首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future.  相似文献   

2.
Functioning Tri13 and Tri7 genes are required for the production of nivalenol and 4-acetyl nivalenol, respectively, in Fusarium species producing type B trichothecenes. Mutations have been identified in isolates which are able to produce deoxynivalenol (DON) but unable to convert this to nivalenol (NIV). In such isolates of Fusarium culmorum , the Tri7 gene is deleted entirely. PCR assays specific for functional and nonfunctional/deleted versions of Tri7 and Tri13 were used to determine the ability of 153 single spore isolates of F. culmorum to produce the 8-ketotrichothecenes deoxynivalenol and nivalenol. The isolates were collected from 76 different locations across England and Wales between 1994 and 2002. Four isolates were also obtained from one field in Scotland. Both DON and NIV chemotypes of F. culmorum were identified, with DON chemotypes predominating overall. In addition, all DON chemotypes were shown to produce 3-acetyl DON using primer sets developed to Tri3 . From fields where more than one F. culmorum isolate was obtained, isolates were not exclusively of a single chemotype. Differences in the distribution of DON and NIV chemotypes were identified, with a greater proportion of NIV chemotypes present in the south and west of England and Wales, whereas a greater proportion of DON chemotypes were found in the north and east of England. Seasonal differences in the ratio of DON:NIV chemotypes were indicated. However, these were related to seasonal variation in the distribution of F. culmorum .  相似文献   

3.
山东省小麦赤霉病菌种群组成及其致病力分化   总被引:2,自引:2,他引:0  
由禾谷镰孢菌群Fusarium graminearum clade引起的赤霉病是小麦的重要病害。为明确山东省小麦赤霉病菌的种群组成及其致病力,于2011年和2012年从山东省15地市分离了95株小麦赤霉病菌,在形态和分子生物学鉴定种的基础上,采用鉴定B型毒素化学型的特异性引物进行毒素化学型分析。在95个菌株中,93株分离物为禾谷镰孢菌F.graminearum,2株为燕麦镰孢菌F.avenaceum。94株分离物为脱氧雪腐镰孢菌烯醇(deoxynivalenol,DON)化学型,1株为雪腐镰孢菌烯醇(nivalenol,NIV)化学型。在94株DON毒素化学型菌株中,90株为15-乙酰脱氧雪腐镰孢菌烯醇(15-acetyldeoxynivalenol,15-AcDON)化学型,4株为3-乙酰脱氧雪腐镰孢菌烯醇(3-acetyldeoxynivalenol,3-AcDON)化学型。在小麦扬花期,采用单花滴注接种法对29个菌株进行了致病力测定,供试菌株的致病力分化明显。表明在山东省冬小麦产区,产15-AcDON毒素的F.gra-minearum是小麦赤霉病菌的优势种群。  相似文献   

4.
We screened 188 isolates of Fusarium graminearum, which originated from northwest Europe, the USA and Nepal, for genetic diversity using a sequence-characterised amplified region polymorphism (SCAR). On the basis of this analysis, 42 of the 118 isolates were selected for random amplified polymorphic DNA (RAPD) analysis. Three groups were identified, two of which, A and B, contained the isolates from Nepal, and a third, group C, contained the isolates from Europe and the USA. In pathogenicity tests on wheat and maize seedlings, group C isolates were more pathogenic than the group A and B isolates. The isolates were assigned chemotypes based on their ability to produce the trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON). Isolates from group A were equally likely to produce NIV or DON while group B isolates produced predominantly NIV, and group C isolates produced predominantly DON. Within group A, isolates of the two chemotypes were equally pathogenic to wheat but isolates with the NIV chemotype were significantly more pathogenic to maize. The results confirm that distinct genetic groups exist within F. graminearum and demonstrate that these groups have different biological properties, especially with respect to their pathogenicity to two of the most economically important hosts of this pathogen.  相似文献   

