首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 718 毫秒
1.
土壤氮气排放研究进展   总被引:3,自引:0,他引:3  
自20世纪初人类发明并掌握工业合成氨的技术以来,氮肥施用量迅速增长。在一部分国家或地区,氮肥的施入量已经超过作物对氮素的需求,导致大量氮素损失到环境中,造成氨挥发、氧化亚氮排放、地下水硝酸盐污染等环境问题。土壤在微生物的作用下可以通过反硝化、厌氧氨氧化等过程将活性氮素转化为惰性氮气,达到清除过多活性氮的目的。由于大气中氮气背景浓度太高,因此很难直接准确测定土壤的氮气排放速率,导致土壤氮气排放通量、过程与调控机制研究远远落后于土壤氮循环的其他方面。本文综述了土壤氮气排放主要途径(反硝化、厌氧氨氧化与共反硝化)及其对土壤氮气排放的贡献;测定土壤氮气排放速率的方法(乙炔抑制法、氮同位素示踪法、N2/Ar比率-膜进样质谱法、氦环境法与N2O同位素自然丰度法)及其优缺点;调控土壤氮气排放通量的主要因素(氧气、可溶性有机碳、硝酸盐、微生物群落结构与功能基因表达等)及其相关作用机制。最后指出研发新的测定原位无扰动土壤氮气通量的方法是推进本领域相关研究的关键;定量典型生态系统(如旱地农田、稻田、森林、草地与湿地)土壤氮气排放通量,阐明其中的微生物学机制,模拟并预测土壤氮气排放对全球变化的响应规律是本领域的研究热点与发展方向。  相似文献   

2.
太行山前平原农田生态系统氮素循环与平衡研究   总被引:17,自引:0,他引:17  
在中国科学院栾城生态农业试验站1公顷小麦玉米轮作农田,运用乙炔抑制原状土柱培育法、微气象学法和陶土头多孔杯水量平衡法分别定量测定了氮素硝化反硝化损失、氨挥发、NO3--N淋溶损失等氮素循环转化途径。研究结果表明,每年因氨挥发而造成的肥料氮损失量为N.60.kg/hm2,占施入肥料氮的15%;NO3--N淋溶损失量为N.68~4.kg/hm2,占肥料施用量的1.4%2~0.3%;每年因硝化反硝化过程造成的肥料损失量为N.2.021~0.49.kg/hm2,占肥料施入量的0.51%1~.37%。氨挥发、NO3--N淋溶和硝化反硝化损失主要发生在施肥灌溉/降雨之后,玉米季肥料损失明显高于小麦生长季节。氨挥发和NO3--N淋溶损失是本区域农田氮素损失的主要途径,是氮肥利用率低的重要原因。在当地农民所采用的常规农业管理措施下,小麦玉米轮作农田氮素平衡处于盈余状态,小麦季盈余N+115.5~+124.5.kg/hm2,明显高于玉米季;由于玉米季氮素损失严重,氮素盈余较少,甚至出现亏缺,玉米季氮素平衡状况为-54.6~+14.3.kg/hm2。  相似文献   

3.
肥料添加剂降低N2O排放的效果与机理   总被引:4,自引:2,他引:2  
如何降低氮肥施入农田后的N2O排放,实现氮肥增产效应的同时降低其对环境的负面影响是全球集约化农业生产中重要的科学问题,氮肥添加剂是有效途径之一。本研究采用室内静态培养法,在调节土壤水分含量和温度等环境因素的条件下,研究不同肥料添加剂对华北平原典型农田土壤N2O排放的影响及其机制。结果表明,N2O排放通量的峰值大约出现在施氮后的第24 d,肥料混施较肥料表施的出峰时间提前。与单施尿素处理相比,添加硝化抑制剂DMPP或DCD能分别降低N2O排放总量99.2%和97.1%; 添加硫酸铜对N2O排放的抑制作用不显著; 添加秸秆会增加N2O排放总量60.7%,而在添加秸秆的土壤中施加硝化抑制剂DMPP能够显著降低N2O排放量至无肥对照水平。说明华北平原农田土壤中N2O的产生主要是由硝化作用驱动,同时也可看出,添加硝化抑制剂是N2O减排的有效措施。  相似文献   

