首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soybean is a complex matrix containing several potentially bioactive components. The objective was to develop a statistical model to predict the in vitro anticancer potential of soybean varieties based on the correlation between protein composition and bioactive components after simulated gastrointestinal enzyme digestion with their effect on leukemia mouse cells. The IC 50 values of the hydrolysates of soy genotypes (NB1-NB7) on L1210 leukemia cells ranged from 3.5 to 6.2 mg/mL. Depending on genotype, each gram of soy hydrolysates contained 2.7-6.6 micromol of total daidzein, 3.0-4.7 micromol of total genistein, 0.5-1.3 micromol of glycitein, 2.1-2.8 micromol of total saponins, 0.1-0.2 micromol of lunasin, and 0.1-0.6 micromol of Bowman-Birk inhibitor (BBI). The IC 50 values calculated from a partial least-squares (PLS) analysis model correlated well with experimental data ( R (2) = 0.99). Isoflavones and beta-conglycinin positively contributed to the cytotoxicity of soy on L1210 leukemia cells. Lunasin and BBI were potent L1210 cell inhibitors (IC 50 = 13.9 and 22.5 microM, respectively), but made modest contributions to the activity of defatted soy flour hydrolysates due to their relatively low concentrations. In conclusion, the data demonstrated that beta-conglycinins are among the major protein components that inhibit leukemia cell growth in vitro. Furthermore, it was feasible to differentiate soybean varieties on the basis of the biological effect of their components using a statistical model and a cell-based assay.  相似文献   

2.
The recombinant invertase (re-INVB) from Zymomonas mobilis was immobilized by adsorption onto the totally cinnamoylated derivative of D-sorbitol. The polymerization and cross-linking of the derivative initially obtained was achieved by irradiation in the ultraviolet region, where this prepolymer shows maximum sensitivity. Immobilization of re-INVB on this support involves a process of physical adsorption and intense hydrophobic interactions between the cinnamoyl groups of the support and related groups of the enzyme. Enzyme concentration, immobilization time, and irradiation time were important parameters affecting the immobilization efficiency. The optimum reaction pH of immobilized enzyme was 5, and the optimal reaction temperature was 40 degrees C. The apparent Michaelis constant and the apparent catalytic constant of re-INVB immobilized on the SOTCN derivative acting on sucrose was 78+/-5 mM and 5x10(4)+/-3x10(2) s(-1), respectively, while for the free enzyme, it was 98.0+/-4 mM and 1.2x10(4)+/-2.5x10(2) s(-1), respectively, suggesting a better apparent affinity of the enzyme for the substrate and a better hydrolysis rate when immobilized than when in solution. Immobilized re-INVB also showed good thermal stability and good operational stability (40% of the initial activity remaining after 45 cyles of 1 min duration and 90.6 mg of sucrose being hydrolyzed in 45 min per 2.5 mg of immobilized protein). The results showed that cinnamic carbohydrate esters of D-sorbitol are an appropriate support for re-INVB immobilization and the production of invert sugar.  相似文献   

3.
A cDNA encoding a putative dehydroascorbate reductase (DHAR) was cloned from sweet potato. The deduced protein showed a high level of sequence homology with DHARs from other plants (67 to approximately 81%). Functional sweet potato DHAR was overexpressed and purified. The purified enzyme showed an active monomeric form on a 12% native PAGE. The protein's half-life of deactivation at 50 degrees C was 10.1 min, and its thermal inactivation rate constant K(d) was 6.4 x 10(-2) min(-1). The enzyme was stable in a broad pH range from 6.0-11.0 and in the presence of 0.8 M imidazole. The K(m) values for DHA and GSH were 0.19 and 2.38 mM, respectively.  相似文献   

