首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用Annexin V-FITC/PI双染色法,用流式细胞仪检测了猪繁殖与呼吸综合征病毒(PRRSV)实验感染SPF猪不同时期外周血单核细胞和肺泡巨噬细胞感染Annexin V-FITC^+/PI^-细胞群(早期凋亡细胞群)。结果显示,PRRSV感染猪外周血单核细胞和肺泡巨噬细胞Annexin V-FITC^+/PI^-细胞群的表达率均明显高于正常对照猪,感染后24h表达率达最高值。  相似文献   

2.
This study examined whether an infection with porcine reproductive and respiratory syndrome virus (PRRSV) potentiates respiratory signs upon exposure to bacterial lipopolysaccharides (LPS). Five-week-old conventional pigs were inoculated intratracheally with the Lelystad strain of PRRSV and received 5 days later one or two intratracheal LPS administrations. The necessary controls were included. After LPS administration, pigs were intensively monitored for clinical signs. Additionally, some pigs were euthanatized after a second LPS administration for broncho-alveolar cell analysis and virological examinations of the lungs. Broncho-alveolar lavage (BAL) cells were counted and differentiated. Lung suspensions and BAL fluids were titrated for PRRSV. Exposure of pigs to PRRSV only resulted in a fever for time periods ranging from 1 to 5 days and slight respiratory signs. Exposure of pigs to LPS only resulted in general signs, characterized by fever and depression, but respiratory signs were slight or absent. PRRSV-LPS exposed pigs, on the other hand, developed severe respiratory signs upon LPS exposure, characterized by tachypnoea, abdominal breathing and dyspnoea. Besides respiratory signs, these pigs also showed enhanced general signs, such as fever and depression. Lung neutrophil infiltration was similar in non-infected and PRRSV-infected pigs upon LPS exposure. PRRSV quantities were similar in lungs and BAL fluids of pigs infected with PRRSV only and PRRSV-LPS exposed pigs. These data show a clear synergism between PRRSV and LPS in the induction of respiratory signs in conventional pigs. The synergism was observed in 87% of the pigs. So, it can be considered as reproducible and may be used to test the efficacy of preventive and therapeutic measures.  相似文献   

3.
In this study, the efficacy of two attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccines was assessed. The virological protection in the lungs of vaccinated pigs upon challenge was studied. Also, challenged pigs were exposed to lipopolysaccharide (LPS) to evaluate clinical protection. Six-week-old pigs were immunized intramuscularly with commercial vaccines based on either an attenuated American or an attenuated European virus strain. Non-immunized pigs and pigs intramuscularly inoculated with the virulent Lelystad strain were included as controls. Six weeks after immunization, pigs were challenged either intratracheally or intranasally with the Lelystad strain, and 3 and 6 days later intratracheally exposed to Escherichia coli LPS. After LPS administration, pigs were monitored for clinical signs. At 4 and 7 days after challenge, pigs were euthanized to determine virus quantities in broncho-alveolar lavage (BAL) fluids and in lungs. Challenge virus was recovered from three out of eight pigs that had been primo-inoculated with the Lelystad strain with titers ranging between 0.3 and 3.1 log(10). Fifteen out of sixteen pigs vaccinated with the attenuated American strain were positive for challenge virus and their mean virus titers were similar to those of non-immunized challenge controls. Eleven out of 16 pigs vaccinated with the attenuated European strain were positive for challenge virus and their mean virus titers were 2.0-2.5 log(10) lower than those of non-immunized challenge controls. Thus, the virological protection in the lungs of vaccinated pigs upon challenge was incomplete, but was more pronounced in the homologous situation. Clinical signs upon LPS exposure in both vaccinated groups were not reproducible in two experiments.  相似文献   

