首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reflectance spectrum of Phobos (from 200 to 1100 nanometers) has been compiled from the Mariner 9 ultraviolet spectrometer, Viking lander imaging, and ground-based photometric data. The reflectance of the martian satellite is approximately constant at 5 percent from 1100 to 400 nanometers but drops sharply below 400 nanometers, reaching a value of 1 percent at 200 nanometers. The spectral albedo of Phobos bears a striking resemblance to that of asteroids (1) Ceres and (2) Pallas. Comparison of the reflectance spectra of asteroids with those of meteorites has shown that the spectral signature of Ceres is indicative of a carbonaceous chondritic composition. A physical explanation of how the compositional information is imposed on the reflectance spectrum is given. On the basis of a good match between the reflectance spectra of Phobos and Ceres and the extensive research that has been done to infer the composition of Ceres, it seems reasonable to believe that the surface composition of Phobos is similar to that of carbonaceous chondrites. This suggestion is consistent with the recently determined low density of Mars's inner satellite. Our result and recent Viking noble gas measurements suggest different modes of origin for Mars and Phobos.  相似文献   

2.
During the last 2 weeks of February 1977, an intensive scientific investigation of the martian satellite Phobos was conducted by the Viking Orbiter-1 (VO-1) spacecraft. More than 125 television pictures were obtained during this period and infrared observations were made. About 80 percent of the illuminated hemisphere was imaged at a resolution of about 30 meters. Higher resolution images of limited areas were also obtained. Flyby distances within 80 kilometers of the surface were achieved. An estimate of the mass of Phobos (GM) was obtained by observing the effect of Phobos's gravity on the orbit of VO-1 as sensed by Earth-based radiometric tracking. Preliminary results indicate a value of GM of 0.00066 +/- 0.00012 cubic kilometer per second squared (standard deviation of 3) and a mean density of about 1.9 +/- 0.6 gram per cubic centimeter (standard deviation of 3). This low density, together with the low albedo and the recently determined spectral reflectance, suggest that Phobos is compositionally similar to type I carbonaceous chondrites. Thus, either this object formed in the outer part of the asteroid belt or Lewis's theory that such material cannot condense at 1.5 astronomical units is incorrect. The data on Phobos obtained during this first encounter period are comparable in quantity to all of the data on Mars returned by Mariner flights 4, 6, and 7.  相似文献   

3.
Reflectance spectra (0.3 to 2.6 micrometers) of 14 C, G, B, and F asteroids and 21 carbonaceous chondrite powders are compared in detail. Only three thermally metamorphosed CM-Cl chondrites that have a weak ultraviolet absorption are shown to have close counterparts among those asteroids. Reflectance spectra of heated Murchison CM2 chondrite are compared with the average C and G type asteroid spectra. Murchison heated at 600 degrees to 1000 degrees C exhibits a similar weak ultraviolet absorption and provides the best analog for those spectra. Comparison of ultraviolet absorption strengths between 160 C, G, B, and F asteroids and carbonaceous chondrites suggests that surface minerals of most of those asteroids are thermally metamorphosed at temperatures around 600 degrees to 1000 degrees C.  相似文献   

4.
The oxygen and magnesium isotopic compositions of five individual particles that were collected from the stratosphere and that bear refractory minerals were measured by secondary ion mass spectrometry. Four of the particles exhibit excesses of oxygen-16 similar to those observed in anhydrous mineral phases of carbonaceous chondrites and thus are extraterrestrial. The oxygen and magnesium isotopic abundances of one corundum-rich particle are consistent with a terrestrial origin. Magnesium in the four extraterrestrial particles is isotopically normal. It is unlikely that these particles are derived from carbonaceous chondrites and thus such particles probably represent a new type of collected extraterrestrial material.  相似文献   

5.
Three carbonaceous chondrites were examined for water-extractable amino acids. The Murchison Murray specimens were found to be of similar amino acid composition. This similarity suggests that these amino acids in are indigenous to type II carbonaceous chondrites. The Allende (type III) carbonaceous chondrite was found to be essentially devoid of amino acids on the basis of on identical analysis.  相似文献   

6.
Polycyclic aromatic hydrocarbons in C1, C2, and C3 carbonaceous chondrites and in some ordinary chondrites have been directly analyzed by two-step laser desorption/ laser multiphoton ionization mass spectrometry, a selective and sensitive method requiring only milligram samples. At the ionization wavelength of 266 nanometers, parent ion peaks of polycyclic aromatic hydrocarbons dominate the mass spectra. Quantitative analysis is possible; as an example, the concentration of phenanthrene in the Murchison meteorite was determined to be 5.0 parts per million.  相似文献   

