses. OBJECTIVES: To estimate the risk of seroconversion to WNV among a cohort of South African TB yearlings sold at the 2001 National Yearling Sales (NYS) and to determine whether the risk varied geographically. Two horses were also infected with a recent South African isolate of WNV to evaluate its virulence in horses. METHODS: Serum samples were collected from the cohort of 488 TB yearlings at the 2001 NYS. Serum samples that were collected from the same horses at the time that they were identified were sourced from our serum bank. Sera from 243 of the dams that were collected at the time that the foals were identified were also sourced from our serum bank. These sera were subjected to serum neutralisation (SN) tests for antibody to WNV. RESULTS: Approximately 11% of yearlings seroconverted to WNV on paired serum samples collected from each animal approximately 12 months apart. Studfarms with WNV-seropositive yearlings were widely distributed throughout South Africa and SN tests on sera from their dams indicated that exposure to WNV was even more prevalent (75%) in this population. Neurological disease was not described in any of the horses included in this study and 2 horses inoculated with a recent lineage 2 South African isolate of WNV showed no clinical signs of disease after infection and virus was not detected in their blood. CONCLUSIONS: Infection of horses with WNV is common in South Africa, but infection is not associated with neurological disease. POTENTIAL RELEVANCE: In contrast to recent reports from Europe, North Africa, Asia and North America, the results of our field and experimental studies indicated that exposure of horses to the endemic southern African strains of WNV was not associated with neurological disease.  相似文献   

10.
The primary objectives of this study were to determine the seroprevalence of West Nile virus (WNV) infection of horses in Saskatchewan in 2003 and to identify risk factors for the infection. Blood samples were collected in August and October from 212 horses in 20 herds in 5 geographic zones. After accounting for within-herd clustering, the proportion of horses that had been infected with WNV, as determined by IgG and IgM antibody response, was 55.7% (95% confidence interval, 44.9% to 65.8%). The proportion of antibody-positive horses differed among herds (0% to 100%) and across ecoregions (20% to 76%). Horses in southern ecoregions were more likely to have either IgM antibodies or IgG concentrations suggesting infection than were horses in northern ecoregions. The use of mosquito-control measures was associated with decreased risk. After accounting for ecoregion, there was no difference between recipients of an inactivated WNV vaccine and nonrecipients in the occurrence of antibodies reflecting natural infection.  相似文献   

11.
OBJECTIVE: To compare neutralizing antibody response between horses vaccinated against West Nile virus (WNV) and horses that survived naturally occurring infection. DESIGN: Cross-sectional observational study. ANIMALS: 187 horses vaccinated with a killed WNV vaccine and 37 horses with confirmed clinical WNV infection. PROCEDURE: Serum was collected from vaccinated horses prior to and 4 to 6 weeks after completion of an initial vaccination series (2 doses) and 5 to 7 months later. Serum was collected from affected horses 4 to 6 weeks after laboratory diagnosis of infection and 5 to 7 months after the first sample was obtained. The IgM capture ELISA, plaque reduction neutralization test (PRNT), and microtiter virus neutralization test were used. RESULTS: All affected horses had PRNT titers > or = 1:100 at 4 to 6 weeks after onset of disease, and 90% (18/20) maintained this titer for 5 to 7 months. After the second vaccination, 67% of vaccinated horses had PRNT titers > or = 1:100 and 14% had titers < 1:10. Five to 7 months later, 33% (28/84) of vaccinated horses had PRNT titers > or = 1:100, whereas 29% (24/84) had titers < 1:10. Vaccinated and clinically affected horses' end point titers had decreased by 5 to 7 months after vaccination. CONCLUSIONS AND CLINICAL RELEVANCE: A portion of horses vaccinated against WNV may respond poorly. Vaccination every 6 months may be indicated in certain horses and in areas of high vector activity. Other preventative methods such as mosquito control are warranted to prevent WNV infection in horses.  相似文献   