4.
The acute stages of infection with swine influenza virus (SIV), porcine respiratory coronavirus (PRCV) and porcine reproductive-respiratory syndrome virus (PRRSV) were shown to differ in terms of clinical and lung inflammatory effects and proinflammatory cytokine profiles in bronchoalveolar lavage (BAL) fluids. Caesarian-derived colostrum-deprived pigs were inoculated intratracheally with one of the three viruses. SIV infection was followed within 1 day post inoculation (d PI) by characteristic respiratory and general signs, and excessive lung epithelial desquamation and neutrophil infiltration (38 to 56 per cent of BAL cells at 1 d PI vs 0 to 1 per cent in controls). High concentrations of bioactive interferon-alpha (IFN -alpha), tumour necrosis factor-alpha (TNF -alpha) and interleukin-1 (IL -1) coincided with peak symptoms and neutrophil infiltration. PRCV infection was asymptomatic and produced a mild bronchointerstitial pneumonitis and neutrophil infiltration (13 to 22 per cent of BAL cells at 4 d PI). IFN -alpha titres parallelled those found during SIV infection, TNF -alpha was negligible and IL -1 undetectable. PRRSV infection induced anorexia and lethargy between 3 and 5 d PI. There was marked infiltration with mononuclear cells in alveolar septa and BAL fluids between 7 and 10 d PI, while neutrophils remained at less than 11 per cent of BAL cells at any time. IL -1 was produced from three throughout 10 d PI, while IFN -alpha production was minimal and TNF -alpha undetectable. These data strongly suggest that proinflammatory cytokines can be important mediators of viral respiratory disease.  相似文献   

5.
The effect of a bacterial infection on interferon-alpha (IFN-alpha) and interleukin-6 (IL-6) production by porcine cells was studied in specific pathogen-free (SPF) pigs, infected intranasally with Actinobacillus pleuropneumoniae serotype 2. Three experimental groups of five pigs were used: infected non-treated pigs, infected pigs that were treated with enrofloxacin at disease onset, and non-infected, non-treated control pigs. Blood samples were collected from all pigs on the day of infection and on days 1, 4, 7, 13 and 17 post-infection. Sera were analysed for presence of antibodies to A. pleuropneumoniae and for the cytokines IL-6 and IFN-alpha. Ability to produce these cytokines was tested in vitro using whole blood cultures stimulated with inactivated virus (Aujeszky's disease virus infected porcine kidney cells (ADV/PK-15)), inactivated bacteria (A. pleuropneumoniae) or bacterial plasmid (pcDNA3). All cytokine inducers were used neat or pre-incubated with the transfectious agent lipofectin. IL-6 appeared in the serum of all infected non-treated animals but no IFN-alpha was found in the serum of any of the experimental pigs. Accordingly, the bacteria induced a substantial IL-6 but hardly any IFN-alpha production when tested in vitro. However, following incubation with lipofectin, the inactivated bacteria as well as pcDNA3 became efficient inducers of IFN-alpha in whole blood cultures. The increased IFN-alpha production, previously recorded in vitro during the acute phase of infection with A. pleuropneumoniae, was confirmed using lipofected plasmid DNA and it was indicated that leukocytes obtained from infected but apparently cured animals also exhibited an increased production of IFN-alpha. Thus, even mild/sub-clinical bacterial infections may affect cytokine production in pigs.  相似文献   

6.
7.
In this study, apoptosis was induced by new type gosling viral enteritis virus (NGVEV) in experimentally infected goslings is reported in detail for the first time. After 3-day-old goslings were orally inoculated with a NGVEV-CN strain suspension, the time course of NGVEV effects on apoptotic morphological changes of the internal tissues was evaluated. These changes were observed by histological analysis with light microscopy and ultrastructural analysis with transmission electron microscopy. DNA fragmentation was assessed with a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and DNA ladder analysis. A series of characteristic apoptotic morphological changes including chromatin condensation and margination, cytoplasmic shrinkage, plasma membrane blebbing, and formation of apoptotic bodies were noted. Apoptosis was readily observed in the lymphoid and gastrointestinal organs, and sporadically occurred in other organs after 3 days post-infection (PI). The presence and quantity of TUNEL-positive cells increased with infection time until 9 days PI. DNA extracted from the NGVEV-infected gosling cells displayed characteristic 180~200 bp ladders. Apoptotic cells were ubiquitously distributed, especially among lymphocytes, macrophages, monocytes, and epithelial and intestinal cells. Necrosis was subsequently detected during the late NGVEV-infection phase, which was characterized by cell swelling, plasma membrane collapse, and rapidly lysis. Our results suggested that apoptosis may play an important role in the pathogenesis of NGVE disease.  相似文献   

