首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为探讨环境因子对黄土台塬不同土地利用方式土壤温室气体排放的影响,以研究区耕地、天然草地、灌木林地、乔灌混交林地和乔木林地为研究对象,采用静态箱-气相色谱法对其土壤温室气体通量动态变化进行了监测,并应用冗余分析法(RDA,Redundancy analysis)对土壤温室气体空间变异与环境因子的关系进行了分析。结果显示:(1)N_2O变异程度较CO_2、CH_4更加显著,为147.23%,CO_2的气体通量水平较其他温室气体更加突出;(2)土地利用方式对黄土台塬土壤主要温室气体CO_2、N_2O和CH_4的通量影响较大,且土壤CO_2排放为耕地最高可达83.60 mg m~(-2) h~(-1),N_2O与CH_4气体通量强度最高的分别为耕地(3.78μg m~(-2)h~(-1))和草地(65.93μg m~(-2)h~(-1));(3)通过RDA排序分析表明各环境因子对研究区不同土地利用方式土壤温室气体通量空间变异解释程度的高低,其中海拔高程与深层土壤温度影响最为突出。  相似文献   

2.
施肥处理对春季冻融期灰漠土农田温室气体排放的影响   总被引:1,自引:0,他引:1  
绿洲灰漠土冻融交替明显,但缺乏该时期气体通量及动态变化方面的研究。选取NPK(氮磷钾肥)、NPKS(0.9NPK+0.1秸秆氮)、NPKM(1/3NPK+2/3羊粪氮)和NPKM+(1.5倍NPKM)处理作为研究对象,利用静态箱气相色谱法开展2013—2014年春季冻融期温室气体排放观测试验。结果显示,春季冻融期间,有机肥添加处理CO_2排放量较高,其中NPKM+和NPKM处理CO_2平均排放量分别为C 113 mg m~(-2) h~(-1)和85 mg m~(-2) h~(-1),其次为NPKS(72 mg m~(-2) h~(-1))、NPK(75 mg m~(-2) h~(-1))和CK(35 mg m~(-2) h~(-1))。同样,NPKM+和NPKM处理有相对更高的N_2O排放,春冻平均排放通量分别为N 73μg m~(-2) h~(-1)和42μg m~(-2) h~(-1),显著高于NPKS(22μg m~(-2) h~(-1))和NPK(17μg m~(-2) h~(-1))处理(p0.05)。CH_4排放量相对较低,各处理无明显差异(p0.05)。分析发现,N_2O在冻融期呈现先增加后急剧减少的趋势,CO_2变幅不明显。与全年总排放量相比,冻融期(27 d)N_2O的排放量占全年的9%~18%,CH_4冻融期间排放比重占全年排放量的6%~14%。所以,冻融交替期是灰漠土农田温室气体排放的相对高发时期,估算温室气体排放时应充分考虑。  相似文献   

3.
土地利用方式变化是造成大气中温室气体浓度变化的主要原因之一,但土地利用方式转变,如林地转变为耕地过程对土壤氧化亚氮(N_2O)排放的影响还缺乏系统研究。本研究于2016年7月中旬在四川盆地丘陵区将林地转变为耕地,并按照耕地冬小麦-夏玉米轮作方式,采用静态暗箱-气相色谱法,对比分析了耕地翻耕不施肥(CL-T)、翻耕施肥(CL-TF)和邻近林地(CK)的土壤N_2O排放过程特征。结果表明,试验期间CL-T、CL-TF土壤N_2O排放通量较CK均显著增加(P0.01),且二者的N_2O排放通量在林地转变为耕地初期均有明显的排放峰。小麦季和玉米季土壤N_2O排放通量[μg(N)·m-2·h-1]均值CK分别为2.52和4.60,CL-T分别为3.55和11.63,CL-TF分别为6.26和22.16,N_2O排放通量玉米季显著高于小麦季。CK、CL-T和CL-TF的土壤N_2O全年累积排放量[mg(N)·hm-2]分别为0.271、0.515和0.957,CL-T、CL-TF较CK分别显著增长89.8%、253.0%,说明林地转变为耕地,紫色土N_2O排放迅速增加。首先翻耕改变土壤结构并显著增加土壤无机氮含量(P0.05),其次施肥大幅增加土壤无机氮含量导致土壤N_2O的激发排放。而土壤温度和水分未发生显著改变(P0.05),种植作物短时间内也未显著改变土壤的N_2O排放。结果表明,林地转变为耕地激发土壤N_2O排放的根本机制可能是提高了土壤有机氮矿化速率。但土地利用转变对土壤氮转化过程的影响以及进而改变土壤N_2O的排放特征的机理有待进一步研究。  相似文献   