12.
OBJECTIVE: To describe an outbreak of encephalomyelitis caused by West Nile virus (WNV) in horses in northern Indiana. DESIGN: Case series. ANIMALS: 170 horses. PROCEDURES: Horses with clinical signs suggestive of encephalomyelitis caused by WNV were examined. Date, age, sex, breed, and survival status were recorded. Serum samples were tested for anti-WNV antibodies, and virus isolation was attempted from samples of brain tissue. Climate data from local weather recording stations were collected. An epidemic curve was constructed, and case fatality rate was calculated. RESULTS: The most common clinical signs were ataxia, hind limb paresis, and muscle tremors and fasciculations. Eight horses had been vaccinated against WNV from 2 to 21 days prior to the appearance of clinical signs. West Nile virus was isolated from brain tissue of 2 nonvaccinated horses, and anti-WNV IgM antibodies were detected in 132 nonvaccinated horses; in 2 other nonvaccinated horses, anti-WNV antibodies were detected and WNV was also isolated from brain tissue. Thirty-one (22.8%) horses died or were euthanatized. The peak of the outbreak occurred on September 6, 2002. Ambient temperatures were significantly lower after the peak of the outbreak, compared with prior to the peak. CONCLUSIONS AND CLINICAL RELEVANCE: The peak risk period for encephalomyelitis caused by WNV in northern Indiana was mid-August to mid-September. Reduction in cases coincided with decreasing ambient temperatures. Because of a substantial case fatality rate, owners of horses in northern Indiana should have their horses fully protected by vaccination against WNV before June. In other regions of the United States with a defined mosquito breeding season, vaccination of previously nonvaccinated horses should commence at least 4 months before the anticipated peak in seasonal mosquito numbers, and for previously vaccinated horses, vaccine should be administered no later than 2 months before this time.  相似文献   

13.
OBJECTIVE: To determine whether West Nile virus (WNV) disease hyperendemic foci (hot spots) exist within the horse population in Texas and, if detected, to identify the locations. SAMPLE POPULATION: Reports of 1,907 horses with WNV disease in Texas from 2002 to 2004. Procedures: Case data with spatial information from WNV epidemics occurring in 2002 (1,377 horses), 2003 (396 horses), and 2004 (134 horses) were analyzed by use of the spatial scan statistic (Poisson model) and kriging of empirical Bayes smoothed county attack rates to determine locations of horses with WNV disease in which affected horses were consistently (in each of the 3 study years) clustered (hyperendemic foci, or hot spots). RESULTS: 2 WNV hot spots in Texas, an area in northwestern Texas and an area in eastern Texas, were identified with the scan statistic. Risk maps of the WNV epidemics were qualitatively consistent with the hot spots identified. Conclusions and CLINICAL RELEVANCE: WNV hot spots existed within the horse population in Texas (2002 to 2004). Knowledge of disease hot spots allows disease control and prevention programs to be made more efficient through targeted surveillance and education.  相似文献   

14.
The objective of this study was to develop a model using equine data from geographically limited surveillance locations to predict risk categories for West Nile virus (WNV) infection in horses in all geographic locations across the province of Saskatchewan. The province was divided geographically into low-, medium-, or high-risk categories for WNV, based on available serology information from 923 horses obtained through 4 studies of WNV infection in horse populations in Saskatchewan. Discriminant analysis was used to build models using the observed risk of WNV in horses and geographic division-specific environmental data as well as to predict the risk category for all areas, including those beyond the surveillance zones. High-risk areas were indicated by relatively lower rainfall, higher temperatures, and a lower percentage of area covered in trees, water, and wetland. These conditions were most often identified in the southwest corner of the province. Environmental conditions can be used to identify those areas that are at highest risk for WNV. Public health managers could use prediction maps, which are based on animal or human information and developed from annual early season meteorological information, to guide ongoing decisions about when and where to focus intervention strategies for WNV.  相似文献   