4.
氮肥过量施用加剧了农田土壤氮素损失,如增加NH_3挥发、N_2O排放及硝酸盐淋洗等,这将降低空气和水体质量并对全球气候产生负面影响。脲酶抑制剂和硝化抑制剂可延缓土壤氮素转化,降低土壤活性氮对环境的负面效应,因此在农业生产中被广泛应用,如N-丁基硫代磷酰三胺(NBPT)、3,4-二甲基吡唑磷酸盐(DMPP)和双氰胺(DCD)。本文重点阐述了脲酶抑制剂NBPT和硝化抑制剂DMPP、DCD在农田土壤中的作用机制及其对环境和农学效应的影响,并揭示影响其施用有效性的主要因素。大多数研究结果表明,NBPT与尿素或有机肥配合施用后能够减少土壤NH_3挥发、N_2O排放和NO_3~-淋洗,并提高作物产量、品质及氮肥利用率;与NBPT类似,两种典型硝化抑制剂DCD和DMPP均能降低土壤N_2O排放和NO_3~-淋洗并提高作物产量,但某些环境条件下也会增加土壤NH_3挥发损失。不同农田生态系统中脲酶/硝化抑制剂的作用效果与抑制剂种类、降雨或灌溉量、土壤p H值和黏粒含量等因素有关。在未来的生产实践中,应根据抑制剂在不同土壤环境下的作用特征来更加科学合理地施用抑制剂。  相似文献   

5.
农田土壤N_2O排放研究进展   总被引:18,自引:1,他引:18  
黄树辉  吕军 《土壤通报》2004,35(4):516-522
农田土壤的N2O排放主要是在微生物的作用下通过硝化和反硝化作用产生的。土壤中多变的理化性质影响各种微生物的生长,因而硝化和反硝化过程中产生N2O的途径也不同,尤其以硝化过程的研究进展最快。影响N2O的生成和排放有:土壤含水量、温度、O2以及土壤结构和质地等物理因素,pH和氮肥等其它因素。本文详细地阐述旱地和水田土壤中这些影响因子与N2O的作用机理的差异,及农田土壤中的N2O排放估计的方法。区分硝化和反硝化作用中生成N2O的贡献可用15N标记法和不同浓度的乙炔抑制法。  相似文献   

6.
不同水分模式对山东茶园土壤氮素动态的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
以山东茶园土壤为研究对象,采用室内好气培养法,分析了恒定湿润和干湿交替模式下土壤氮素转化特征。结果表明:(1)至培养结束时,恒湿模式下60%WHC处理土壤净矿化量和净硝化量较高;脲酶和亚硝酸还原酶活性较强。20%WHC处理下土壤净矿化速率、净硝化速率严重受到抑制。(2)干湿交替模式下复水后土壤净矿化量、净硝化量以及酶活性得到增强,并出现"脉冲"式变化。(3)2种模式下氮素损失均为N_2O排放量大于NH_3挥发量。N_2O排放量与土壤含水量呈正比,NH_3挥发量与土壤含水量呈反比。干湿交替均增强土壤N_2O和NH_3排放量。(4)结构方程模型(SEM)揭示土壤含水量通过直接或间接作用影响土壤氮素转化(p0.001),脲酶显著影响恒湿模式下土壤氮素转化(p0.001),而亚硝酸还原酶在2种模式下均显著负影响氮素转化(p0.001)。研究结果有助于更好地调节茶园生态系统中土壤管理及氮肥的使用。  相似文献   

7.
农田土壤N2O生成与排放影响因素及N2O总量估算的研究   总被引:10,自引:0,他引:10  
综述了国内外农田土壤N2 O生成与排放及其影响因素、N2 O排放测定技术及总量估算等方面的研究进展 ,指出硝化与反硝化过程均可产生N2 O ,而影响硝化、反硝化过程的土壤水分含量、温度、pH、有机碳含量和土壤质地等是影响农田土壤N2 O生成与排放的重要因素。根据我国各地农田土壤N2 O排放通量测定结果及相应模型分析 ,初步估算全国农田土壤N2 O年排放总量为N 398Gg ,约占全球农田土壤排放总量的 1 0 % ,其中旱田N2 O年排放总量为N 31 0Gg ,水田为N 88Gg。  相似文献   