4.
不同生物质炭输入水平下旱作农田温室气体排放研究   总被引:4,自引:0,他引:4  
在陇中黄土高原干旱半干旱区,采用小区定位试验,对不同生物质炭输入水平下春小麦农田土壤温室气体(CO_2、N_2O和CH_4)的排放通量进行全生育期连续观测,并分析其影响因子。结果表明:6个生物质炭输入水平处理下[0 t·hm~(-2)(CK)、10 t·hm~(-2)、20 t·hm~(-2)、30 t·hm~(-2)、40 t·hm~(-2)、50 t·hm~(-2)],旱作农田土壤在春小麦全生育期内均表现为CH_4弱源、N_2O源和CO_2源。全生育期各处理CH_4平均排放通量依次为:0.005 7 mg·m~(-2)·h~(-1)、0.0047 mg·m~(-2)·h~(-1)、0.003 6 mg·m~(-2)·h~(-1)、0.003 3 mg·m~(-2)·h~(-1)、0.002 7 mg·m~(-2)·h~(-1)和0.000 4 mg·m~(-2)·h~(-1),N_2O平均排放通量依次为:0.230 5 mg·m~(-2)·h~(-1)、0.144 1 mg·m~(-2)·h~(-1)、0.135 3 mg·m~(-2)·h~(-1)、0.098 9 mg·m~(-2)·h~(-1)、0.125 0 mg·m~(-2)·h~(-1)和0.151 3mg·m~(-2)·h~(-1),CO_2平均排放通量依次为:0.449 2μmol·m~(-2)·s~(-1)、0.447 0μmol·m~(-2)·s~(-1)、0.430 3μmol·m~(-2)·s~(-1)、0.391 4μmol·m~(-2)·s~(-1)、0.408 0μmol·m~(-2)·s~(-1)和0.416 4μmol·m~(-2)·s~(-1)。土壤CH_4排放通量随生物质炭输入量的增加而减小;当生物质炭输入量小于30 t·hm~(-2)时,土壤N_2O、CO_2排放通量随其输入量增加而显著减小,但当其输入量超过30 t·hm~(-2)时,N_2O、CO_2排放通量则呈显著增大趋势。各处理在5~15 cm土层平均土壤温度差异显著(P0.05),在5~10 cm土层平均土壤含水量差异显著(P0.05),土壤温度及含水量受生物质炭影响明显;且CK处理不同土层的土壤温度及含水量波动最大,生物质炭输入可在一定程度上降低不同土层土壤的水热变化幅度;N_2O、CO_2排放通量与10~15 cm土层土壤温度呈显著性负相关,与20~25 cm土壤温度呈显著性正相关;CH_4平均排放通量与5~10 cm土层土壤温度呈显著性负相关,与其含水量呈显著性正相关;N_2O平均排放通量与15~20 cm土层土壤温度呈显著性正相关;CH_4、N_2O、CO_2平均排放通量与0~5 cm土层土壤水分呈显著性负相关。生物质炭的输入能够减小温室气体的排放,且会因其输入量的不同而异,因此适量应用生物质炭有利于旱作农田生育期内增汇减排。  相似文献   