15.
OBJECTIVE: To determine signalment, clinical findings, results of diagnostic testing, outcome, and postmortem findings in horses with West Nile virus (WNV) encephalomyelitis. DESIGN: Retrospective study. ANIMALS: 46 horses with WNV encephalomyelitis. PROCEDURE: Clinical data were extracted from medical records of affected horses. RESULTS: On the basis of clinical signs and results of serologic testing, WNV encephalomyelitis was diagnosed in 46 of 56 horses with CNS signs. Significantly more males than females were affected. Increased rectal temperature, weakness or ataxia, and muscle fasciculations were the most common clinical signs. Paresis was more common than ataxia, although both could be asymmetrical and multifocal. Supportive treatment included anti-inflammatory medications, fluids, antimicrobials, and slinging of recumbent horses. Results of the IgM capture ELISA and the plaque reduction neutralization test provided a diagnosis in 43 horses, and only results of the plaque reduction neutralization test were positive in 3 horses. Mortality rate was 30%, and 71% of recumbent horses were euthanatized. One horse that had received 2 vaccinations for WNV developed the disease and was euthanatized. Follow-up communications with 19 owners revealed that most horses had residual deficits at 1 month after release from the hospital; abnormalities were resolved in all but 2 horses by 12 months after release. CONCLUSIONS AND CLINICAL RELEVANCE: Our findings were similar to those of previous WNV outbreaks in horses but provided additional clinical details from monitored hospitalized horses. Diagnostic testing is essential to diagnosis, treatment is supportive, and recovery rate of discharged ambulatory horses is < 100%.  相似文献   

16.
In Europe, virological and epidemiological data collected in wild birds and horses suggest that a recurrent circulation of West Nile virus (WNV) could exist in some areas. Whether this circulation is permanent (due to overwintering mechanisms) or not remains unknown. The current conception of WNV epidemiology suggests that it is not: this conception combines an enzootic WNV circulation in tropical Africa with seasonal introductions of the virus in Europe by migratory birds. The objectives of this work were to (i) model this conception of WNV global circulation; and (ii) evaluate whether the model could reproduce data and patterns observed in Europe and Africa in vectors, horses, and birds. The model was calibrated using published seroprevalence data obtained from African (Senegal) and European (Spain) wild birds, and validated using independent, published data: seroprevalence rates in migratory and resident wild birds, minimal infection rates in vectors, as well as seroprevalence and incidence rates in horses. According to this model, overwintering mechanisms are not needed to reproduce the observed data. However, the existence of such mechanisms cannot be ruled out.  相似文献   

17.
REASON FOR PERFORMING STUDY: West Nile virus (WNF) is a Flavivirus responsible for a life-threatening neurological disease in man and horses. Development of improved vaccines against Flavivirus infections is therefore important. OBJECTIVES: To establish that a single immunogenicity dose of live Flavivirus chimera (WN-FV) vaccine protects horses from the disease and it induces a protective immune response, and to determine the duration of the protective immunity. METHODS: Clinical signs were compared between vaccinated (VACC) and control (CTRL) horses after an intrathecal WNV challenge given at 10 or 28 days, or 12 months post vaccination. RESULTS: Challenge of horses in the immunogenicity study at Day 28 post vaccination resulted in severe clinical signs of WNV infection in 10/10 control (CTRL) compared to 1/20 vaccinated (VACC) horses (P<0.01). None of the VACC horses developed viraemia and minimal histopathology was noted. Duration of immunity (DPI) was established at 12 months post vaccination. Eight of 10 CTRL exhibited severe clinical signs of infection compared to 1 of 9 VACC horses (P<0.05). There was a significant reduction in the occurrence of viraemia and histopathology lesion in VACC horses relative to CTRL horses. Horses challenged at Day 10 post vaccination experienced moderate or severe clinical signs of WNV infection in 3/3 CTRL compared to 5/6 VACC horses (P<0.05). CONCLUSIONS: This novel WN-FV chimera vaccine generates a protective immune response to WNV infection in horses that is demonstrated 10 days after a single vaccination and lasts for up to one year. POTENTIAL RELEVANCE: This is the first USDA licensed equine WNV vaccine to utilise a severe challenge model that produces the same WNV disease observed under field conditions to obtain a label claim for prevention of viraemia and aid in the prevention of WNV disease and encephalitis with a duration of immunity of 12 months.  相似文献   