8.
The abilities of the modified-live Prime Pac (PP) strain of porcine reproductive and respiratory syndrome virus (PRRSV), propagated in either traditional simian cells (MARC-145) or in a novel porcine alveolar macrophage cell line (ZMAC), to confer pigs protection against subsequent PRRSV challenge were compared. Eight week-old pigs were injected with PP virus grown in one of the two cell types and then exposed 4 weeks later to the "atypical" PRRSV isolate NADC-20. Control animals were similarly challenged or remained PRRSV-na?ve. While the average adjusted body weight (aabw) of the strict control group increased 22% by 10 days post challenge (pc), this value for the non-vaccinated, challenged group dropped 4%. In contrast, prior immunization with PP virus, regardless of its host cell source, ameliorated this effect by affording a >9% rise in aabw. Likewise, nearly equivalent protection was extended to both groups of vaccinates in regards to the temporal elimination of their pc clinical distress and viremia. However, the PP virus propagated in ZMAC cells appeared to be more efficacious since four of the six pigs receiving this biologic cleared the challenge virus from the their lungs by 10 days pc as compared to only one member of the other vaccinated group. Notably, the predominant quasispecies in the ZMAC cell-prepared PP virus stock contained a highly conserved N-glycosylation site at position 184 in its glycoprotein 2 while this entity was underrepresented in the MARC-145 cell grown biologic. Since glycoprotein 2 is involved in infectivity, such additional glycosylation may enhance virus replication in porcine alveolar macrophages.  相似文献   

9.
The infectivity and potential immunosuppressive effects of Pseudorabies virus (PRV) was evaluated in swine peripheral blood mononuclear cells (PBMC). Virus progeny titers and viral DNA synthesis at various intervals post-inoculation revealed the replication of PRV in both peripheral blood monocytes and lymphocytes; however, replication in lymphocytes was restricted compared with monocytes. PRV infection resulted in the damage and death of monocytes. Although PRV did not appear to affect the viability of the lymphocytes, PRV infection suppressed lymphocyte functions such as proliferation and interleukin-2 (IL-2) synthesis in response to Concanavalin A. This immunosuppression was dependent upon the multiplicity of infection (MOI) of infectious PRV. UV-inactivated PRV was not immunosuppressive. There was no effect of PRV on natural killer (NK) cell activity. The reduction of lymphocyte proliferation by PRV was not reversible by the addition of supernatant containing porcine IL-2 and non-infected monocytes to the infected cultures. The results from these in vitro studies demonstrate that PRV can infect and cause immunosuppressive effects on swine PBMC. These effects may explain the potential role of PRV in predisposing infected pigs to secondary infection and support the hypothesis that PRV can spread systemically by infected PBMC in blood and lymph.  相似文献   

10.
The pathogenicity and pathogenesis of Lelystad virus was studied in six 6-day-old SPF piglets. A third passage of the agent was propagated on porcine alveolar macrophages and intranasally inoculated into pigs. Pigs were killed at hours 24, 48, 60, and 72, and on days 6 and 8 after inoculation. From day 2 on pigs developed diffuse interstitial pneumonia with focal areas of catarrhal pneumonia, and from this day on splenic red pulp macrophages were enlarged and vacuolated. Lelystad virus was re-isolated from the lungs of infected pigs from day 2 after inoculation. Lelystad virus antigens were detected by immunohistochemical techniques in bronchiolar epithelium and alveolar cells, and in spleen cells of infected pigs from day 2 after inoculation. Ultrastructural examination of tissues by electron microscopy revealed degenerating alveolar macrophages and epithelial cells in lungs and nasal mucosa, with excessive vacuolation of the endoplasmic reticulum. Although the respiratory tract seems to be the target organ for this virus, macrophages in other organs, such as the spleen, can also be infected. This preference for macrophages may impair immunological defences.  相似文献   

