首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
磷对铝胁迫下荞麦元素吸收与运输的影响   总被引:1,自引:0,他引:1  
以不同耐铝基因型江西养麦(耐性)和内蒙荞麦(敏感)为材料,采用土培法研究磷对铝胁迫下荞麦生长和Al,P等元素吸收、运输的影响.结果表明,铝胁迫下0.2 g/kg的磷能有效缓解铝毒对荞麦根长的抑制.培养30d后,0.4 g/kg磷处理能显著降低铝在荞麦根系和地上部的积累.铝胁迫下加磷可影响养麦体内Ca,Mg,Mn,Zn,Fe的吸收,0.4 g/kg铝配施0.4 g/kg磷处理对荞麦根系Ca,Mg吸收最有利,内蒙荞麦根系Mg的含量比不加磷组提高了76.8%,但显著阻碍了铝胁迫下荞麦体内Ca,Fe的向上运输.铝胁迫下配施磷促进荞麦根系对Zn,Fe吸收,有利于Zn向地上部转运.施磷能有效缓解铝毒对荞麦生长的抑制,降低根系和地上部铝含量,有利于Ca,Mg,Mn,Zn,Fe的吸收和Mg,Zn的运输.  相似文献   

2.
大豆种质耐低磷与耐铝毒部分指标及其相互关系的研究   总被引:10,自引:2,他引:10  
通过溶液培养试验 ,对来源于华南酸性土壤的 5个大豆品种的地上部及根部耐低磷及耐酸铝部分指标进行了系统的研究。研究结果表明 ,大豆在磷效率和耐铝毒特性方面存在着一定的差异 ,大豆品种 6 2号、乐昌及广州大粒具有较高的磷效率和耐铝毒特性。在低磷及铝毒胁迫下它们具有较高的生物量、磷含量、叶面积、叶绿素含量、总酸分泌量以及主根长。低磷和铝毒胁迫严重影响地上部磷的吸收 ,高磷能缓解铝毒。铝浓度不同处理大豆的地上部无显著差异 ;但在铝毒胁迫下 ,根部的铝浓度比地上部高 5~ 6倍 ,且品种间存在显著差异。本研究初步确定了大豆耐低磷与耐铝毒的相关关系  相似文献   

3.
为探讨硅铁施用对水稻生长和磷吸收的影响,指导合理施肥、提高磷素利用率,利用水培试验研究了不同浓度铁(0、0.5、1、2 mmol·L~(-1))预处理下施加不同浓度硅(0、1、4 mmol·L~(-1))对水稻生长及磷吸收的影响。结果表明,低浓度的铁预处理对水稻SPAD、株高、根长和地上部干质量无显著影响,而高浓度的铁预处理下,这些指标则显著降低(P0.05)。中低浓度铁处理下施硅在一定程度上增加了水稻株高、根长和地上部干质量,但未达到显著水平(P0.05)。铁预处理显著增加了水稻根表铁膜的厚度及根表铁膜中的磷含量(P0.05),施硅则显著降低了0.5 mmol·L~(-1)和1 mmol·L~(-1)铁预处理的水稻根表铁膜的厚度(P0.05)。铁预处理对水稻根部的磷含量无显著影响,但显著降低了地上部磷的含量(P0.05)。施硅对水稻根和地上部的磷含量无显著影响。研究表明,施铁处理显著诱导了根表铁膜的出现,增加了铁膜中的磷含量并且显著降低了地上部的磷含量;施硅在一定程度上缓解了水稻生长中的铁毒害现象,并且能够改变根表铁膜厚度,减少根冠比,从而影响水稻磷的吸收转运。  相似文献   

4.
硅对盐胁迫下黄瓜幼苗生长和矿质元素吸收的影响   总被引:2,自引:0,他引:2  
采用幼苗水培实验,研究外源硅对盐胁迫下黄瓜幼苗生长过程中吸收某些矿质元素的影响。对植株地上部和地下部各元素的分析表明,盐胁迫条件下,外源硅有效调节了黄瓜根系对Na+、Ca2+、K+的吸收以及向地上部的转运。适量的硅降低了黄瓜根系从介质中吸收Na+量,并减少其向地上部的运输,而增加了植株体对K+、Ca2+的吸收和转运量,有效缓解了Na+对黄瓜植株体造成的盐胁迫伤害,保证了黄瓜幼苗的正常生长。在相同的处理条件下,盐分敏感品种的Na+在根系和地上部累积量都要比耐盐品种高,而K+的积累量却正好相反,这可能是耐盐品种减轻盐害的主要方式。对其它营养元素的研究表明,施硅抑制了对N素的吸收,对P素的吸收则影响不大。  相似文献   