5.
Fusarium head blight (FHB), caused principally by Gibberella zeae (Fusarium graminearum), is a devastating disease of small grains such as wheat and barley worldwide. Grain infected with G. zeae may be contaminated with trichothecene mycotoxins such as deoxynivalenol (DON) and nivalenol (NIV). Strains of G. zeae that produce DON may also produce acetylated derivatives of DON: 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON). Gradients (clines) of 3‐ADON genotypes in Canada have raised questions about the distribution of G. zeae trichothecene genotypes in wheat fields in the eastern USA. Tri3 and Tri12 genotypes were evaluated in 998 isolates of G. zeae collected from 39 winter wheat fields in New York (NY), Pennsylvania (PA), Maryland (MD), Virginia (VA), Kentucky (KY) and North Carolina (NC). Ninety‐two percent (919/998) of the isolates were 15‐ADON, 7% (69/998) were 3‐ADON, and 1% (10/998) was NIV. A phylogenetic analysis based on portions of three genes (PHO, RED and URA) from 23 isolates revealed two species of Fusarium (F. graminearum sensu stricto and one isolate of F. cerealis (synonym F. crookwellense)). An increasing trend of 3‐ADON genotypes was observed from NC (south) to NY (north). Punctuated episodes of atmospheric transport may favour a higher frequency of 3‐ADON genotypes in the northeastern USA, near Canada, compared with the mid‐Atlantic states. Discoveries of the NIV genotype in NY and NC indicate the need for more intensive sampling in the surrounding regions.  相似文献   

6.
A total of 82 fungal isolates was obtained from wheat kernel samples affected by fusarium head blight collected from 20 locations in southern Brazil. Polymerase chain reaction (PCR) assays were used to characterize trichothecene mycotoxin genotypes [deoxynivalenol (DON), nivalenol (NIV) and two acetylated derivatives of DON]. To identify isolates that producing DON and NIV, portions of the Tri13 gene were amplified. To identify 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) genotypes, portions of Tri3 and Tri12 were amplified. Nearly all of the isolates studied (76/82) were of the DON/15-ADON genotype. Six of the isolates were of the NIV genotype. The DON/3-ADON genotype was not observed. Portions of three genes were sequenced from representative isolates of the NIV and DON/15-ADON genotypes and compared with sequences from curated reference isolates of Fusarium in GenBank. blast queries for individual gene sequences and pairwise comparisons of percentage identity and percentage divergence based on 1676 bp of concatenated DNA sequence suggested that the isolates representing the DON/15-ADON genotype were Fusarium graminearum sensu stricto and the isolates representing the NIV genotype were Fusarium meridionale . This is the first detailed report of trichothecene mycotoxin genotypes of F. graminearum and F. meridionale in Brazil.  相似文献   

7.
为挖掘新型药剂的潜在靶标,利用靶向基因敲除和互补技术研究赤霉病病原菌禾谷镰刀菌Fusarium graminearum中必需氨基酸亮氨酸合成酶编码基因FgLEU1的功能,并测定禾谷镰刀菌的生物学表型。结果表明,FgLEU1编码亮氨酸合成途径中的3-异丙基苹果酸脱水酶,其敲除突变体表现亮氨酸营养缺陷。生物学表型测定结果显示,与野生型菌株相比,FgLEU1敲除突变体的产孢量和孢子萌发率显著下降,产孢量仅为野生型菌株的20.96%,培养4 h后孢子萌发率下降了49.45%,且合成脱氧雪腐镰刀烯醇(呕吐毒素)能力丧失,在麦穗上的致病力下降,仅能侵染接种小穗,赤霉病症状不能扩展。外源添加一定量的亮氨酸、FgLeu1催化产物或导入含启动子的全长FgLEU1基因可以恢复敲除突变体表型缺陷。表明FgLEU1基因在禾谷镰刀菌亮氨酸合成、菌丝孢子形成及产毒致病过程中发挥着重要作用,可作为新型安全杀菌剂的潜在研发靶标,用于持续有效控制麦类赤霉病和镰刀菌毒素。  相似文献   