7.
Determining the source(s) of hydrogen, carbon, and nitrogen accreted by Earth is important for understanding the origins of water and life and for constraining dynamical processes that operated during planet formation. Chondritic meteorites are asteroidal fragments that retain records of the first few million years of solar system history. The deuterium/hydrogen (D/H) values of water in carbonaceous chondrites are distinct from those in comets and Saturn's moon Enceladus, implying that they formed in a different region of the solar system, contrary to predictions of recent dynamical models. The D/H values of water in carbonaceous chondrites also argue against an influx of water ice from the outer solar system, which has been invoked to explain the nonsolar oxygen isotopic composition of the inner solar system. The bulk hydrogen and nitrogen isotopic compositions of CI chondrites suggest that they were the principal source of Earth's volatiles.  相似文献   

8.
Chainpur and similar, apparently primitive, chondritic meteorites may be precursors of ordinary chondrites; a variety of evidence supports this working hypothesis. In general, carbonaceous chondrites seem to be related collaterally to this genetic sequence rather than being direct ancestors of ordinary chondrites. Metamorphic processes may be responsible for fractionations of elements such as indium and iodine, and type-II carbonaceous chondrites seem to be more primitive than types I or IIIA.  相似文献   

9.
The landing dynamics of and soil penetration by Surveyor I indicated that the lunar soil has a porosity in the range 0.35 to 0.45. Experiments with Surveyor III's surface sampler for soil mechanics show that the lunar soil is approximately incompressible (as the word is used in soil mechanics) and that it has an angle of internal friction of 35 to 37 degrees; these results likewise point to a porosity of 0.35 to 0.45 for the lunar soil. Combination of these porosity measurements with the already-determined radar reflectivity fixes limits to the dielectric constant of the grains of the lunar soil. The highest possible value is about 5.9, relative to vacuum; a more plausible value is near 4.3. Either figure is inconsistent with the idea that the lunar surface is covered by chondritic meteorites or other ultrabasic rocks. The data point to acid rocks, or possibly vesicular basalts; carbonaceous chondrites are not excluded.  相似文献   

10.
Chromium, silicon, and phosphorus concentrations of 0.1 to 1 percent by weight are common in metal grains in the least metamorphosed ordinary and carbonaceous chondrites. These concentrations are fairly uniform within single chondrules (but different from chondrule to chondrule) and are inversely correlated with the fayalite concentrations of the chondrule olivines. This relation shows that these chromium, silicon, and phosphorus concentrations could not have been established by condensation or equilibration in the solar nebula but are the result of metal-silicate equilibration within chondrules. Two generations of inclusions made by the exsolution of those elements have been identified: One formed during chondrule cooling and the other formed during metamorphism. The distribution and composition of the latter in type 3 to type 5 chondrites are consistent with increasing metamorphism relative to type 2 and type 3.0 material.  相似文献   

11.
The (87)Rb-(87)Sr internal isochrons for five rocks yield an age of 3.65 +/-0.05 x 10(9) years which presumably dates the formation of the Sea of Tranquillity. Potassium-argon ages are consistent with this result. The soil has a model age of 4.5 x10(9) years, which is best regarded as the time of initial differentiation of the lunar crust. A peculiar rock fragment from the soil gave a model age of 4.44 x 10(9) years. Relative abundances of alkalis do not suggest differential volatilization. The irradiation history of lunar rocks is inferred from isotopic measurements of gadolinium, vanadium, and cosmogenic rare gases. Spallation xenon spectra exhibit a high and variable (131)Xe/(126)Xe ratio. No evidence for (129)I was found. The isotopic composition of solar-wind xenon is distinct from that of the atmosphere and of the average for carbonaceous chondrites, but the krypton composition appears similar to average carbonaceous chondrite krypton.  相似文献   

12.
A single grain (~3 micrograms) returned by the Hayabusa spacecraft was analyzed by neutron activation analysis. This grain is mainly composed of olivine with minor amounts of plagioclase, troilite, and metal. Our results establish that the Itokawa sample has similar chemical characteristics (iron/scandium and nickel/cobalt ratios) to chondrites, confirming that this grain is extraterrestrial in origin and has primitive chemical compositions. Estimated iridium/nickel and iridium/cobalt ratios for metal in the Itokawa samples are about five times lower than CI carbonaceous chondrite values. A similar depletion of iridium was observed in chondrule metals of ordinary chondrites. These metals must have condensed from the nebular where refractory siderophile elements already condensed and were segregated.  相似文献   