5.
在陇中黄土高原干旱半干旱区,采用小区定位试验,对不同生物质炭水平(0 t·hm~(-2)、10 t·hm~(-2)、20 t·hm~(-2)、30 t·hm~(-2)、40 t·hm~(-2)、50 t·hm~(-2))下农田土壤温室气体(CO_2、N_2O和CH_4)的日排放通量及其影响因子进行连续观测,并确定1 d中不同生物质炭处理水平下的最佳观测时间。结果表明:6个生物质炭输入水平处理下,春小麦地土壤CH_4、N_2O和CO_2通量变化趋势与气温日变化轨迹大体一致,均表现为白天排放量大于夜间,并在4:00—5:00时,出现对CH_4通量的吸收峰,以及N_2O与CO_2的排放低谷;全天内各处理CH_4平均排放通量依次为:10.14mg·m~(-2)·h~(-1)、7.82mg·m~(-2)·h~(-1)、6.57mg·m~(-2)·h~(-1)、-0.10mg·m~(-2)·h~(-1)、1.05mg·m~(-2)·h~(-1)和2.89mg·m~(-2)·h~(-1),N_2O平均排放通量依次为:288.79mg·m~(-2)·h~(-1)、201.78mg·m~(-2)·h~(-1)、157.14mg·m~(-2)·h~(-1)、112.06mg·m~(-2)·h~(-1)、154.60mg·m~(-2)·h~(-1)和164.02mg·m~(-2)·h~(-1),CO_2平均排放通量依次为:85.44 mg·m~(-2)·h~(-1)、80.91 mg·m~(-2)·h~(-1)、76.49 mg·m~(-2)·h~(-1)、65.29 mg·m~(-2)·h~(-1)、67.19 mg·m~(-2)·h~(-1)和69.10 mg·m~(-2)·h~(-1);当生物质炭输入量小于30 t·hm~(-2)时,土壤CH_4、N_2O、CO_2排放通量随其输入量增加而显著减小,但当其输入量超过30 t·hm~(-2)时,3种温室气体排放通量则呈显著增大趋势;当生物质炭输入水平为30 t·hm~(-2)时,春小麦土壤全天表现为CH_4的吸收汇,其余各水平处理下的土壤表现为CH_4的弱排放源;6种处理水平下,全天春小麦地土壤表现为N_2O、CO_2的排放源。0~5 cm的土壤温度及水分(y)与生物质炭输入量(x)回归方程分别为y=-0.017 6x+16.585(R~2=0.302 6,r=-0.55,P0.05)和y=0.056 5x+13.626(R~2=0.815 1,r=0.903,P0.05),生物质炭输入量与0~5 cm的土壤水分呈显著正相关关系;无生物质炭输入处理下3种温室气体的吸收或排放通量与地表温度及5 cm地温均呈显著正相关关系,其他各处理也表现出不同程度的正相关关系。因此,当生物质炭输入水平为30 t·hm~(-2)时,更有利于CH_4、N_2O和CO_2 3种温室气体的增汇减排;生物质炭输入水平差异引起的土壤温度及水分差异可能是不同生物质炭处理CH_4、N_2O和CO_2日排放通量产生差异的主要原因;由矫正系数及最佳时段温室气体排放量与累积排放量回归分析可得,3种温室气体的最佳同期观测时间为8:00—9:00。  相似文献   

6.
冬季施用鸡粪和生物炭对南方稻田土壤CO2与CH4排放的影响   总被引:3,自引:1,他引:2  
生物炭的利用近年来是农田土壤固碳减排研究中的热点。本研究通过在冬季稻田养鸡,结合生物炭添加,采用箱式法结合温室气体分析仪定量测定冬季稻田和双季稻期间土壤CO_2和CH_4排放通量,分别估算冬季稻田和双季稻期间土壤CO_2和CH_4排放总量,评估生物炭和鸡粪添加对土壤碳排放的影响。结果表明,鸡粪还田处理显著提高了土壤CO_2的排放,冬季稻田和水稻生育期排放量分别达9 935.39 kg·hm~(-2)和27 756.34kg·hm~(-2),比对照增加58.7倍(P0.01)和56%(P0.05);生物炭添加处理冬季稻田和水稻生育期CO_2累积排放量比对照高12.3倍(P0.01)和41%(P0.05)。鸡粪还田处理下冬季稻田和水稻生育期稻田的CH_4排放量均显著高于其他处理;而生物碳添加对冬季稻田CH_4排放无显著影响,但显著降低了水稻生育期稻田的CH_4排放。鸡粪还田配施生物炭处理也显著提高了稻田土壤CO_2的排放。冬季稻田时,鸡粪还田配施生物炭土壤CO_2累积排放量显著高于鸡粪还田处理;而水稻生育期时,鸡粪还田配施生物炭处理下土壤CO_2累积排放量显著低于鸡粪还田处理。鸡粪还田下添加生物碳可以降低因鸡粪还田引起的CH_4排放增加的效应。总之,鸡粪原位还田显著增加了冬季稻田和水稻生育期稻田的CO_2和CH_4排放;无论是冬季稻田还是水稻生育期,生物炭的添加都降低了土壤CH_4的排放,且生物炭添加后期有抑制土壤CO_2排放的作用。因此,从更长的时间尺度来看,生物炭施入土壤有利于土壤固碳减排。  相似文献   