8.
为明确植物病原真菌禾谷镰刀菌Fusarium graminearum全生活史的转录组特征和基因表达模式,采用生物信息学技术对其生活史不同阶段15个时期或组织的链特异性RNA-seq数据进行分析。结果表明,共有8 106个基因在所有时期均有表达,为禾谷镰刀菌生活史核心基因,占总基因数的47.2%;有性生殖和侵染过程中表达的基因数相对较多,其中有性生殖后期表达的基因数最多,达15 221个;无性产孢和侵染小麦穗过程中基因表达水平整体较高,而分生孢子中基因表达水平最低。在燕麦培养基上禾谷镰刀菌气生菌丝的基因表达模式与侵染过程中的基因表达模式较为相似,而与营养生长菌丝的基因表达模式差异较大。该菌次生代谢物合成特征酶基因和分泌蛋白基因的表达模式均分成3类,即分别在侵染、营养生长和有性生殖过程上调表达,暗示其在生活史不同阶段的特异性功能。  相似文献   

9.
Fusarium head blight (FHB) is one of the most important fungal diseases affecting wheat worldwide and it is caused mainly by species within the Fusarium graminearum species complex (FGSC). This study evaluated the presence of FGSC in durum wheat from the main growing area in Argentina and analyzed the trichothecene genotype and chemotype of the strains isolated. Also, the genetic variability of the strains was assayed using ISSR markers. Molecular analysis revealed that among the strains isolated and identified morphologically as F. graminearum, there were 14 strains identified as F. cerealis. Also, it revealed that durum wheat grains were mostly contaminated by F. graminearum, being this the only species reported so far, within the FGSC, affecting durum wheat in Argentina. Analysis of molecular variance (AMOVA) indicated a high genetic variability within rather than between F. graminearum populations. All F. graminearum strains presented 15ADON genotype and were able to produce DON while all F. cerealis strains presented the NIV genotype and most of them were able to produce this toxin. The finding of F. cerealis in durum wheat grains indicates the need for investigating if this fungus is the responsible for the NIV contamination found in wheat in Argentina.  相似文献   

10.
枯草芽胞杆菌与氟环唑联用对禾谷镰孢霉的增效作用机制   总被引:1,自引:0,他引:1  
为验证枯草芽胞杆菌与氟环唑联用对禾谷镰孢霉的增效作用,用平板倒扣法和固体平板扩散法—打孔法测定菌药联用后枯草芽胞杆菌挥发性物质、抗真菌蛋白对禾谷镰孢霉的抑菌活性,观察抗真菌蛋白对禾谷镰孢霉菌丝形态的影响,并用刚果红染色法测定菌药联用后枯草芽胞杆菌纤维素酶活性。结果表明:菌药联用对禾谷镰孢霉的最高抑菌活性可达74.44%,表现增效和持效作用;枯草芽胞杆菌挥发性物质和抗真菌蛋白分别与氟环唑联用均可增强禾谷镰孢霉抑菌活性;菌药联用后枯草芽胞杆菌纤维素酶活性提高。研究表明枯草芽胞杆菌与氟环唑联用的增效机制是增强枯草芽胞杆菌挥发性物质对禾谷镰孢霉的抑菌活性,抗真菌蛋白活性的提高加强了禾谷镰孢霉菌丝溶解的程度,纤维素酶活性的增强提高了禾谷镰孢霉空间竞争作用和生物防治潜能。  相似文献   