8.
为研究东鱼河春季沉积物的反硝化脱氮作用以及N_2O产生速率,于2017年5月沿东鱼河采集沉积物和表层水样,分别采用乙炔抑制法和培养法分析测定了反硝化作用和N_2O产生速率,利用顶空法提取水样中N_2O结合双层扩散模型法估算水体N_2O的排放通量,并结合水体理化性质探讨了主要影响因素。结果表明:东鱼河春季沉积物反硝化潜势为7 305.8~26 947.7μmol/(m~2·h),但从上游到下游沿程均呈先增高后波动降低的趋势;沉积物反硝化速率为86.6~694.2μmol/(m~2·h),显著低于对应点位的反硝化潜势(P0.01),且二者的沿程变化规律不一致;反硝化速率仅与沉积物中NH_4~+含量呈显著正相关关系(P0.05),表明其受沉积物和上覆水理化性质的综合影响,且可能存在硝化—反硝化的耦合作用。沉积物N_2O产生速率在19.8~144.3μmol/(m~2·h);水体表现为大气N_2O的排放源,排放通量为170.9~667.8mol/(m~2·h),显著高于对应点位沉积物N_2O的产生速率(P0.01),且与上覆水的DO和NO_2~-含量具有显著正相关关系(P0.05),表明东鱼河在春季除沉积物产生N_2O外,其上覆水中氮转化过程亦是向大气排放N_2O的重要途径之一。  相似文献   

9.
土壤中反硝化田间原位测定方法的研究进展   总被引:1,自引:0,他引:1  
土壤中的反硝化作用由于直接影响到氮肥氮的利用率和环境问题,仍然是氮素研究领域的热点和难点之一,而反硝化作用研究的进展在很大程度上依赖与土壤反硝化的田间测定方法的建立。文章就目前反硝化研究领域常用的^15N平衡差值法、^15示踪气体通量法、乙炔抑制气室法、乙炔抑制土柱法的原理、气体样的采集、测定和计算作了综述,以期为土壤反硝化的研究提供依据。  相似文献   

10.
秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响   总被引:23,自引:3,他引:23  
运用乙炔抑制技术研究了不同施氮水平下秸秆还田对灌溉玉米田土壤反硝化反应和氧化亚氮(N2O)排放的影响。结果表明,土壤反硝化速率及N2O的排放受氮肥施用、秸秆处理方式及其交互作用的显著影响。与秸秆燃烧相比,不施氮或低施氮水平时,秸秆还田可刺激培养初期反硝化反应速率及N2O排放,增加培养期间N2O平均排放通量;高施氮水平时,秸秆还田可降低反硝化反应速率及反硝化过程中的N2O排放。秸秆还田可降低反硝化中N2O/N2的比例。  相似文献   

11.
Lime-N (calcium cyanamide, CaCN2) acts as both fertilizer and pesticide. Lime-N may reduce nitrous oxide (N2O) emission from soil, although its effectiveness and the relative mechanisms are not well understood. The aim of the study was to quantify the effect of lime-N on N2O emission from the acidic soil of tea fields. The study design consisted of two treatments: conventional fertilizer (CF) (application of conventional organo-chemical fertilizer) and lime-N (LN) (application of approximately 53 % of the applied N as lime-N and the remaining as conventional organo-chemical fertilizer). Both treatments had the same amount of N, P2O5, and K2O applied to soil between plant canopies; fertilizer was incorporated into soil. We measured N2O emissions and environmental and microbial parameters of soil between plant canopies and under the canopy of tea plants, including the concentrations of dicyandiamide and cyanamide derived from lime-N. Nitrous oxide emission from soil between plant canopies was lower in the LN treatment than in the CF treatment, and soil ammonium oxidation activity and soil denitrification rate decreased after lime-N application. We applied the acetylene inhibition technique and analyzed isotopomer ratios of N2O; the results of both techniques suggested that denitrification was the major process of N2O production in the soil between plant canopies, despite relatively low water-filled pore space. Cumulative N2O emission over the 366 days of the experiment was 36.0 % lower in the LN treatment than in the CF treatment (P?<?0.05). Our results suggest that lime-N application decreases N2O emission by inhibiting both nitrification and denitrification processes in the acidic soil.  相似文献   

12.
冻融对土壤氮素转化和N2O排放的影响研究进展   总被引:4,自引:0,他引:4  
在中、高纬度及高海拔地区,土壤冻融现象常有发生。冻融作用通过影响土壤理化性质和生物学性状进而影响土壤氮素转化过程及N2O的产生和释放,但迄今关于冻融对土壤氮素转化过程影响的研究结果还不尽一致,正效应或负效应均存在,土壤冻融期间N2O排放对全年N2O排放总量的贡献程度也存在着较大差异。本文重点论述了土壤冻结或冻融循环过程对土壤氮矿化、固持、硝化和反硝化等主要氮素转化过程的影响机制,同时分析了可引起冻融期间N2O排放强度变化的四种可能机理(禁锢-释放、环境-底物诱导、N2O还原酶抑制和化学反硝化增强)。指出在全球变暖背景下研究土壤冻融格局改变影响土壤氮素转化过程及N2O排放的必要性,并简要提出了若干理论问题及研究方向。  相似文献   