11.
This paper reviews in vivo studies on the interaction between porcine reproductive and respiratory syndrome virus (PRRSV) and LPS performed in the authors' laboratory. The main aim was to develop a reproducible model to study the pathogenesis of PRRSV-induced multifactorial respiratory disease. The central hypothesis was that respiratory disease results from an overproduction of proinflammatory cytokines in the lungs. In a first series of studies, PRRSV was shown to be a poor inducer of TNF-alpha and IFN-alpha in the lungs, whereas IL-1 and the anti-inflammatory cytokine IL-10 were produced consistently during infection. We then set up a dual inoculation model in which pigs were inoculated intratracheally with PRRSV and 3-14 days later with LPS. PRRSV-infected pigs developed acute respiratory signs for 12-24h upon intratracheal LPS inoculation, in contrast to pigs inoculated with PRRSV or LPS only. Moreover, peak TNF-alpha, IL-1 and IL-6 titers were 10-100 times higher in PRRSV-LPS inoculated pigs than in the singly inoculated pigs and the cytokine overproduction was associated with disease. To further prove the role of proinflammatory cytokines, we studied the effect of pentoxifylline, a known inhibitor of TNF-alpha and IL-1, on PRRSV-LPS induced cytokine production and disease. The clinical effects of two non-steroidal anti-inflammatory drugs (NSAIDs), meloxicam and flunixin meglumine, were also examined. Pentoxifylline, but not the NSAIDs, significantly reduced fever and respiratory signs from 2 to 6h after LPS. The levels of TNF-alpha and IL-1 in the lungs of pentoxifylline-treated pigs were moderately reduced, but were still 26 and 3.5-fold higher than in pigs inoculated with PRRSV or LPS only. This indicates that pathways other than inhibition of cytokine production contributed to the clinical improvement. Finally, we studied a mechanism by which PRRSV may sensitize the lungs for LPS. We hypothesized that PRRSV would increase the amount of LPS receptor complex in the lungs leading to LPS sensitisation. Both CD14 and LPS-binding protein, two components of this complex, increased significantly during infection and the amount of CD14 in particular was correlated with LPS sensitisation. The increase of CD14 was mainly due to infiltration of strongly CD14-positive monocytes in the lungs. The PRRSV-LPS combination proved to be a simple and reproducible experimental model for multifactorial respiratory disease in pigs. To what extent the interaction between PRRSV and LPS contributes to the development of complex respiratory disease is still a matter of debate.  相似文献   

12.
To gain further insight into the pathogenesis of porcine enzootic pneumonia (PEP), cytokine expression in different pulmonary compartments was examined. Mycoplasma hyopneumoniae (Mh) and proinflammatory and immunoregulatory cytokines (IL-1alpha, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10 and TNF-alpha) were detected by immunohistochemical methods in porcine lungs experimentally infected with Mh. Ten pigs were inoculated intranasally with Mh and killed in pairs weekly from 1- to 5-week post-inoculation (wpi). Three Mh-free pigs were taken as controls. Mh-antigen was shown in paraffin-wax-embedded tissues by immunohistochemistry in the luminal surface of bronchial and bronchiolar epithelial cells of all Mh-infected pigs. Significant increase in cytokine expression was detected on snap-frozen tissues from the bronchoalveolar exudate of the airways, mononuclear cells of the alveolar septa and macrophages and lymphocytes of the peribronchial and peribronchiolar lymphoid tissue, from 1 wpi onwards, compared to expression in non-pneumonic lungs. The main cytokines in the BALT of Mh-infected animals that showed an increase were IL-2, IL-4, IL-8, IL-10 and TNF-alpha. In the alveolar septa and bronchoalveolar exudate IL-1 (alpha and beta), IL-2, IL-4, IL-8 and IL-10 expression also increased in infected animals.  相似文献   

13.
Six 1-month-old piglets were intravenously injected with deoxynivalenol (DON) at the concentration of 1 mg/kg body weight, with three pigs each necropsied at 6 and 24 h post-injection (PI) for investigation of hepatotoxicity and immunotoxicity with special attention to apoptotic changes and cytokine mRNA expression. Histopathological examination of the DON-injected pigs revealed systemic apoptosis of lymphocytes in lymphoid tissues and hepatocytes. Apoptosis of lymphocytes and hepatocytes was confirmed by the TdT-mediated dUTP-biotin nick end-labeling (TUNEL) method and immunohistochemical staining against single-stranded DNA and cleaved caspase-3. The number of TUNEL-positive cells in the thymus and Peyer''s patches of the ileum was increased at 24 h PI compared to 6 h PI, but the peak was at 6 h PI in the liver. The mRNA expression of interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor (TNF)-α in the spleen, thymus and mesenteric lymph nodes were determined by semi-quantitative RT-PCR, and elevated expression of IL-1β mRNA at 6 h PI and a decrease of IL-18 mRNA at 24 h PI were observed in the spleen. IL-1β and IL-6 mRNA expressions increased significantly at 6 h PI in the thymus, but TNF-α decreased at 6 h PI in the mesenteric lymph nodes. These results show the apoptosis of hepatocytes suggesting the hepatotoxic potential of DON, in addition to an immunotoxic effect on the modulation of proinflammatory cytokine genes in lymphoid organs with extensive apoptosis of lymphocytes induced by acute exposure to DON in pigs.  相似文献   