11.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

12.
The main causative agents of Fusarium head blight in central Europe are Fusarium graminearum and F. culmorum. We examined the mycotoxin producing ability, aggressiveness and molecular variability of F. graminearum isolates. Altogether twenty-six Hungarian, three Austrian isolates and representatives of eight species identified in the F. graminearum species complex were involved in this study. Mycotoxin producing abilities of the isolates were tested by GC-MS and HPLC. The central European isolates were found to belong to chemotype I (producing deoxynivalenol). Most isolates produced more 15-acetyl-deoxynivalenol than 3-acetyl-deoxynivalenol suggesting that they belong to chemotype Ib. All F. graminearum isolates were found to be highly pathogenic in in vitro aggressiveness tests. Phylogenetic analysis of random amplified polymorphic DNA profiles, and restriction profiles of the intergenic spacer region of the ribosomal RNA gene cluster of the isolates allowed clustering of the central European isolates into 17 and 16 haplotypes, respectively. When RAPD and IGS-RFLP data were combined, almost every single central European F. graminearum isolate could be differentiated (27/29 haplotypes). Sequence analysis of a putative reductase gene of some isolates was also performed. Based on molecular data, the majority of the central European isolates belonged to F. graminearum sensu stricto characteristic to the northern hemisphere, with the exception of one Hungarian isolate, which was not related to any known species of the F. graminearum species complex based on sequence data. The taxonomic assignment of two other Hungarian isolates, previously suggested as belonging to F. boothii based on mitochondrial DNA restriction profiles, was supported by sequence analysis.  相似文献   

13.
Fusarium graminearum species complexes (FGSCs), such as Fusarium asiaticum and F. graminearum, are important pathogens that cause Fusarium head blight (FHB) in several cereal crops worldwide. In this study, we collected 342 gramineous weed samples in the proximity of rice fields from May to June 2018 in Korea. Among the 500 Fusarium isolates from the weed samples, 13 species of Fusarium were identified, and F. asiaticum (41.2%), F. avenaceum (18.0%), F. acuminatum (16.4%) and F. graminearum (14.8%) were the most frequently isolated. The trichothecene genotype analysis showed that 206 F. asiaticum strains consisted of the nivalenol (NIV) genotype (n = 195, 94.7%) and 3-acetyldeoxynivalenol (3ADON) genotype (n = 11, 5.3%), whereas 74 F. graminearum strains consisted of the 15-acetyldeoxynivalenol (15ADON) genotype (n = 58, 78.4%) and 3ADON genotype (= 16, 21.6%). Geographical differences were observed in the FGSC and trichothecene genotype compositions, which appeared host-dependent between the southern provinces and mid-eastern provinces. The aggressiveness assessment of FHB showed that the 3ADON chemotype was most aggressive followed by the 15ADON and NIV chemotypes in wheat, while the NIV chemotype was most aggressive followed by the 3ADON and 15ADON chemotypes in rice. The F. asiaticum strains grew slowly and produced fewer conidia and perithecia than the F. graminearum strains, regardless of their chemotypes. The results of this study suggest that F. asiaticum with the NIV chemotype has a host preference for rice, and FHB-causing pathogens can be harboured in gramineous weeds, which play a role in the dispersal of FHB pathogens to rice and other cereal crops.  相似文献   

14.
Fusarium graminearum andF. culmorum are capable of infecting winter cereals at all growth stages. From natural field epidemics of wheat head blight and rye foot rot, three fungal populations were collected with 21, 38 and 54 isolates, respectively; their aggressiveness was analyzed in comparison to collections ofF. graminearum (25 isolates) andF. culmorum (70 isolates) that represent a wide range of geographical locations and host species. All isolates were tested for aggressiveness on young plants of winter rye in the greenhouse and scored for disease severity on a 1–9 scale. Disease ratings of individual isolates ranged from 1.5 to 5.7 indicating quantitative variation of aggressiveness. Genotypic variance was highest in the twoFusarium collections. No substantial difference was found in the amount of genotypic variation betweenF. graminearum andF. culmorum. Individual field populations revealed 57–66% of the total genotypic variation of the collections. This implies a high degree of diversity of aggressiveness within single field populations ofF. graminearum andF. culmorum causing natural epidemics.  相似文献   