18.
OBJECTIVE: To characterize an outbreak of West Nile virus (WNV) infection in horses in North Dakota in 2002, evaluate vaccine effectiveness, and determine horse characteristics and clinical signs associated with infection. DESIGN: Retrospective study. ANIMALS: 569 horses. PROCEDURE: Data were obtained from veterinary laboratory records, and a questionnaire was mailed to veterinarians of affected horses. RESULTS: Affected horses were defined as horses with typical clinical signs and seroconversion or positive results of virus isolation; affected horses were detected in 52 of the 53 counties and concentrated in the eastern and northeastern regions of the state. Among affected horses, 27% (n = 152) were vaccinated against WNV, 54% (309) were not, and 19% (108) had unknown vaccination status; 61 % (345) recovered, 22% (126) died, and 17% (98) had unknown outcome. The odds of death among nonvaccinated horses were 3 and 16 times the odds among horses that received only 1 or 2 doses of vaccine and horses that were vaccinated according to manufacturer's recommendations, respectively. Horses with recumbency, caudal paresis, and age > 5 years had higher odds of death, whereas horses with incoordination had lower odds of death, compared with affected horses without these characteristics. CONCLUSIONS AND CLINICAL RELEVANCE: Vaccination appears to have beneficial effects regarding infection and death caused by WNV.  相似文献   

19.
West Nile virus (WNV) is an emerging zoonotic pathogen with rapid global expansion. The virus circulation is confirmed in many countries of Mediterranean Basin and Southern and Central Europe. In our study detection of specific WNV antibodies was performed in horses and cattle sera samples collected from October 2010 to April 2011. Serum samples were randomly taken from different parts of Croatia and tested by IgG and IgM ELISA. Positive serological results were confirmed by virus neutralization assay (VN-assay) and plaque reduction neutralization test (PRNT). Results showed that WNV antibodies were present in 72 out of 2098 horse sera (3.43%) and 3 of 2695 cattle sera (0.11%). The highest seroprevalence was found in Eastern Croatia in counties next to Hungarian, Serbian and Bosnia and Herzegovinian state borders. In Adriatic part of Croatia positive animals were found only in the westernmost county, near Slovenian and Italian borders. Geographic distribution and number of positive horses indicated that WNV is highly present in Croatia and spreading from East to West. However, positive horses in westernmost part of country indicate possible second origin of spreading. Location of serological positive cattle supports the hypothesis that seropositive cattle could be indicators of high WNV activity in the respective geographic regions.  相似文献   

20.
Successful vaccination against West Nile virus (WNV) requires induction of both neutralizing antibodies and cell-mediated immune responses. In this study, we have assessed the ability of a recombinant ALVAC-WNV vaccine (RECOMBITEK WNV) to elicit neutralizing antibodies and virus-specific cell-mediated immune responses in horses. In addition, we examined whether prior exposure to ALVAC-WNV vaccine would inhibit B and cell-mediated immune responses against the transgene product upon subsequent booster immunizations with the same vaccine. The results demonstrated that the recombinant ALVAC-WNV vaccine induced neutralizing antibodies and prM/E insert-specific IFN-gamma(+) producing cells against WNV in vaccinated horses. Prior exposure to ALVAC-WNV vaccine did not impair the ability of horses to respond to two subsequent booster injections with the same vaccine, although anti-vector-specific antibody and cell-mediated immune responses were induced in vaccinated horses. This report describes, for the first time, the induction of antigen-specific cell-mediated responses following vaccination with an ALVAC virus recombinant vaccine encoding WNV antigens. Moreover, we showed that both WNV-specific IFN-gamma producing cells and anti-WNV neutralizing antibody responses, are not inhibited by subsequent vaccinations with the same vector vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号