14.
Summary

The pathogenicity and pathogenesis of Lelystad virus was studied in six 6‐day‐old SPF piglets. A third passage of the agent was propagated on porcine alveolar macrophages and intranasally inoculated into pigs. Pigs were killed at hours 24, 48, 60, and 72, and on days 6 and 8 after inoculation. From day 2 on pigs developed diffuse interstitial pneumonia with focal areas of catarrhal pneumonia, and from this day on splenic red pulp macrophages were enlarged and vacuolated. Lelystad virus was re‐isolated from the lungs of infected pigs from day 2 after inoculation. Lelystad virus antigens were detected by immunohistochemical techniques in bronchiolar epithelium and alveolar cells, and in spleen cells of infected pigs from day 2 after inoculation. Ultrastructural examination of tissues by electron microscopy revealed degenerating alveolar macrophages and epithelial cells in lungs and nasal mucosa, with excessive vacuolation of the endoplasmic reticulum.

Although the respiratory tract seems to be the target organ for this virus, macrophages in other organs, such as the spleen, can also be infected. This preference for macrophages may impair immunological defences.  相似文献   

15.
16.
To investigate cytokine alterations in pigs infected in-utero with porcine reproductive and respiratory syndrome virus (PRRSV), constitutive mRNA expression by peripheral blood mononuclear cells (PBMCs) was measured. PBMC from in-utero PRRSV-infected pigs displayed significantly increased IL-6, IL-10, and IFN-gamma mRNA expression at 0 and 14 days of age compared with age-matched control pigs. There were no significant differences in IL-2, IL-4, and IL-12 mRNA expression between in-utero PRRSV-infected and control pigs. However, the IL-10/IL-12 ratio was significantly increased in in-utero PRRSV-infected pigs at 0 and 14 days of age, suggesting the imbalance of IL-10 and IL-12 mRNA production. The abnormal mRNA expression of cytokines in in-utero PRRSV-infected pigs occurred concurrently with a significant decrease in the CD4(+)/CD8(+) T-cell ratio in peripheral blood. PRRSV was not isolated from the sera of pigs at 9 weeks of age that had been viremic at 0 and 14 days old. Delayed type hypersensitivity (DTH) responses to Tuberculin and analysis of cytokine mRNA expression by PBMC showed that cell-mediated immune response and cytokine message profiles in pigs infected in-utero with PRRSV had returned to levels similar to those of control pigs by 9 weeks of age. We conclude that in-utero infection with PRRSV results in significant alteration of cytokine mRNA expression that may cause transient immunomodulation. However, at 10 weeks of age the pigs' immune responses seemed to recover. This may help to understand the immunopathogenesis of in-utero PRRSV infection and the increased susceptibility to secondary bacterial pathogens in neonatal piglets.  相似文献   

17.
Inflammatory cytokines are suspected to contribute to the pathogenesis of bovine pneumonic pasteurellosis (BPP) through neutrophil recruitment, leukocyte activation, and the induction of a broad array of soluble inflammatory mediators. An in vivo experimental model of BPP was used to characterize the pulmonary expression kinetics of tumor necrosis factor alpha (TNFalpha), interleukin-1 beta (IL-1beta), and interleukin-8 (IL-8) genes and proteins during the acute phase of disease development. Cytokine expression in bronchoalveolar lavage (BAL) fluid, BAL cells, and pneumonic lung parenchyma was quantitated by northern blot analysis, enzyme-linked immunosorbent assay (ELISA), and in situ hybridization at 2, 4, 8, 16, and 24 hours after endobronchial inoculation of Pasteurella (Mannheimia) haemolytica. Expression of TNFalpha, IL-1beta, and IL-8 was significantly increased in the airways and lung lesions of infected calves as compared with mock-infected controls. Although kinetic patterns varied, peak levels of cytokine mRNA occured within 8 hours postinfection (PI), and peak cytokine concentrations occurred within 16 hours PI. In all samples, IL-8 was expressed to the greatest extent and TNFalpha was least expressed. Expression of TNFalpha was restricted to alveolar macrophages. Alveolar and interstitial macrophages produced IL-1beta and IL-8 in the first 4 hours; bronchial and bronchiolar epithelial cells were also significant sources of IL-8 during this period. By 8 hours PI, neutrophils were the dominant source of both IL-1beta and IL-8. These findings demonstrate a spatial and temporal association between pulmonary expression of inflammatory cytokines and acute lung pathology, supporting the hypothesis that cytokines contribute to inflammatory lung injury in BPP.  相似文献   