13.
Nitrous oxide (N2O) is a greenhouse gas that is destroying the stratospheric ozone to an increasing degree. Because of nitrogenous fertilizer application, agricultural soil is an important contributor of global N2O. In Japan, tea fields are amended with the highest level of N fertilizers among agricultural soils, causing soil acidification and large N2O flux. In soil, microbes play key roles in producing and consuming N2O. A previous study investigated net N2O production in tea fields using N2O flux measurement and soil incubation, which are indirect methods to analyze relevant processes of N2O production and consumption in soil. In the present study, to analyze N2O concentrations and isotopomer ratios (bulk nitrogen and oxygen isotope ratios, δ15Nbulk and δ18O, and intramolecular 15N site preference, SP) and to reveal most probable microbial production processes and consumption (N2O reduction to N2) process of N2O, soil gas was collected from a tea field (pH 3.1–4.5) at 10–50 cm depths using a silicone tube. The combination of fertilization, precipitation, and temperature rise produced significantly high N2O concentrations. During the period of high N2O concentration (above 5.7 ppmv), SP, the difference in 15N/14N ratio between central (α) and terminal (β) nitrogen position in the linear N2O molecule (βNαNO) showed low values of 1.4‰–9.8‰, suggesting that the contribution of bacterial denitrification (nitrifier-denitrification and bacterial denitrifier-denitrification) was greater than that of bacterial nitrification or fungal denitrification. High SP values of 15.0‰–20.1‰ obtained at 10, 35, and 50 cm depths on 31 May 2011 (after one of fertilizations) during which soil temperatures were 15.8 °C–17.9 °C and water-filled pore space (WFPS) was 0.73–0.89 suggest that fungal denitrification and bacterial nitrification contributed to N2O production to a degree equivalent to that of bacterial denitrification.  相似文献   

14.
施肥对夏玉米季紫色土N2O排放及反硝化作用的影响   总被引:9,自引:0,他引:9  
采用原状土柱-乙炔抑制培养法研究了施肥对紫色土玉米生长季土壤N2O排放通量和反硝化作用的影响.结果表明:玉米季施肥显著增加土壤N2O排放和反硝化损失,同时,各施肥处理间N2O排放与反硝化损失量差异显著.猪厩肥、猪厩肥配施氮磷钾肥、氮肥、氮磷钾肥和秸秆配施氮磷钾肥等处理的土壤N,O排放量分别为3.01、2.86、2.51、2.19和1.88 kg hm-2,分别占当季氮肥施用量的1.63%、1.53%、1.30%、1.09%和0.88%,反硝化损失量分别为6.74、6.11、5.23、4.69和4.12 kg hm-2,分别占当季氮肥施用量的3.97%、3.55%、2.97%、2.61%和2.23%,不施肥土壤的N2O排放量和反硝化损失量仅为0.56和0.78 kg hm-2.施肥是紫色土玉米生长前期(2周内)土壤N2O排放和反硝化速率出现高峰的主要驱动因子,土壤铵态氮和硝态氮含量是影响土壤N2O排放、土壤硝化和反硝化作用的限制因子,土壤含水量是重要影响因子,降雨是主要促发因素.土壤N2O排放量与反硝化损失量的比值介于0.45 ~0.72之间,土壤反硝化损失量极显著高于土壤N2O排放量,说明土壤反硝化作用是紫色土玉米生长季氮肥损失的重要途径.  相似文献   

15.
蔡祖聪 《土壤学报》2003,40(3):414-419
采用15N技术标记尿素和KNO3,研究了淹水条件下黄泥土和红壤性水稻土生成N2 O的主要过程。结果表明 ,黄泥土反硝化过程产物以N2 为主 ,N2 O的生成量可以略而不计。加入KNO3促进NO- 3异化还原成铵过程 ,从而增加N2 O生成速率。红壤性水稻土主要通过反硝化或好气反硝化过程生成N2 O ,随着土壤pH的提高或NO- 3 浓度升高 ,N2 O生成速率增大。无论是黄泥土还是红壤性水稻土 ,有相当一部分样本的N2 O的15N丰度在NO- 2 、NO- 3 、NH 4的15N丰度范围外 ,由此推论 ,氮转化生成N2 O的过程应在微生物细胞内进行。  相似文献   