7.
施氮及添加硝化抑制剂对苜蓿草地N2O排放的影响   总被引:1,自引:0,他引:1  
为探究旱作紫花苜蓿(MedicagosativaL.)栽培草地氧化亚氮(N_2O)排放对施氮水平及添加硝化抑制剂的响应特征,采用传统静态箱法研究了不同施氮水平[0kg(N)·hm~(-2)(N0)、 50kg(N)·hm~(-2)(N50)、 100kg(N)·hm~(-2)(N100)和150kg(N)·hm~(-2)(N150)]以及添加硝化抑制剂双氰胺(DCD)150kg(N)·hm~(-2)(N150+DCD)对陇东苜蓿草地N_2O排放特征的影响。结果显示,监测期内N0、N50、N100和N150处理N_2O平均排放速率分别为3.5μg·m~(-2)·h~(-1)、4.1μg·m~(-2)·h~(-1)、5.0μg·m~(-2)·h~(-1)和6.1μg·m~(-2)·h~(-1),随着施氮梯度的增加, N_2O排放速率呈增加趋势。添加硝化抑制剂DCD对N_2O排放产生明显的抑制作用。与N150处理相比, N150+DCD处理下苜蓿草地N_2O平均排放速率下降50.7%, N_2O累计排放量显著降低61.6%(P0.05)。施氮对苜蓿产量没有显著影响,而N0、N50、N100和N150处理下单位苜蓿产量N_2O排放量随氮肥梯度的增加而增加,各处理分别为6.5 mg·kg~(-1)、7.8 mg·kg~(-1)、11.3 mg·kg~(-1)和12.5 mg·kg~(-1)。N_2O排放受土壤含水量影响深刻,生长季N_2O排放通量与土壤水分呈显著正相关关系(P0.05),而与土壤温度无显著相关性(P0.05)。综上,旱作紫花苜蓿栽培草地N_2O排放通量随施氮水平的增加明显增加,在相同施氮水平下添加硝化抑制剂DCD能显著抑制N_2O排放。相关研究结果对于该区域苜蓿草地合理施肥以及N_2O减排具有一定的实践指导意义。  相似文献   

8.
毛竹是我国南方广泛分布的一种典型的森林资源,其扩张已引发了多方面的生态问题,但是目前关于氮沉降背景下毛竹扩张引起的土壤N_2O和CO_2气体排放变化的研究甚少,且无原位观测数据。采用静态箱-气相色谱法,分析江西庐山毛竹纯林、毛竹扩张形成的毛竹-日本柳杉混交林及日本柳杉纯林3种林分土壤的N_2O和CO_2排放速率和累积排放量及其对模拟氮沉降的响应。结果表明:(1)混交林土壤的NH_4~+-N含量、NO_3~--N含量及pH分别为14.39mg·kg~(-1)、8.65mg·kg~(-1)、4.88,显著高于日本柳杉纯林的9.75 mg·kg~(-1)、5.58 mg·kg~(-1)、4.05,但是混交林土壤DOC含量(236.5 mg·kg~(-1))却显著低于日本柳杉纯林(382.0mg·kg~(-1))。(2)混交林土壤N_2O累积排放量(393.6mg·m~(-2))显著高于毛竹纯林(202.5mg·m~(-2))和日本柳杉纯林(192.8mg·m~(-2)),混交林土壤CO_2累积排放量(4 655 g·m~(-2))显著高于日本柳杉纯林(2 815 g·m~(-2))。(3)模拟氮沉降未对3种林分类型土壤的CO_2排放速率和累积排放量产生显著影响,但明显增加了混交林和日本柳杉纯林的N_2O累积排放量。本研究表明:毛竹扩张不同阶段土壤的理化性质、N_2O及CO_2排放表现出不同特征。毛竹扩张过程中一定程度上增大了土壤N_2O和CO_2的排放量,但是完全扩张后N_2O排放出现明显下降趋势,而CO_2的排放未发生显著变化。同时,氮沉降促进了毛竹未扩张和扩张初期土壤的N_2O排放,而对CO_2排放未产生显著影响。表明在未来气候变化条件下管理亚热带毛竹扩张时,必须明确考虑这些生态系统组成、结构和影响因子之间的影响。  相似文献   