18.
The present examination was conducted to determine if the pigs infected with one strain of porcine reproductive and respiratory syndrome virus (PRRSV) would be protected against a subsequent homologous virus challenge. Sixteen 4-week-old SPF pigs were assigned to 2 experimental groups A and B. The pigs in group A were inoculated with 10(6.5) TCID50 of PRRSV by intranasal route. On 77 days post-inoculation (PI), pigs in groups A and B were similarly inoculated with same virus. After the secondary inoculation, the pigs in group A didn't show any clinical sign including pyrexia and reduction of white blood cell (WBC) number. Viremia was detected only on 3 days PI with low virus titer and any virus was not recovered from serum and tissues at the time of necropsy on 14 or 28 days PI. In contrast, pigs in group B showed pyrexia for 14 days and reduction of WBC number on 3 days PI. Viremia was detected between 3 and 28 days PI, and virus was isolated from several tissues of all pigs. These results indicate that previous exposure to PRRSV can prevent development of clinical signs and reduce virus proliferation in pigs after subsequent infection with the homologous PRRSV.  相似文献   

19.
To disclose the mechanism of cellular injury following porcine circovirus (PCV) infection, 12 pigs were examined by the terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) method and immunohistochemistry. Histologically, the lymphoid tissues were characterized by marked apoptosis of lymphocytes, lymphocyte depletion, and macrophages and giant cells containing numerous inclusion bodies with or without apoptotic bodies. Immunohistochemically, there were many lysozyme-positive macrophages in the lymphoid follicles, while the number of CD79a-positive B lymphocytes was scanty. Apoptotic cells, which were proved to be TUNEL positive, revealed CD79a positivity. Although detectable mainly in the cytoplasm of macrophages, PCV antigens were found also in the nuclei of macrophages and apoptotic lymphocytes. Ultrastructurally, the presence of PCV virions was confirmed in apoptotic bodies phagocytosed by macrophages. These findings suggested that lymphocyte depletion with apoptotic death of B lymphocytes was caused by PCV, and that some of the inclusion bodies were phagolysosomes derived from the apoptosis. Thus, PCV may trigger the development of wasting disease syndrome by producing an immunocompromised state in pigs.  相似文献   

20.
本研究旨在探讨非洲猪瘟病毒(ASFV)对猪红细胞(RBCs)的作用以及对猪外周血单核细胞(PBMs)吞噬能力的影响。试验采用流式细胞术检测ASFV侵染猪原代肺泡巨噬细胞(PAMs)和猪红细胞(RBCs)的能力,并检测ASFV诱导RBCs发生凋亡的百分比;同时采用激光共聚焦试验(Confocal)观察ASFV诱导RBCs发生凋亡是否影响PBMs的吞噬能力。结果显示,ASFV不能入侵RBCs,但以时间和剂量依赖性方式诱导RBCs发生凋亡。0.1 MOI ASFV接种RBCs后1、3、5和7 d可分别诱导1.27%、3.23%、7.39%和8.56%的RBCs发生凋亡;1 MOI ASFV接种RBCs后1、3、5和7 d可分别诱导1.54%、3.73%、8.46%和10.74%的RBCs发生凋亡;3 MOI ASFV接种RBCs后1、3、5和7 d可分别诱导2.65%、5.01%、12.44%和18.61%的RBCs发生凋亡。同时,凋亡的RBCs可以增加PBMs对黄绿色荧光微球的吞噬数量,ASFV诱导RBCs凋亡的百分比越高,PBMs吞噬黄绿色荧光微球的数量越多。综上所述,ASFV不能侵染猪RBCs,但可以以时间和剂量依赖性方式诱导RBCs发生凋亡并增强PBMs的吞噬功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号