4.
Glutaredoxins (Grxs) play important roles in the redox system via reduced glutathione as a reductant. A TcmonoGrx cDNA (1039 bp, EU158772) encoding a putative monothiol Grx was cloned from Taiwanofungus camphorata (formerly named Antrodia camphorata). The deduced amino acid sequence is conserved among the reported monothiol Grxs. Two 3-D homology structures of the TcmonoGrx based on known structures of human Grx3 (pdb: 2DIY_A) and Mus musculus Grx3 (pdb: 1WIK_A) have been created. To characterize the TcmonoGrx protein, the coding region was subcloned into an expression vector pET-20b(+) and transformed into E. coli C41(DE3). The recombinant His6-tagged TcmonoGrx was overexpressed and purified by Ni(2+)-nitrilotriacetic acid Sepharose. The purified enzyme showed a predominant band on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited glutathione reductase (GR) activity via dithionitrobenzoate (DTNB) assay. The Michaelis constant (K(M)) values for GSSG and NADPH were 0.064 and 0.041 mM, respectively. The enzyme's half-life of deactivation at 60 °C was 10.5 min, and its thermal inactivation rate constant (k(d)) was 5.37 × 10(-2) min(-1). The enzyme was active under a broad pH range from 6 to 8. The enzyme retained 50% activity after trypsin digestion at 37 °C for 40 min. Both mutants C(40)→S(40) and C(165)→S(165) lost 40-50% GR activity, whereas the mutant S(168)→C(168) showed a 20% increase in its GR activity.  相似文献   

5.
The carotenoid composition of persimmon fruit purees of two cultivars, cvs. Rojo Brillante and Sharon, grown in Spain was determined by HPLC to assess the effects of high-pressure processing on some sensory (carotenoids), nutritional (provitamin A value), and health-related (radical-scavenging capacity) parameters. Total carotenoid content was higher in untreated Rojo Brillante puree (22. 11 microg g(-)(1)) than in untreated Sharon puree (15.22 microg g(-)(1)). Purees of both untreated cultivars showed similar carotenoid patterns after saponification with beta-cryptoxanthin, beta-carotene, and zeaxanthin as the main pigments. A high content of lycopene was quantified in Rojo Brillante (5.34 microg g(-)(1)), whereas only traces were detected in Sharon. The provitamin A value, reported as retinol equivalents (RE), was in untreated Rojo Brillante puree (77 RE/100 g) similar to that of Sharon (75 RE/100 g). Scavenging free radical capacity, measured as antiradical efficiency (AE), showed in untreated Rojo Brillante puree a value (12.14 x 10(-)(3)) 8.5 times higher than that in untreated Sharon (1. 42 x 10(-)(3)). Nonuniform behavior of high-pressure treatment was detected. Pressure treatments at 50 and 300 MPa/15 min/25 degrees C for Rojo Brillante and at 50 and 400 MPa/15 min/25 degrees C for Sharon increased the amount of extractable carotenoids (9-27%), which are related with the increase of vitamin A value (75-87 RE/100 g). No correlation with the increase of AE (from 1.42 x 10(-)(3) to 16.73 x 10(-)(3) and 19.58 x 10(-)(3)) after some pressure treatments (150 and 300 MPa/15 min/25 degrees C) was found.  相似文献   

6.
Epidemiological and toxicological studies often require the analysis of large numbers of samples for biological markers of exposure. The goal of this work was to develop a class-selective ELISA to detect groups of structurally closely related mercapturic acids with small nonpolar S-substituents. An assay was developed with strong recognition for mercapturates including S-benzylmercapturic acid (IC50 = 0.018 micromol/L), S-n-hexylmercapturic acid (IC50 = 0.021 micromol/L), S-phenylmercapturic acid (IC50 = 0.024 micromol/L), and S-cyclohexylmethylmercapturic acid (IC50 = 0.042 micromol/L). The same assay also showed weaker recognition for S-(1-hydroxynaphthal-2-yl)mercapturic acid and S-allylmercapturic acid (IC50 = 1.1 and 1.7 micromol/L, respectively). Subtle modifications to the hapten linker structure of the coating antigen proved to have a strong impact on the selectivity and the specificity of the assay. A slightly modified assay showed high recognition for S-benzylmercapturic acid (IC50 = 0.018 micromol/L) and weaker recognition for seven other mercapturic acids (IC50 = 0.021-10 micromol/L). Strong positive assay responses were detected in 12 urine samples obtained from persons with no known occupational exposure to exogenous electrophilic xenobiotics. Solid phase extraction and cross-reactivity indicated that the presumptive immunoreactive materials were similar in size and polarity to S-benzylmercapturic acid. The assay was more selective to mercapturic acids than the spectrophotometric thioether assay.  相似文献   