15.
Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Fusarium ear rot (FER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern due to their toxicity to humans and farm animals. In this study, species identity and trichothecene toxin potential of 294 members of the Fusarium graminearum species complex (FGSC) collected from wheat, barley and maize in France in 2011 was determined using a microsphere-based multilocus genotyping assay. F. graminearum was predominant on all three hosts, but three isolates of F. cortaderiae and two isolates representing F. graminearum × F. boothii hybrids were also identified from maize. The 15-ADON trichothecene chemotype predominated on all three hosts, representing 94.7 %, 87.8 % and 85.4 % of the strains on barley (N?=?19), wheat (N?=?90), and maize (N?=?185), respectively. However, the NIV chemotype was found in 12.2 % of the wheat isolates and in 14.6 % of the maize isolates. Only a single FGSC isolate from this study, originating from barley, was found to have the 3-ADON chemotype. Regional differences could be observed in the distribution of the 15-ADON and NIV chemotypes, with the NIV producing-isolates being present at higher frequency (21.2 %) in the South of France compared to the rest of the country (4.4 %). Such information is critical because of the increased concern associated with NIV contamination of cereals. In addition, these results are needed to develop management strategies for FHB and FER in France and to improve understanding of the distribution and significance of FGSC diversity in Europe and worldwide.  相似文献   

16.
Combined analyses of the natural occurrence of fusarium head blight (FHB), mycotoxins and mycotoxin‐producing isolates of Fusarium spp. in fields of wheat revealed FHB epidemics in 12 of 14 regions in Hubei in 2009. Mycotoxin contamination ranged from 0·59 to 15·28 μg g?1 in grains. Of the causal agents associated with symptoms of FHB, 84% were Fusarium asiaticum and 9·5% were Fusarium graminearum, while the remaining 6·5% were other Fusarium species. Genetic chemotyping demonstrated that F. asiaticum comprised deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐AcDON), 15‐acetyldeoxynivalenol (15‐AcDON) and nivalenol (NIV) producers, whereas F. graminearum only included DON and 15‐AcDON producers. Compared with the chemotype patterns in 1999, there appeared to be a modest shift towards 3‐AcDON chemotypes in field populations during the following decade. However, isolates genetically chemotyped as 3‐AcDON were present in all regions, whereas the chemical 3‐AcDON was only detected in three of the 14 regions where 3‐AcDON accounted for 15–20% of the DON and acetylated forms. NIV mycotoxins were detected in seven regions, six of which also yielded NIV chemotypes. The number of genetic 3‐AcDON producers was positively correlated with amounts of total mycotoxins (DON, NIV and acetylated forms) or DON in wheat grains. Chemical analyses of wheat grains and rice cultures inoculated with different isolates from the fields confirmed their genetic chemotypes and revealed a preferential biosynthesis of 3‐AcDON and 4‐AcNIV in rice. These findings suggest the importance of chemotyping coupled with species identification for improved prediction of mycotoxin contamination in wheat.  相似文献   

17.
The phytotoxicity of the Fusarium trichothecene and fumonisin mycotoxins has led to speculation that both toxins are involved in plant pathogenesis. This subject has been addressed by examining virulence of trichothecene and fumonisin-nonproducing mutants of Fusarium in field tests. Mutants were generated by transformation-mediated disruption of genes encoding enzymes that catalyze early steps in the biosynthesis of each toxin. Two economically important species of Fusarium were selected for these studies: the trichothecene-producing species Fusarium graminearum, which causes wheat head blight and maize ear rot, and the fumonisin-producing species F. verticillioides, which causes maize ear rot. Trichothecene-non-producing mutants of F. graminearum caused less disease than the wild-type strain from which they were derived on both wheat and maize, although differences in virulence on maize were not observed under hot and dry environmental conditions. Genetic analyses of the mutants demonstrated that the reduced virulence on wheat was caused by the loss of trichothecene production rather than by a non-target mutation induced by the gene disruption procedure. Although the analyses of virulence of fumonisin-non-producing mutants of F. verticillioides are not complete, to date, the mutants have been as virulent on maize ears as their wild-type progenitor strains. The finding that trichothecene production contributes to the virulence of F. graminearum suggests that it may be possible to generate plants that are resistant to this fungus by increasing their resistance to trichothecenes. As a result, several researchers are trying to identify trichothecene resistance genes and transfer them to crop species.  相似文献   