13.
Radar echoes from the martian satellite Phobos provide information about that object's surface properties at scales near the 3.5-cm observing wavelength. Phobos appears less rough than the moon at centimeter-to-decimeter scales. The uppermost few decimeters of the satellite's regolith have a mean bulk density within 20% of 2.0 g cm(-3). The radar signature of Phobos (albedo, polarization ratio, and echo spectral shape) differs from signatures measured for small, Earth-approaching objects, but resembles those of large (>/=100-km), C-class, mainbelt asteroids.  相似文献   

14.
Ordinary chondrites, like carbonaceous chondrites, contain primordial noble gases mainly in a minor phase comprising 相似文献   

15.
High-resolution transmission electron microscopy, shows that carbon in the Allende carbonaceous chondrite meteorite is predominantly a poorly crystalline graphite. Such material is of interest as an important carrier of the isotopically anomalous noble gases found in carbonaceous chondrites.  相似文献   

16.
Duxbury TC 《Science (New York, N.Y.)》1978,199(4334):1201-1202
A Viking orbiting spacecraft successfully obtained pictures of the martian satellite Phobos with Mars in the background. This is the first time that a single picture was obtained from a spacecraft which contained both a planet and a moon and had significant surface detail visible on both. The region of Mars below Phobos included volcanoes in the Tharsis Montes region. These pictures showed Phobos to be smaller than previously thought. The image of Phobos can be used as a control point to determine the map coordinates of surface features on Mars.  相似文献   

17.
Data from total melt and step-by-step heating experiments on the Apollo 11 lunar samples suggest a close affinity between lunar and meteoritic rare gases. Trapped neon-20/neon-22 ratios range from 11.5 to approximately 15, resembling those for the gas-rich meteorites. Trapped krypton and xenon in the lunar fines and in the carbonaceous chondrites are similar except for an interesting underabundance of the heavy isotopes in both lunar gases which suggests that the fission component found in carbonaceous chondrites is depleted in lunar material. Spallation gases are in most cases quite close to meteoritic spallation gases in isotopic composition.  相似文献   

18.
Chondrulelike objects in short-period comet 81P/Wild 2   总被引:1,自引:0,他引:1  
The Stardust spacecraft returned cometary samples that contain crystalline material, but the origin of the material is not yet well understood. We found four crystalline particles from comet 81P/Wild 2 that were apparently formed by flash-melting at a high temperature and are texturally, mineralogically, and compositionally similar to chondrules. Chondrules are submillimeter particles that dominate chondrites and are believed to have formed in the inner solar nebula. The comet particles show oxygen isotope compositions similar to chondrules in carbonaceous chondrites that compose the middle-to-outer asteroid belt. The presence of the chondrulelike objects in the comet suggests that chondrules have been transported out to the cold outer solar nebula and spread widely over the early solar system.  相似文献   

19.
Infrared absorption spectra of a low-albedo water-rich asteroid appear to show a weak 3.4-micrometer carbon-hydrogen stretching mode band, which suggests the presence of hydrocarbons on asteroid 130 Elektra. The organic extract from the primitive carbonaceous chondritic Murchison meteorite shows similar spectral bands.  相似文献   

20.
《Science (New York, N.Y.)》1980,210(4471):784-786
Twenty spectra of Io (0.26 to 0.33 micrometer), acquired with the International Ultraviolet Explorer spacecraft, have been studied. There is a strong ultraviolet absorption shortward of 0.33 micrometer that is consistent with earlier ground-based spectrophotometry; its strength is strongly dependent on Io's rotational phase angle at the time of observation. This spectral feature and its variation are interpreted as indicative of a longitudinal variation in the distribution of sulfur dioxide frost on Io. The frost is most abundant at orbital longitudes 72 degrees to 137 degrees and least abundant at longitudes 250 degrees to 323 degrees . Variations in spectral reflectivity between 0.4 and 0.5 micrometer, reported in earlier ground-based spectral studies, correlate inversely with variations in reflectivity between 0.26 and 0.33 micrometer. It is concluded that this is because the Io surface component with the highest visible reflectivity (sulfur dioxide frost) has the lowest ultraviolet reflectivity. At least one other component is present and may be sulfur allotropes or alkali sulfides. This model is consistent with ground-based ultraviolet, visible, and infrared spectrophotometry. Comparison with Voyager color photographs indicates that the sulfur dioxide frost is in greatest concentration in the "white" areas on Io and the other sulfurous components are in greatest concentration in the "red" areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号