9.
[目的]了解果园土壤呼吸的季节和年际变化及其影响因素,为退耕还果条件下黄土高原地区土壤碳源汇功能变化研究提供依据。[方法]在长武农田生态系统国家野外站,以盛产期果园为对象,利用土壤碳通量监测系统(Li-COR,Lincoln,NE,USA)连续3 a原位监测了土壤呼吸、土壤水分和温度变化,分析了土壤呼吸的季节性和年际间的变化及其与水分、温度变化之间的关系。[结果]土壤呼吸具有明显的季节和年际变异特征:最高值出现在雨季(7—9月),3 a分别为3.14,3.98,4.71μmol/(m~2·s),最低值出现在11月后,3 a依次为0.99,0.88,0.69μmol/(m~2·s);年际间累积呼吸量变异约21%。土壤呼吸与温度呈显著指数关系,而不同水分状况下土壤呼吸及温度敏感性(Q_(10))不同,当土壤水分含量11.12%时,土壤呼吸为2.01μmol/(m~2·s),当土壤含水量变化于11.12%~23.63%之间时,土壤呼吸为2.24μmol/(m~2·s),当土壤含水量23.63%时,土壤呼吸则为1.38μmol/(m~2·s);相应地不同水分条件下Q_(10)值分别为1.57,1.63和1.38。[结论]土壤水分显著影响黄土区苹果园土壤呼吸和Q_(10),研究结果为黄土区果园生态系统碳汇功能的估算提供了依据。  相似文献   

10.
杭州湾滨海湿地CH4排放通量的研究   总被引:1,自引:0,他引:1  
王蒙  吴明  邵学新  盛宣才 《土壤》2014,46(6):1003-1009
2013年4—9月,利用静态明箱–气相色谱法对杭州湾裸滩湿地、海三棱藨草湿地、芦苇湿地和互花米草湿地CH4排放通量进行了原位观测,并利用室内厌氧培养法测定了0~30 cm深度的土壤CH4产生潜力。结果表明:整体而言,裸滩湿地表现为CH4的吸收源,CH4排放通量春季高、夏季低;海三棱藨草湿地、芦苇湿地和互花米草湿地表现为CH4的排放源,CH4排放通量均呈现夏季高、春秋季低的季节变化。平均CH4排放通量表现为:互花米草湿地(1.589 mg/(m2·h))芦苇湿地(0.722 mg/(m2·h))海三棱藨草湿地(0.218 mg/(m2·h))裸滩湿地(–0.068 mg/(m2·h)),互花米草湿地各月CH4排放通量均显著高于其他湿地。0~30 cm深度平均土壤CH4产生潜力表现为:互花米草湿地(0.050μg/(g·d)芦苇湿地(0.042μg/(g·d))裸滩湿地(0.030μg/(g·d)海三棱藨草湿地(0.027μg/(g·d)),互花米草湿地各土层CH4产生潜力显著高于其他湿地(除0~5 cm外)。裸滩湿地土壤CH4产生潜力没有明显的空间垂直变化趋势,CH4产生潜力最大值、最小值分别出现在10~20 cm和5~10 cm土层。其他3类湿地0~5 cm土层的CH4产生潜力最大,土壤CH4产生潜力整体上随着土壤深度的增加而减小;海三棱藨草湿地和芦苇湿地5~10 cm土层的CH4产生潜力最小,互花米草湿地20~30 cm土层的CH4产生潜力最小。土壤p H、有机碳和全氮含量对CH4排放通量有显著的影响。  相似文献   

11.
To compare the CH4 oxidation potential among diferent land uses and seasons,and to observe its response to monsoon precipitation pattern and carbon and nitrogen parameters,a one-year study was conducted for diferent land uses (vegetable field,tilled and non-tilled orchard,upland crops and pine forest) in central subtropical China.Results showed significant diferences in CH4 oxidation potential among diferent land uses(ranging from 3.08 to 0.36 kg CH4 ha-1 year-1).Upland with corn-peanut-sweet potato rotation showed the highest CH4 emission,while pine forest showed the highest CH4 oxidation potential among all land uses.Non-tilled citrus orchard (0.72±0.08 kg CH4 ha-1 year-1)absorbed two times more CH4 than tilled citrus orchard(0.38±0.06kg CH4 ha-1 year-1).Irrespective of diferent vegetation,inorganic N fertilizer application significantly influenced CH4 fluxes across the sites (R2=0.86,P=0.002).Water-filled pore space,soil microbial biomass carbon,and dissolved nitrogen showed significant efects across diferent land uses (31% to 38% of variability)in one linear regression model.However,their cumulative interaction was significant for pine forest only,which might be attributed to undisturbed microbial communities legitimately responding to other variables,leading to net CH4 oxidation in the soil.These results suggested that i)natural soil condition tended to create win-win situation for CH4 oxidation,and agricultural activities could disrupt the oxidation potentials of the soils;and ii)specific management practices including but not limiting to efficient fertilizer application and utilization,water use efciency,and less soil disruption might be required to increase the CH4 uptake from the soil.  相似文献   