18.
The presence of Fusarium spp. causing Fusarium head blight (FHB) of wheat was studied in Flanders (Belgium) in 2007 and 2008. Symptoms, deoxynivalenol content (DON), Fusarium spp. and trichothecene chemotypes were determined at seven locations on different commercial wheat varieties. Overall, significant differences in disease pressure between locations and varieties were observed within 1 year. In addition, we were able to detect consistent and significant resistance differences among the common varieties both under high disease pressure (2007) and low disease pressure (2008). The accumulation of DON was not related to the presence of F. graminearum but showed a clear correlation with rainfall during and after the period of anthesis. During the two-year survey, characterisation of 756 Fusarium samples by species-specific PCR designated F. poae and F. graminearum as the predominant species in Flanders. Furthermore, most of the ears were colonised by multiple FHB pathogens in 2007 whereas the Fusarium population was less complex in 2008. Log-linear analysis of these multiple (two- and three-way) species interactions revealed a clear correlation between F. poae and several pathogens of the FHB disease complex. Finally, chemotype analysis showed that F. culmorum and F. graminearum were respectively of the NIV chemotype and DON chemotype. 3-ADON and 15-ADON chemotypes occurred in more or less equal amounts within the F. graminearum population both in 2007 and 2008. The congruence of these results with observations throughout Europe are discussed.  相似文献   

19.
Different sets of wheat genotypes were tested under field conditions by spraying inocula of isolates of seven Fusarium spp. and Microdochium nivale (formerly F. nivale) in the period 1998–2002. The severity of Fusarium head blight (FHB), Fusarium-damaged kernels (FDK), the yield reduction and the deoxynivalenol (DON) contamination were also measured to describe the nature of the resistance. The degrees of FHB severity of genotypes to F. graminearum, F. culmorum, F. avenaceum, F. sporotrichioides, F. poae, F.␣verticillioides, F. sambucinum and M. nivale were very similar, indicating that the resistance to F.␣graminearum was similar to that for other Fusarium spp. listed. This is an important message to breeders as the resistance relates not only to any particular isolate of F. graminearum, but similarly to isolates of other Fusarium spp. This holds true for all the parameters measured. The DON contamination refers only to DON-producers F. graminearum and F. culmorum. Highly significant correlations were found between FHB, FDK, yield loss and DON contamination. Resistance components such as resistance to kernel infection, resistance to DON and tolerance were identified in the more susceptible genotypes. As compared with western European genotypes which produced up to 700 mg kg−1 DON, the Hungarian genotypes produced only 100 mg kg−1 at a similar FDK level. This research demonstrates the importance of measuring both FDK and DON in the breeding and selection of resistant germplasm and cultivars.  相似文献   

20.
为研究小麦UDP-葡萄糖基转移酶7(UDP-glycosyltransferase 7,TaUGT7)的抗赤霉病功能,利用DNAMAN 6.0软件对Ta UGT7及其同源蛋白进行序列比对,应用实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)技术分析经赤霉菌Fusarium graminearum和脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)处理后的苏麦3号小穗中TaUGT7基因的表达特征,利用基因枪在洋葱表皮细胞瞬时表达TaUGT7-eGFP进行亚细胞定位,采用农杆菌介导法在小麦品种Fielder中过量表达TaUGT7基因并进行赤霉病抗性鉴定。结果表明,TaUGT7在氨基酸序列上与已知赤霉病抗性相关UGT相似性较低;TaUGT7在赤霉菌接种24 h后开始被诱导表达,在DON处理2 h后逐步被诱导表达;Ta UGT7蛋白亚细胞定位于细胞膜和细胞核中;qRT-PCR检测发现,TaUGT7在8株独立的过表达转基因株系中均有不同程度的上调表达;与野生型对照相比,过表达株系TaUGT7-395和TaUGT7-457中的平均病小穗率显著下降。...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号