7.
A cDNA encoding a putative arsenate reductase homologue (IbArsR) was cloned from sweet potato (Ib). The deduced protein showed a high level of sequence homology (16-66%) with ArsRs from other organisms. A 3-D homology structure was created based on AtArsR (PDB code 1T3K ) from Arabidopsis thaliana. The putative active site of protein tyrosine phosphatase (HC(X)(5)R) is conserved in all reported ArsRs. IbArsR was overexpressed and purified. The monomeric nature of the enzyme was confirmed by 15% SDS-PAGE and molecular mass determination of the native enzyme via ESI Q-TOF. The IbArsR lacks arsenate reductase activity but possesses phosphatase activity. The Michaelis constant (K(M)) value for p-nitrophenyl phosphate (pNPP) was 11.11 mM. The phosphatase activity was inhibited by 0.5 mM sodium arsenate [As(V)]. The protein's half-life of deactivation at 25 °C was 6.1 min, and its inactivation rate constant K(d) was 1.1 × 10(-1) min(-1). The enzyme was active in a broad pH range from 4.0 to 11.0 with optimum activity at pH 10.0. Phosphatase would remove phosphate group from nucleic acid or dephosphorylation of other enzymes as regulation signaling.  相似文献   

8.
The noncharacterized protein ACL75304 encoded by the gene Ccel_0941 from Clostridium cellulolyticum H10 (ATCC 35319), previously proposed as the xylose isomerase domain protein TIM barrel, was cloned and expressed in Escherichia coli . The expressed enzyme was purified by nickel-affinity chromatography with electrophoretic homogeneity and then characterized as d-psicose 3-epimerase. The enzyme was strictly metal-dependent and showed a maximal activity in the presence of Co(2+). The optimum pH and temperature for enzyme activity were 55 °C and pH 8.0. The half-lives for the enzyme at 60 °C were 6.8 h and 10 min when incubated with and without Co(2+), respectively, suggesting that this enzyme was extremely thermostable in the presence of Co(2+) but readily inactivated without metal ion. The Michaelis-Menten constant (K(m)), turnover number (k(cat)), and catalytic efficiency (k(cat)/K(m)) values of the enzyme for substrate d-psicose were estimated to be 17.4 mM, 3243.4 min(-1), and 186.4 mM min(-1), respectively. The enzyme carried out the epimerization of d-fructose to d-psicose with a conversion yield of 32% under optimal conditions, suggesting that the enzyme is a potential d-psicose producer.  相似文献   

9.
10.
Crocetin (CRT) and dimethylcrocetin (DMCRT) are derived from crocins which are found in the stigmas of saffron (Crocus sativus L.), while safranal is the main component of saffron's essential oil. The aim of the present study was to examine their interaction with human serum albumin in aqueous solution at physiological conditions using constant protein concentration and various ligand contents. FT-IR and UV-visible spectroscopic methods were used to determine the ligands' binding mode, the binding constant, and the effects of ligand complexation on protein secondary structure. Structural analysis showed that crocetin, dimethylcrocetin, and safranal bind nonspecifically (H-bonding) via protein polar groups with binding constants of Kcrt =2.05 (+/-0.30) x 103 M-1, Kdmcrt = 9.60 (+/-0.35) x 104 M-1, and Ksaf = 2.11 (+/-0.35) x 103 M-1. The protein secondary structure showed no major alterations at low ligand concentrations (1 microM), whereas at higher content (1 mM), decrease of alpha-helix from 55% (free HSA) to 43-45% and increase of beta-sheet from 17% (free HSA) to 18-22% and random coil 7% (free HSA) to 10-14% occurred in the ligand-HSA complexes. The results point to a partial unfolding of protein secondary structure at high ligand content. The antioxidant activity of CRT, DMCRT, and safranal was also tested by the DPPH* antioxidant activity assay, and their IC50 values were compared to that of well-known antioxidants such as Trolox and butylated hydroxy toluene (BHT). The IC50 values of CRT and safranal were 17.8 +/- 1 microg/mL and 95 +/- 1 microg/mL, respectively, while the inhibition of DMCRT reached a point of 38.8%, which corresponds to a concentration of 40 microg/mL, and then started to decrease. The IC50 values of Trolox and BHT were 5.2 +/- 1 microg/mL and 5.3 +/- 1 microg/mL, respectively.  相似文献   