5.
大麦磷锌相互关系的研究   总被引:7,自引:0,他引:7  
本文通过盆栽和水培试验,从植物生长,养分吸收、运输和积累、根叶细胞膜透性以及磷和锌的关系等方面初步探讨了磷锌相互作用的机理,结果表明:施锌对大麦产量的影响取决于土壤有效锌的含量和P/Zn比;施用大量磷肥并不影响土壤有效锌的浓度,但啤酒大麦植株体内锌的浓度降低,锌的吸收量减少,锌在根部的积累量相对增加;同时施锌也不影响土壤有效磷的浓度,这表明磷锌拮抗作用发生在植物体内;缺锌使植株地上部磷浓度增加,根部磷浓度降低;缺锌使大麦根、叶细胞膜的透性增加,有利于磷的吸收并促进从根向地上部运输。  相似文献   

6.
连续施石灰对作物生长及其养分吸收的影响   总被引:6,自引:0,他引:6  
张效朴  郑根宝 《土壤学报》1987,24(4):343-351
在浙江金华由红色粘土发育的酸性水稻土上,对稻—稻—大麦连续,次施石灰的试验结果表明,适量地施石灰可使大麦增产2—3倍,而水稻的反应一般不明显。对土壤和作物的测定显示,大麦增产的原因主要与石灰提高土壤pH,消除铝的毒害,提高磷肥有效性,促进根系发育,并显著增强大麦对磷、钾等养分吸收有关。但施石灰反而降低了水稻对磷素的吸收。因此,石灰一般宜用于大麦等旱作物。从产量、经济效益、消除铝毒及养分有效性诸因素综合考虑,对大麦的石灰用量以中和土壤pH至6.0左右为宜。但不论何种作物,连续大量地施石灰都是极不可取的。  相似文献   

7.
采用土壤培养及盆栽试验研究5种调理剂(生石灰、油菜秸秆、有机肥、钾硅肥、土壤改良剂,用量均为1.8 g/kg)对酸性土壤(pH值3.9)酸度指标和大麦幼苗生长的影响。土壤培养试验结果表明,施用生石灰、有机肥和钾硅肥均能明显提高土壤pH值,降低土壤交换性酸总量、交换性H+和交换性铝含量。其中以生石灰降酸效果最好,到培养第90 d,相比于对照处理提高了0.66个单位,土壤交换性铝含量减少了2.01 cmol/kg;其次是有机肥和钾硅肥处理,pH值较对照处理分别提高了0.14和0.15,土壤交换性铝含量分别降低了0.23和0.19cmol/kg;油菜秸秆和土壤改良剂处理从酸度指标来看,与对照并没有显著差异。大麦幼苗盆栽试验结果表明,与对照相比,生石灰、油菜秸秆、有机肥、钾硅肥和土壤改良剂处理的大麦幼苗地上部生物量分别增加71.5%、24.1%、27.6%、28.2%、24.7%,大麦株高、根长、根系总表面积和根系活力均显著高于对照处理,根系平均直径减少,有利于养分和水分的吸收。综合结果表明,不同类型的调理剂对酸性土壤的降酸效果不尽相同,其中以生石灰效果最好,秸秆处理尽管没有有效降低土壤酸度但仍可明显促进作物生长,因此也可用作酸性土壤的改良物质,在实际生产中应因地制宜应用各种调节物质来促进作物生长。  相似文献   