12.
Methane (CH4) uptake by soil can possibly be suppressed more in regions with heavy summer precipitation, such as those under the East Asian monsoon climate, as compared to that in regions with a dry summer. In order to determine how precipitation patterns affect seasonal and spatial variations in CH4 fluxes in temperate forest soils, such fluxes and selected environmental variables were measured on different parts of a hill slope in a cypress forest in central Japan. On the upper and middle parts of the slope, CH4 uptake was observed throughout the year, and the uptake rates increased slightly with soil temperature and decreased with soil water content. The CH4 flux predicted using data for the middle and upper parts of the slope ranged from −1.12 to −0.83 kg-CH4 ha−1 y−1 (i.e. CH4 uptake by soil) and from −2.30 to −2.04 kg-CH4 ha−1 y−1, respectively. In contrast, in the relatively wet lower part of the slope near an in-stream wetland, large CH4 emissions (>2 mg-CH4 m−1 d−1) were observed during the rainy summer. In this wetter plot, the soil functioned as a net annual CH4 source in a rainy year. Hence the variation in CH4 flux with a change in soil water conditions and soil temperature on the lower part of the slope contrasted to that on the upper and middle parts of the slope. The predicted CH4 flux for this lower plot ranged from −0.45 kg-CH4 ha−1 y−1 in a dry year to 1.80 kg-CH4 ha−1 y−1 in a rainy year. Our results suggest that consideration of the soil water conditions across a watershed is important for estimating the CH4 budgets for entire forest watershed, particularly in regions subject to a wet summer.  相似文献   

13.
Termites are estimated to contribute between <5 and 19% of the global methane (CH4) emissions. These estimates have large uncertainties because of the limited number of field-based studies and species studied, as well as issues of diurnal and seasonal variations. We measured CH4 fluxes from four common mound-building termite species (Microcerotermes nervosus, M. serratus, Tumulitermes pastinator and Amitermes darwini) diurnally and seasonally in tropical savannas in the Northern Territory, Australia. Our results showed that there were significant diel and seasonal variations of CH4 emissions from termite mounds and we observed large species specific differences. On a diurnal basis, CH4 fluxes were least at the coolest time of the day (∼07.00 h) and greatest at the warmest (∼15.00 h) for all species for both wet and dry seasons. We observed a strong and significant positive correlation between CH4 flux and mound temperature for all species. A mound excavation experiment demonstrated that the positive temperature effect on CH4 emissions was not related to termite movement in and out of a mound but probably a direct effect of temperature on methanogenesis in the termite gut. Fluxes in the wet season were 5-26-fold greater than those in the dry season. A multiple stepwise regression model including mound temperature and mound water content described 70-99% of the seasonal variations in CH4 fluxes for different species. CH4 fluxes from M. nervosus, which was the most abundant mound-building termite species at our sites, had significantly lower fluxes than the other three species measured. Our data demonstrate that CH4 flux estimates could result in large under- or over-estimation of CH4 emissions from termites if the diurnal, seasonal and species specific variations are not accounted for, especially when flux data are extrapolated to landscape scales.  相似文献   

14.
Little is known about the stable carbon isotopes of methane(CH4) emitted(δ~(13)CH_(4emitted)) from permanently flooded rice fields and double rice-cropping fields.The CH4 emission and corresponding δ~(13)CH_(4emitted) under various field managements(mulching,water regime,tillage,and nitrogen(N) fertilization) were simultaneously measured in three typical Chinese rice fields,a permanently flooded rice field in Ziyang City,Sichuan Province,Southwest China,a double-rice cropping field in Yingtan City,Jiangxi Province,Southeast China,and a rice-wheat rotation field in Jurong City,Jiangsu Province,East China,from 2010 to 2012.Results showed different seasonal variations of δ~(13)CH_(4emitted) among the three fields during the rice-growing season.The values of δ~(13)CH_(4emitted) were negatively correlated with corresponding CH4 emissions in seasonal variation and mean,indicating the importance of CH_4 production,oxidation,and transport associated with isotopic fractionation effects to the δ~(13)CH_(4emitted).Seasonal variations of δ~(13)CH_(4emitted) were slightly impacted by mulching cultivation,tillage,and N application,but highly controlled by drainage.Meanwhile,tillage,N application,and especially mulching cultivation had important effects on seasonal mean CH4 emissions and corresponding δ~(13)CH_(4emitted) with low emissions accompanied by high values of δ~(13)CH_(4emitted).Seasonal mean values of δ~(13)CH_(4emitted) from the three fields were similar,mostly ranging from —60‰ to — 50‰,which are well in agreement with previously published data.These demonstrated that seasonal variations of δ~(13)CH_(4emitted) mainly depended on the changes in CH4 emission from rice fields and further indicated the important effects of methanogenic pathways,CH4 oxidation,and CH4 transport associated with isotope fractionation effects influenced by field managements on δ~(13)CH_(4emitted).  相似文献   