11.
Interaction of flavor compounds with proteins is known to have an influence on the release of flavor from food. Hydrophobic interactions were found between beta-lactoglobulin and methyl ketones; the affinity constant increases by increasing the hydrophobic chain. Addition of beta-lactoglobulin (0.5 and 1%) to aroma solutions (12.5, 50, and 100 microL L(-)(1)) of three methyl ketones induces a significant decrease in odor intensity. The chosen methyl ketones were 2-heptanone (K(b) = 330), 2-octanone (K(b) = 950), and 2-nonanone (K(b) = 2440). The release of these flavor compounds (50 microL L(-)(1)) was studied by static headspace in water solution (50 mM NaCl, pH 3) with different concentrations of beta-lactoglobulin (0, 0.5, 1, 2, 3, and 4%). Increasing the concentration of protein increases the retention of volatiles, and this effect is greatest for 2-nonanone, the compound with the highest affinity constant, and lowest for 2-heptanone. A mathematical model previously developed to describe flavor release from aqueous solutions containing flavor-binding polymers (Harrison, M.; Hills, B. P. J. Agric. Food Chem. 1997, 45, 1883-1890) was used to interpret the data. The model assumes that the polymer-flavor interaction is reversible and the rate-limiting step for release is the transfer of volatiles across the macroscopic gas-liquid interface. This model was used to predict the equilibrium partitioning properties and the rate of release of the three methyl ketones. Increasing the affinity constant leads to decreased release rates and a lower final headspace aroma concentration.  相似文献   

12.
A full-length cDNA of 794 bp encoding a putative copper/zinc-superoxide dismutase (Cu/Zn-SOD) from Pagrus major was cloned by the PCR approach. Nucleotide sequence analysis of this cDNA clone revealed that it comprises a complete open reading frame coding for 154 amino acid residues. The deduced amino acid sequence showed high similarity (53-91%) with the sequences of Cu/Zn-SOD from other species. Computer analysis of the residues required for coordinating copper (His-47, 49, 64, and 121) and zinc (His-64, 72, 81, and Asp-84), as well as the two cysteines (58 and 147) that form a single disulfide bond, were well conserved among all reported Cu/Zn-SOD sequences. To further characterize the Pagrus major Cu/Zn-SOD, the coding region was subcloned into an expression vector, pET-20b(+), and transformed into Escherichia coli BL21(DE3). The expression of the Cu/Zn-SOD was confirmed by enzyme activity stained on a native-gel and purified by Ni(2+)-nitrilotriacetic acid Sepharose superflow. Dimer was the major form of the enzyme in equilibrium. The dimerization of the enzyme was inhibited under acidic pH (below 4.0 or higher than 10.0). The half-life was 8.6 min and the inactivation rate constant (k(d)) was 9.69 x 10(-2) min(-1) at 70 degrees C. The enzyme activity was not significantly affected under 4% SDS or 0.5 M imidazole. The enzyme was resistant to proteolysis by both trypsin and chymotrypsin.  相似文献   

13.
A preliminary survey demonstrated activity for alpha-D-glucosidase, alpha-D-mannosidase, alpha-L-arabinosidase, beta-D-glucosidase, beta-D-xylosidase, and beta-D-galactosidase in orange fruit flavedo and albedo tissue. alpha-L-Rhamnosidase was not detected. Subsequently, a beta-glucosidase was purified from mature fruit rag tissue (composed of intersegmental septa, squeezed juice sacs, and fruit core tissue) of Citrus sinensis var. Valencia. The beta-glucosidase exhibited low levels of activity against p-nitrophenyl-beta-D-fucopyranoside (13.5%) and p-nitrophenyl-alpha-D-glucopyranoside (7.0%), compared to its activity against p-nitrophenyl-beta-D-glucopyranoside (pNPG, 100%). The enzyme was purified by a combination of ion exchange (anion and cation) and gel filtration (Superdex and Toyopearl HW-55S) chromatography. It has an apparent molecular mass of 64 kDa by denaturing electrophoresis or 55 kDa by gel filtration chromatography (BioGel P-100). Hydrolysis of pNPG demonstrated a pH optimum between 4.5 and 5.5. At pH 5.0 the temperature optimum was 40 degrees C. At pH 5.0 and 40 degrees C the K(m) for pNPG was 0.1146 mM and it had a V(max) of 5.2792 nkatal x mg(-1) protein (katal = 0.06 International Units = the amount of enzyme that produces, under standard conditions, one micromol of product per min). Of the substrates tested, the enzyme was most active against the disaccharide cellobiose (1-->4), but was not active against p-nitrophenyl-beta-D-cellobioside. High levels of activity also were observed with the disaccharides laminaribiose (1-->3), gentiobiose (1-->6), and sophorose (1-->2). Activity greater than that observed with pNPG was obtained with the flavonoids hesperetin-7-glucoside and prunin (naringenin-7-glucoside), salicin, mandelonitrile-beta-D-glucoside (a cyanogenic substrate), and sinigrin (a glucosinolate). The enzyme was not active against amygdalin, coniferin, or limonin glucoside.  相似文献   