8.
《土壤通报》2017,(6):1457-1461
采用土培和砂培方法,等养分条件下探讨了加硅对香蕉幼苗生长与氮、磷、钾吸收分配的影响。结果表明,加硅对香蕉地上部分、根系的生长、氮、磷、钾的吸收与分配的影响与供硅水平密切相关,对根系的影响高于对地上部分的影响。砂培供硅(SiO_2,下同)低于256 mg L~(-1)促进根系生长,对地上部分生长及地上部分钾含量影响不显著;土培加硅0.5 g kg~(-1)和0.8g kg~(-1)显著地降低地上部分生物量及氮含量,提高根系中氮含量,根系氮含量/地上部分氮含量分别比对照提高64.1%和35.9%;砂培加硅256 mg L~(-1)显著提高地上部分磷含量,土培供硅0.5 g kg~(-1)根系中磷含量以及磷在根系/地上部分比例显著提高;与不加硅相比加硅显著提高根系钾/地上部分钾的比例;随供硅水平的提高地上部分硅含量显著提高,根系硅/地上部分硅的比例显著提高,与不加硅相比,供低水平硅降低香蕉地上部分硅的含量。  相似文献   

9.
施硅对小白菜吸收累积和迁移重金属铬的影响   总被引:2,自引:0,他引:2  
蔬菜品质越来越引起全社会的关注,如何预防和治理重金属对蔬菜产品的污染是目前需要迫切解决的环境问题。通过模拟铬污染土壤施硅的盆栽试验,探讨硅、铬在土壤-蔬菜作物系统间的迁移、转化特性,为研究通过施硅调控蔬菜重金属污染提供依据。研究结果表明:(1)在不同铬水平胁迫下,硅在小白菜体内的积累量不同,根吸收硅的量不同;总的趋势是在试验的各个铬污染水平,一定的施硅量均可提高小白菜地上部的硅含量。(2)铬的各污染处理均有随施硅量的提高而降低小白菜铬积累量的趋势,说明施硅可有效抑制小白菜对铬的吸收。(3)硅的施入,可抑制根吸收的铬进一步运输到地上部,因而减轻了小白菜可食部分受铬污染的程度,在高浓度铬污染处理下,小白菜根中的铬较难运转到茎部;而运输到茎部的铬却易于向叶部转移。(4)硅的加入降低了小白菜各部位对铬的富集能力,从而降低了重金属铬对小白菜的污染。  相似文献   

10.
铝毒和磷缺乏是酸性土壤上作物生产的主要限制因子。本研究中我们探究了5个粳稻和5个籼稻品种的磷利用效率和耐铝性之间的相互关系。结果表明,粳稻品种的耐铝性显著高于籼稻品种。对于耐铝性强的水稻品种,施加磷肥后地上部生物量显著增加,而铝敏感的品种对磷肥响应较小,这可能是由于其耐铝性差而酸性土壤中的铝毒导致根系结构和功能受损,从而影响养分的吸收和利用。不同水稻品种的耐铝性和磷吸收效率呈正比而与磷利用效率呈反比,且粳稻的地上部磷浓度及磷吸收效率高于籼稻,但磷利用效率则低于籼稻。这些结果对于酸性土壤中筛选耐铝和磷高效利用的水稻品种具有重要意义。  相似文献   

11.
The effects of silicon (Si) on the toxicity of aluminum (Al) to mungbean (Phaseolus aureus Roxb.) seedlings were studied in a growth chamber. Mungbean seedlings were grown in a nutrient solution with combinations of three concentrations of Si (0,1, and 10 mM) and three concentrations of Al (0, 2, and 5 mM) in randomized completely block design experiments for 16 days. Silicon at 1 mM in the solution decreased root length, fresh and dry weights, and chlorophyll content, and showed no significant effect on epicotyl length and seedling height, and protein contents of shoots or roots in mungbean seedling under no Al stress. But, Si at 10 mM showed marked toxic effects on mungbean seedling growth and increased protein contents of the shoots or roots. In contrast, under 2 mM Al stress, Si addition at 1 mM had significant increasing effect on root length, fresh and dry weights, and chlorophyll content. It also had decreasing effect on protein contents of the shoots or roots, and had no effect on epicotyl length and seedling height. Silicon addition at 10 mM showed no effect on morphological and physiological measurements of mungbean seedling. However, Si at 1 mM added to solution only increased seedling height, epicotyl length, fresh weight, and chlorophyll content, but decreased dry weight and protein content of the roots under 5 mM Al stress, significantly. Silicon addition at 10 mM showed similar toxic effects on mungbean seedling growth under 5 mM Al stress to that under no Al stress.  相似文献   