16.
施肥方式对紫色土农田生态系统N2O和NO排放的影响   总被引:1,自引:1,他引:0  
依托紫色土施肥方式与养分循环长期试验平台(2002年—),采用静态箱-气相色谱法开展紫色土冬小麦-夏玉米轮作周期(2013年10月至2014年10月)农田生态系统N_2O和NO排放的野外原位观测试验。长期施肥方式包括单施氮肥(N)、传统猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)和秸秆还田配施氮磷钾肥(RSDNPK)等5种,氮肥用量相同[小麦季130 kg(N)×hm~(-2),玉米季150 kg(N)×hm~(-2)],不施肥对照(CK)用于计算排放系数,对比不同施肥方式对紫色土典型农田生态系统土壤N_2O和NO排放的影响,以期探寻紫色土农田生态系统N_2O和NO协同减排的施肥方式。结果表明,所有施肥方式下紫色土N_2O和NO排放速率波动幅度大,且均在施肥初期出现峰值;强降雨激发N_2O排放,但对NO排放无明显影响。在整个小麦-玉米轮作周期,N、OM、NPK、OMNPK和RSDNPK处理的N_2O年累积排放量分别为1.40 kg(N)×hm~(-2)、4.60 kg(N)×hm~(-2)、0.95 kg(N)×hm~(-2)、2.16kg(N)×hm~(-2)和1.41 kg(N)×hm~(-2),排放系数分别为0.41%、1.56%、0.25%、0.69%、0.42%;NO累积排放量分别为0.57 kg(N)×hm~(-2)、0.40 kg(N)×hm~(-2)、0.39 kg(N)×hm~(-2)、0.46 kg(N)×hm~(-2)和0.17 kg(N)×hm~(-2),排放系数分别为0.21%、0.15%、0.15%、0.17%、0.07%。施肥方式对紫色土N_2O和NO累积排放量具有显著影响(P0.05),与NPK处理比较,OM和OMNPK处理的N_2O排放分别增加384%和127%,同时NO排放分别增加3%和18%;RSDNPK处理的NO排放减少56%。表明长期施用猪厩肥显著增加N_2O和NO排放,而秸秆还田有效减少NO排放。研究表明,土壤温度和水分条件均显著影响小麦季N_2O和NO排放(P0.01),对玉米季N_2O和NO排放没有显著影响(P0.05),土壤无机氮含量则是在小麦-玉米轮作期N_2O和NO排放的主要限制因子(P0.01)。全量秸秆还田与化肥配合施用是紫色土农田生态系统N_2O和NO协同减排的优化施肥方式。  相似文献   

17.
丛枝菌根真菌调控土壤氧化亚氮排放的机制   总被引:2,自引:1,他引:1  
氮素是陆地生态系统初级生产力的主要限制因子,自Haber-Bosch反应以来,氮肥的生产和施用极大地提高了粮食产量.然而过量施用氮肥导致氮肥利用率低,并造成了严重的环境污染,包括氮沉降、硝态氮淋洗以及N2O排放等.微生物直接参与土壤氮素循环,固氮微生物、氨氧化和反硝化微生物分别在土壤固氮、铵态氮转化和硝态氮转化过程中起...  相似文献   

18.
The gaseous losses of fertilizer nitrogen (N) applied to agroecosystems are a major contributor to a host of environmental problems, inefficient production systems, and decreased N-use efficiency. These losses lead to the wastage of resources, increasing the greenhouse effect and harming human health. The red soil hilly region of Southeast China houses the biggest orchard area of the world, and nitrogen fertilizers are usually heavily applied to the orchard systems in China. Therefore, this study aimed to measure the gaseous losses of the fertilizer N by ammonia (NH3) volatilization and denitrification losses using the venting method and acetylene inhibition method respectively, and to assess the potential environmental risk of NH3 and nitrous oxide (N2O) emission from this orchard system based on the recent orchard management practices. An experiment was conducted in an Ougan citrus (Citrus reticulata Blanco ‘Suavissima’) orchard in the red soil hilly region of Southeast China. Three fertilization treatments, including the control (no N fertilizer, CK), poultry manure (at a rate of 6.3 t/ha, OM), and conventional fertilization (OM 6.3 t/ha + chemical fertilizer 393 kg N/ha, CF), were used. In all treatments, the fertilizers were incorporated into the soil after application. The test results, which were continuously determined within one year, indicated that the NH3 volatilization losses accounted for 4.5% of the OM nitrogen (OM-N) and 2.9% of the CF nitrogen (CF-N), whereas the denitrification N losses accounted for 2.1% of the OM-N and 2.9% of the CF-N. Overall, the total gaseous N losses (including NH3 volatilization losses and denitrification N losses) were 5.8% in the CF treatment. A relatively higher N2O flux, accounting for 1.8% of the CF-N, emitted from the CF treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号