14.
A rapid and convenient method for the precise quantification of epsilon-(gamma-glutamyl)lysine isopeptide in lyophilized proteolytic digests of cross-linked plant protein samples was developed. The isopeptide was baseline-separated from three other isomers containing lysyl and glutamyl residues by reverse-phase high-performance liquid chromatography after exhaustive proteolytic digestion of the samples cross-linked by a microbial transglutaminase (MTG). Highly selective detection was performed by electrospray mass spectrometry in MS/MS mode. Demonstrating the applicability of the suggested analytical procedure, enzymatic cross-linking of protein isolates from soy [Glycine max (L.) Merr.], pea [Pisum sativum L.], and the sweet lupin species Lupinus albus L. and Lupinus angustifolius L. was investigated after incubation with 0.01 g of MTG/100 g of protein for 0-240 min at 40 degrees C. The liquid chromatography-mass spectrometry (LC-MS) method was successfully applied to monitor the kinetics of epsilon-(gamma-glutamyl)lysine isopeptide formation. Since the calculated initial levels of epsilon-(gamma-glutamyl)lysine in the genuine leguminous protein isolates were between 40 and 77 micromol/100 g, an isopeptide detection limit of 0.5 microg/mL, corresponding to approximately 50 micromol/100 g of protein, was shown to suffice for quantifying the cross-linking rate enzymatically induced by MTG. Concentrations of epsilon-(gamma-glutamyl)lysine in the texturized proteins ranged from 100 to 500 micromol/100 g of protein.  相似文献   

15.
A phytate-degrading enzyme was purified approximately 2190-fold from germinated 4-day-old faba bean seedlings to apparent homogeneity with a recovery of 6% referred to the phytase activity in the crude extract. It behaves as a monomeric protein of a molecular mass of approximately 65 kDa. The phytate-degrading enzyme belongs to the acidic phytases. It exhibits a single pH optimum at 5.0. Optimal temperature for the degradation of sodium phytate is 50 degrees C. Kinetic parameters for the hydrolysis of sodium phytate are K(M) = 148 micromol L(-1) and k(cat) = 704 s(-1) at 35 degrees C and pH 5.0. The faba bean phytase exhibits a broad affinity for various phosphorylated compounds and hydrolyzes phytate in a stepwise manner. The first hydrolysis product was identified as D/L-myo-inositol(1,2,3,4,5)pentakisphosphate.  相似文献   

16.
Kinetics of reduction of iron(IV) in ferrylmyoglobin by chlorogenate in neutral or moderately acidic aqueous solutions (0.16 M NaCl) to yield metmyoglobin was studied using stopped flow absorption spectroscopy. The reaction occurs by direct bimolecular electron transfer with (2.7 +/- 0.3) x 10(3) M(-)(1).s(-)(1) at 25.0 degrees C (DeltaH( )(#) = 59 +/- 6 kJ.mol(-)(1), DeltaS(#) = 15 +/- 22 J. mol(-)(1).K(-)(1)) for protonated ferrylmyoglobin (pK(a) = 4.95) and with 216 +/- 50 M(-)(1).s(-)(1) (DeltaH( )(#) = 73 +/- 8 kJ. mol(-)(1), DeltaS( )(#) = 41 +/- 30 J.mol(-)(1).K(-)(1)) for nonprotonated ferrylmyoglobin in parallel with reduction of a chlorogenate/ferrylmyoglobin complex by a second chlorogenate molecule with (8.6 +/- 1.1) x 10(2) M(-)(1).s(-)(1) (DeltaH( )(#) = 74 +/- 8 kJ.mol(-)(1), DeltaS( )(#) = 59 +/- 28 J.mol(-)(1).K(-)(1)) for protonated ferrylmyoglobin and with 61 +/- 9 M(-)(1).s(-)(1) (DeltaH( )(#) = 82 +/- 12 kJ.mol(-)(1), DeltaS( )(#) = 63 +/- 41 J. mol(-)(1).K(-)(1)) for nonprotonated ferrylmyoglobin. Previously published data on ascorbate reduction of ferrylmyoglobin are reevaluated according to a similar mechanism. For both protonated and nonprotonated ferrylmyoglobin the binding constant of chlorogenate is approximately 300 M(-)(1), and the modulation of ferrylmyoglobin as an oxidant by chlorogenate (or ascorbate) leads to a novel antioxidant interaction for reduction of ferrylmyoglobin by ascorbate in mixtures with chlorogenate.  相似文献   