12.
Abstract

The effects of soluble silicon (Si) on the toxicity of aluminium (Al) to soybean roots were investigated in solution culture. A weak nutrient solution which included a low concentration of phosphorus (P) was shown to be necessary to allow the full expression of Al toxicity. As solution pH decreased below 6, reductions in root growth in the presence of Al became increasingly severe. Silicon alleviated the symptoms of Al toxicity, but the effective rate was dependent on pH. Greater concentrations of Si were required at lower pH where Al was more toxic. These results support the hypothesis that the pH‐dependent affinity of Si for Al in dilute solutions, and the consequent formation of sub‐colloidal inert hydroxyaluminosilicate species, is the basis for the alleviation of Al toxicity by Si.  相似文献   

13.
The objective of this study was to determine relations between Al effects and mineral concentrations in citrus seedlings. Six‐month‐old seedlings of five citrus rootstocks were grown for 60 days in supernatant nutrient solutions of Al, P, and other nutrients. The solutions contained seven levels of Al ranging from 4 to 1655 μM. Al and similar P concentrations of 28 μM P. Aluminum concentrations in roots and shoots increased with increasing Al concentration in the nutrient solution. Aluminum concentrations in roots of Al‐tolerant rootstocks were higher than those of Al‐sensitive rootstocks. When Al concentrations in nutrient solution increased from 4 to 178 μM, the K, Mg, and P concentrations in roots and the K and P levels in shoots increased. Conversely, Ca, Zn, Cu, Mn, and Fe in the roots and Ca, Mg, Cu, and Fe in the shoots decreased. The more tolerant rootstocks contained higher Fe concentrations in their roots than did the less tolerant ones when Al concentrations in solution were lower than 308 μM. Concentrations of other elements (Ca, K, P, Mg, Zn, and Mn) in roots or shoots exhibited no apparent relationship to the Al tolerance for root or shoot growth of the rootstocks. Calcium, K, Zn, Mn, and Fe concentrations in roots and Mg and K concentrations in shoots of all five rootstocks seedlings had significant negative correlations with Al concentrations in corresponding roots or shoots.  相似文献   

14.
A decrease in soil water content during droughts may increase aluminum (Al) to concentrations that are toxic to the growth of trees. The effects of water stress (WS) on the response of ectomycorrhizal pitch pine (Pinus rigida Mill.) seedlings to aluminum was determined by growing seedlings in sand irrigated with nutrient solution (pH 3.8) containing 0, 5, or 10 mg L‐1 Al. Water stress was imposed for 41 days by withholding nutrient solution for five consecutive days each week. At harvest time, seedlings at high WS had 72% of mean gravimetric water contents of seedlings at low WS. Aluminum decreased growth of seedlings at high WS, but had no effect on growth of seedlings at low WS. Aluminum toxicity symptoms in roots (e.g., dark thickened tips) were observed at lower Al levels at high WS than at low WS. Stem dry weight was the only plant part decreased by water stress alone. Across Al levels, Al concentration in roots was higher at low WS than at high WS. Water stress alone reduced root [phosphorus (P), potassium (K), and calcium (Ca)] and foliar [P, K, and magnesium (Mg)] concentrations of mineral nutrients. Decreases of nutrients in roots with increasing Al was greater at low than at high WS. Calcium was the only foliar nutrient decreased by Al treatment.  相似文献   

15.
Al tolerance of horse bean, yellow lupin, barley and rye. II. Mineral element concentrations in shoots and roots as affected by Al supply Inhibition of seminal root elongation by Al in solution culture gave the following ranking for Al tolerance: yellow lupin (Lupinus luteus ?Schwako”?) ? rye (Secale cereale ?Kustro)”? « horse bean (Vicia faba ?Herz Freya”?) > barley (Hordeum vulgare ?Roland”?). Exclusion from uptake by inactivation of Al outside the root was not responsible for the higher Al tolerance of lupin and rye, because comparable inhibition of root elongation occured at much higher Al concentration of the root and the root tips (5 mm) compared to barley and horse bean. The plant species differed considerable in nutrient concentrations of the roots: higher Ca concentrations in horse bean and rye, higher Mg concentrations in rye and lupin and higher P concentration in lupin. Al supply reduced Ca and Mg concentrations (Ca > Mg) in shoots and roots of all species. P concentrations were hardly affected. The nutrient concentrations in the root tips did not indicate that induction of nutrient deficiency was responsible for the effect of Al on root elongation and Al sensitivity of barley and horse bean. The considerable differences in Ca, Mg and P concentrations of the roots between the Al-tolerant plant species rye and lupin do not suggest a common physiological mechanism responsible for Al tolerance.  相似文献   