15.
Awareness of global warming has stimulated research on environmental controls of soil methane (CH4) consumption and the effects of increasing atmospheric carbon dioxide (CO2) on the terrestrial CH4 sink. In this study, factors impacting soil CH4 consumption were investigated using laboratory incubations of soils collected at the Free Air Carbon Transfer and Storage I site in the Duke Forest, NC, where plots have been exposed to ambient (370 μL L−1) or elevated (ambient + 200 μL L−1) CO2 since August 1996. Over 1 year, nearly 90% of the 360 incubations showed net CH4 consumption, confirming that CH4-oxidizing (methanotrophic) bacteria were active. Soil moisture was significantly (p < 0.01) higher in the 25–30 cm layer of elevated CO2 soils over the length of the study, but soil moisture was equal between CO2 treatments in shallower soils. The increased soil moisture corresponded to decreased net CH4 oxidation, as elevated CO2 soils also oxidized 70% less CH4 at the 25–30 cm depth compared to ambient CO2 soils, while CH4 consumption was equal between treatments in shallower soils. Soil moisture content predicted (p < 0.05) CH4 consumption in upper layers of ambient CO2 soils, but this relationship was not significant in elevated CO2 soils at any depth, suggesting that environmental factors in addition to moisture were influencing net CH4 oxidation under elevated CO2. More than 6% of the activity assays showed net CH4 production, and of these, 80% contained soils from elevated CO2 plots. In addition, more than 50% of the CH4-producing flasks from elevated CO2 sites contained deeper (25–30 cm) soils. These results indicate that subsurface (25 cm+) CH4 production contributes to decreased net CH4 consumption under elevated CO2 in otherwise aerobic soils.  相似文献   

16.
ABSTRACT

Emission of methane (CH4), a major greenhouse gas, from submerged paddy soils is generally reduced by introducing intermittent drainage in summer, which is a common water management in Japan. However, such a practice is not widely conducted in Hokkaido, a northern region in Japan, to prevent a possible reduction in rice grain yield caused by cold weather. Therefore, the effects of intermittent drainage on CH4 emission and rice grain yield have not been investigated comprehensively in Hokkaido. In this study, we conducted a three-year field experiment in Hokkaido and measured CH4 and nitrous oxide (N2O) fluxes and rice grain yield to elucidate whether the reduction in CH4 emission can be achieved in Hokkaido as well as other regions in Japan. Four experimental treatments, namely, two soil types [soils of light clay (LiC) and heavy clay (HC) textures] and two water management [continuous flood irrigation (CF), and intermittent drainage (ID)], were used, and CH4 and N2O fluxes were measured throughout the rice cultivation periods from 2016 to 2018. Cumulative CH4 emissions in 2016 were markedly low, suggesting an initially low population of methanogens in the soils presumably due to no soil submergence or crop cultivation in the preceding years, which indicates a possible reduction in CH4 emission by introducing paddy-upland crop rotation. Cumulative CH4 emissions in the ID-LiC and ID-HC plots were 21–91% lower than those in the CF-LiC and CF-HC plots, respectively, whereas the cumulative N2O emissions did not significantly differ between the different water managements. The amount of CH4 emission reduction by the intermittent drainage was largest in 2018, with a comparatively long period of the first drainage for 12 days in summer. Rice grain yields did not significantly differ between the different water managements for the entire 3 years, although the percentage of well-formed rice grains was reduced by the intermittent drainage in 2018. These results suggest that CH4 emission from paddy fields can be reduced with no decrease in rice grain yield by the intermittent drainage in Hokkaido. In particular, the first drainage for a long period in summer is expected to reduce CH4 emission markedly.  相似文献   