17.
18.
Postharvest diseases of mango fruit (Mangifera indica L.) cause economic losses during storage and can be controlled by chemical, physical, or biological methods. This study investigated the effects of different physical and/or chemical disease control methods on production of volatiles, color development and other quality parameters in ripe 'Kensington Pride' mango fruit. Hard mature green mango fruit were harvested from an orchard located at Carnavon, Western Australia. The fruit were heat-conditioned (8 h at 40 +/- 0.5 degrees C and 83.5 +/- 0.5% RH), dipped in hot water (52 degrees C/10 min), dipped in prochloraz (Sportak 0.55 mL x L(-1)/5 min), dipped in hot prochloraz (Sportak 0.55 mL x L(-1) at 52 degrees C/5 min), dipped in carbendazim (Spin Flo 2 mL x L(-1)/5 min), and dipped in hot carbendazim (Spin Flo 2 mL x L(-1) at 52 degrees C/5 min). Nontreated fruit served as control. Following the treatments, the fruit were air-dried and kept in cold storage (13 +/- 0.5 degrees C) for three weeks before being ripened at 21 +/- 1 degrees C. The ripe pulp of the fruit that was treated with hot prochloraz or carbendazim at ambient and high temperatures showed enhanced concentrations of volatiles, while heat conditioning and hot water dipping did not significantly affect the volatile development. Ripening time, and color development were measured daily while disease incidence and severity, weight loss, firmness, and concentrations of soluble solids, titratable acidity, ascorbic acid, total carotenoids, and volatiles were determined at the eating soft ripe stage. Hot water dipping or fungicide treatments (at ambient or at a high temperature) reduced postharvest diseases incidence and severity. Fruit quality (soluble solids concentration, titratable acidity, ascorbic acid and total caretonoids) was not substantially affected by any of the treatments.  相似文献   

19.
The reaction between the triplet excited state of riboflavin and amino acids, peptides, and bovine whey proteins was investigated in aqueous solution in the pH range from 4 to 9 at 24 degrees C using nanosecond laser flash photolysis. Only tyrosine and tryptophan (and their peptides) were found to compete with oxygen in quenching the triplet state of riboflavin in aqueous solution, with second-order rate constants close to the diffusion limit, 1.75 x 10(9) and 1.40 x 10(9) L mol(-1) s(-1) for tyrosine and tryptophan, respectively, with beta-lactoglobulin and bovine serum albumin having comparable rate constants of 3.62 x 10(8) and 2.25 x 10(8) L mol(-1) s(-1), respectively. Tyrosine, tryptophan, and their peptides react with the photoexcited triplet state of riboflavin by electron transfer from the tyrosine and tryptophan moieties followed by a fast protonation of the resulting riboflavin anion rather than by direct H-atom abstraction, which could be monitored by time-resolved transient absorption spectroscopy as a decay of triplet riboflavin followed by a rise in riboflavin anion radical absorption. For cysteine- and thiol-containing peptides, second-order rate constants depend strongly on pH, for cysteine corresponding to pKaRSH = 8.35. H-atom abstraction seems to operate at low pH, which with rising pH gradually is replaced by electron transfer from the thiol anion. From the pH dependence of the second-order rate constant, the respective values for the H-atom abstraction (k = 1.64 x 10(6) L mol(-1) s(-1)) and for the electron transfer (k = 1.20 x 10(9) L mol(-1) s(-1)) were determined.  相似文献   

20.
Lipoxygenase was purified homogeneously from cups of Pleurotus ostreatus by Sephacryl S-400 HR gel filtration, Dyematrex Green A affinity, and DEAE-Toyopearl 650M ion-exchange chromatographies. The molecular weight of the enzyme was estimated to be 67,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 66,000 by gel filtration; the isoelectric point was pH 5.1. The optimum pH and temperature of the enzymatic activity were 8.0 and 25 degrees C, respectively. The enzyme contained non-heme iron, and a thiol group seemed to be involved in its activity. The K(m), V(max), and k(cat) values of the enzyme for linoleic acid were 0.13 mM, 23.4 micromol.min(-1).mg(-1), and 25.7 s(-1), respectively. The enzyme showed high specificity toward linoleic acid. When linoleic acid was incubated with the enzyme, 13-hydroperoxy-9Z,11E-octadecadienoic acid was found to be the main oxidative product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号