16.
Synthesis of amino acids, proline, and carbohydrates was studied in roots and shoots of 5 maize accessions, differing in aluminum (Al) and manganese (Mn) tolerance, in response to Al and Mn stress at the seedling stage in solution culture. The concentrations of these metabolites increased in roots and shoots of the seedlings in the nutrient solution with added Al (0.22 mM), and Mn (2.0 mM). Both Al and/or Mn tolerant and non‐tolerant accessions accumulated more metabolites under stress than control. Generally, the tolerant accessions accumulated more solutes than the non‐tolerant maize accessions examined.  相似文献   

17.
Aluminum (Al) toxicity represents one of the main yield-limiting factors for crops in acid soils. Silicon (Si) is known to increase tolerance in higher plants. This study was conducted to determine whether treatment with Si could improve nutrient uptake by peanut under Al stress. Peanut (Arachis hypogaea L. cv Zhonghua 4) was raised with or without Si (1.5 mM) in the growth chamber under 0 and toxic Al (0.3 mM) levels. Aluminum stress significantly decreased the root- and total-dry weight by 52.4% and 32.0%, respectively. The content of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) was significantly decreased, but that of Al increased markedly in shoots and roots after Al exposure at seedling, flower-needle, and pod-setting stage. Silicon alleviates Al toxicity in peanut plants in relation to Al distribution and allocation of tissue P, K, Ca, and Mg by favoring the partitioning of dry mass to roots.  相似文献   

18.
Elevated levels of Al in soil solution may be toxic to plants. The activity of monomeric inorganic Al species is the best measure of the phytotoxic fraction. Decreasing soil pH increases soil solution Al exponentially as the pH falls below 4.5. In the presence of organic matter and organic acids the availability of A1 is reduced, due to complexation. The Al concentration is also dependent on dominant clay mineral and clay content. Symptoms of Al toxicity usually first appear in the roots becoming structurally and functionally damaged and inefficient in absorbing water and nutrients. This might be due to disturbance of mitosis and changed permeability of the root membranes. Aluminium also affects DNA replication, protein synthesis, and activity of some enzymes. Symptoms on shoots usually develop at a later stage of Al poisoning. There is an antagonism between the macronutrients P, Ca, Mg, and K on the one hand, and Al on the other. Aluminium may induce deficiency of mineral nutrients and high nutrient concentrations reduce al toxicity. There is considerable variation in Al tolerance between species and between varieties of the same species. Several mechanisms for Al tolerance are suggested. Tolerant plants may possess an active exclusion mechanism or may be able to inactivate Al within their tissues. pH increases induced by the plant in the rhizosphere, exudation of chelating agents, a low C.E.C. in the roots and an ability to withstand or compensate Al induced nutrient deficiency are other possible tolerance mechanisms.  相似文献   

19.
Abstract

The objective of this study was to investigate the effect of silicon (Si) on growth, nutrient uptake, and yield of peanut under aluminum (Al) stress. Peanut (Arachis hypogaea L. cv. Zhonghua 4) raised with or without Si (1.5?mM) in the growth chamber under 0 and toxic Al (0.3?mM) levels. Aluminum stress significantly decreased the biomass and root dry weight by 12.9% and 10.7%, and the pod yield, number of mature pod per plant and seed number of per pod by 16.7%, 10.7%, and 13.9%. The content of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) was significantly decreased, but that of Al increased markedly in shoots and roots of peanut after Al exposure at seedling, flower-needle and pod-setting stage. Under Al stress condition, Si application protected peanut by improving nutrient uptake at different growth stages and favoring the partitioning of dry mass to pod and the allocation of tissue N, P, K, Ca, and Mg to shoots and pod and decreasing Al uptake and accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号