17.
Abstract

Forest fires can change the greenhouse gase (GHG) flux of borea forest soils. We measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes with different burn histories in black spruce (Picea mariana) stands in interior Alaska. The control forest (CF) burned in 1920; partially burned (PB) in 1999; and severely burned (SB1 and SB2) in 2004. The thickness of the organic layer was 22 ± 6 cm at CF, 28 ± 10 cm at PB, 12 ± 6 cm at SB1 and 4 ± 2 cm at SB2. The mean soil temperature during CO2 flux measurement was 8.9 ± 3.1, 6.4 ± 2.1, 5.9 ± 3.4 and 5.0 ± 2.4°C at SB2, SB1, PB and CF, respectively, and differed significantly among the sites (P < 0.01). The mean CO2 flux was highest at PB (128 ± 85 mg CO2-C m?2 h?1) and lowest at SB1 (47 ± 19 mg CO2-C m?2 h?1) (P < 0.01), and within each site it was positively correlated with soil temperature (P < 0.01). The CO2 flux at SB2 was lower than that at CF when the soil temperature was high. We attributed the low CO2 flux at SB1 and SB2 to low root respiration and organic matter decomposition rates due to the 2004 fire. The CH4 uptake rate was highest at SB1 [–91 ± 21 μg CH4-C m?2 h?1] (P < 0.01) and positively correlated with soil temperature (P < 0.01) but not soil moisture. The CH4 uptake rate increased with increasing soil temperature because methanotroph activity increased. The N2O flux was highest [3.6 ± 4.7 μg N2O-N m?2 h?1] at PB (P < 0.01). Our findings suggest that the soil temperature and moisture are important factors of GHG dynamics in forest soils with different fire history.  相似文献   

18.
浮萍对福州平原稻田CH4和N2O排放的影响分析   总被引:2,自引:0,他引:2  
浮萍是稻田中常见的漂浮在水面的水生植物,具有固氮作用,但是,浮萍对稻田温室气体排放的影响尚不明确.以位于湿润亚热带的福州平原稻田为研究对象,探讨浮萍对该区域稻田CH4和N2O排放的影响,为科学评价、准确编制我国水稻田温室气体排放清单提供基础数据.研究结果表明,观测期内,有萍小区和无萍小区CH4排放范围分别为0.19~26.50 mg·m-2·h-1和1.02~28.02 mg·m-2·h-1,平均值分别为9.28 mg·m-2·h-1和11.66 mg·m-2·h-1,有萍小区CH4排放低于无萍小区(P<0.01),有萍小区CH4排放高峰比无萍小区约提前1周,高峰期后排放迅速降低;有萍小区和无萍小区N2O排放范围分别为-50.11~201.82 μg·m-2·h-1和-28.93~54.42μg·m-2·h-1,平均值分别为40.29 μg·m-2·h-1和11.93 μg·m-2·h-1,有萍小区N2O排放高于无萍小区(P<0.05).稻田排干后,N2O排放迅速上升,2个小区N2O排放呈现出相似的规律.有萍小区和无萍小区的CH4与N2O排放的影响因子有所不同.综合考虑CH4和N2O两种温室气体,CH4仍是稻田温室效应产生的主要贡献者,浮萍可降低位于沿海区域的福州平原稻田综合温室效应的17.3%.  相似文献   

19.
Abstract

It is well known that some fungal species are remarkably tolerant of high copper concentration, although copper is toxic to most fungi (Garraway and Evans 1984). Bedford (1936) and Jurkowska (1952) reported that Penicillium and Aspergillus species can grow in liquid media saturated or nearly saturated with copper sulfate. Okamoto and Fuwa (1974) isolated Penicillium ochro-chloron from the laboratory air, and found that the fungus was able to grow in a medium saturated with copper sulfate.  相似文献   

20.
Methane fluxes were measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The CH4 fluxes in forest ecosystem ranged from −4.53 to 8.40 μg C m−2 h−1, in the oil palm ecosystem from −32.78 to 4.17 μg C m−2 h−1 and in the sago ecosystem from −7.44 to 102.06 μg C m−2 h−1. A regression tree approach showed that CH4 fluxes in each ecosystem were related to different underlying environmental factors. They were relative humidity for forest and water table for both sago and oil palm ecosystems. On an annual basis, both forest and sago were CH4 source with an emission of 18.34 mg C m−2 yr−1 for forest and 180 mg C m−2 yr−1 for sago. Only oil palm ecosystem was a CH4 sink with an uptake rate of −15.14 mg C m−2 yr−1. These results suggest that different dominant underlying environmental factors among the studied ecosystems affected the exchange of CH4 between tropical peatland and the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号