首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
There is considerable interest in understanding the effect of the North Atlantic Oscillation (NAO) on recruitment to North Atlantic cod stocks. An earlier analysis of data for the North‐east Arctic cod stock showed that, while there is an empirical relationship between recruitment and the NAO over the period 1973–96, this relationship was absent over the period 1946–72. It has recently been suggested that the effect of the NAO on recruitment depends on the size of the spawning stock. Here, the possibility that this explains the earlier result for North‐east Arctic cod is tested and rejected.  相似文献   

2.
Cod stocks in the North Sea, including the Kattegat and the Skagerrak, have declined dramatically since the 1970s. Occasionally there is a high recruitment of juveniles in Kattegat/Skagerrak, without leading to the rebuilding of adult cod stocks despite reduced fishing mortality. In a biophysical model of egg and larval drift, we examined the potential importance of extant and historical spawning grounds for recruitment of cod in the Kattegat/Skagerrak seas using data of spawning stock biomass from the 1970s and from today's reduced stocks. The results suggest that Kattegat in the 1970s relied on largely locally retained (83%) larvae with little annual variation in recruitment. Kattegat also provided a substantial proportion of larvae recruiting in Swedish Skagerrak (72%). This is in contrast to present conditions where the Kattegat spawning stock has been reduced by 94%, and Kattegat only provides 34% of locally retained larvae and 30% to Swedish Skagerrak. Instead, the protected area in the Öresund and the Belt Sea are expected today to provide most larvae recruiting in Kattegat. Also, the inflow of larvae from the North Sea to Skagerrak and Kattegat can be significant although highly variable between years, with a positive correlation to the North‐Atlantic Oscillation index (NAO). The rebuilding of healthy spawning areas in the Kattegat may be key for restoring local cod stocks in both Kattegat and along the Skagerrak coast. This poses a management challenge if cod with local ‘Kattegat’ adaptations, e.g., in terms of egg density and migration patterns, are lost or reduced to non‐resilient densities.  相似文献   

3.
From a historic perspective, the north‐east Arctic cod stock, which is found in the Barents Sea–Svalbard region, has been the most productive gadoid stock in the Atlantic. Variation in catch has always been large, but during the last 10–15 years catch and stock abundance have reached the lowest level on record. Three major causes of variation have been discussed: (i) stock reduction through exploitation; (ii) environmental influences on recruitment; and (iii) species interaction effects on maturation, growth and mortality. In addition, interactions among these three sources might be important. The influence of each specific factor is difficult to evaluate from incidental observations and short‐term time series. In this respect, the time series on catches and on biological and environmental information of this stock, which partly extend back to the 19th century, occupy a unique position in comparison to data on most other stocks. In this paper, fluctuations in catch and stock abundance are compared with changes in recruitment, size/age and growth. This information is discussed in view of historic variation in ecology and environment. The stock has been under particularly high exploitation pressure since the mid‐1970s. Further, large changes in growth rates and poor recruitment to the commercially exploited stock are characteristic of late 1980s and throughout the 1990s. The analysis shows that substantial long‐term variation might underlie short‐term variability, and more importantly, that long‐term changes roughly coincide with similar fluctuations in the environment. Such factors might substantially affect the relationship between spawning stock and recruitment, which is also apparent from the difference in conclusions reached by various published studies. Consequently, it is suggested that using a steady‐state perspective for the population dynamics may lead to mismanagement and to a reduction of the long‐term yield from this stock.  相似文献   

4.
A comparative analysis of the fish condition (Fulton’s K) of 10 cod stocks in the north Atlantic in relation to the temperature of their habitat, growth rates and their reproductive potential is presented. It is shown that the cod stocks in the north Atlantic display different levels of mean condition, which is partly due to the different temperature regimes of their habitats. Cod living in colder waters, e.g. Greenland, Labrador and Grand Bank stocks, were found to be in poorer condition than cod living in warmer waters, e.g. North Sea and Irish Sea stocks.

Poor condition causes reduced productivity in terms of slow growth and low recruitment potential. Stocks in better condition display significantly higher weights at age 4 than stocks in poor condition. The a coefficients (function’s slopes) obtained from standardised Ricker’s recruitment–spawning stock biomass (SSB) relationships were defined as indicators for the recruitment potential of stocks. These a coefficients were found to be positively correlated with the mean condition factor of the 10 stocks analysed. This indicates that stocks consisting of individuals in poor condition appear to be very susceptible to reduced recruitment at low SSB, while the stocks that consist of fish in good condition seem to behave more robustly with a higher probability of good recruitment at low SSB. The positive effect of the cod condition on their reproductive potential generally implies that the stocks in good condition in the temperate regions of the northeast and west Atlantic can sustain higher exploitation rates than stocks in poor condition in the colder regimes of the northwest Atlantic (Greenland, Labrador and Grand Bank). This is confirmed by the positive relationship established between the estimated biological management reference points Fmed and the mean cod condition factors, as well as by the recent status of these stocks.  相似文献   


5.
Atlantic cod, Gadus morhua, harvested in US waters are currently managed as a Gulf of Maine stock and as a stock comprising Georges Bank and southern New England populations. Over the past two and a half decades, success of age‐1 recruitment to the Gulf of Maine stock has varied by more than an order of magnitude. To investigate the hypothesis that this variation is related to variation in the transport of larval cod to nursery areas, we carried out model simulations of the movement of planktonic eggs and larvae spawned within the western Gulf of Maine during spring spawning events of 1995–2005. Results indicate that the retention of spring‐spawned cod, and their transport to areas suitable for early stage juvenile development, is strongly dependent on local wind conditions. Larval cod retention is favored during times of downwelling‐favorable winds and is least likely during times of upwelling‐favorable winds, during which buoyant eggs and early stage larvae tend to be advected offshore to the Western Maine Coastal Current and subsequently carried out of the Gulf of Maine. Model results also indicate that diel vertical migration of later stage larvae enhances the likelihood of retention within the western Gulf of Maine. Consistent with model results is a strong correlation between age‐1 recruitment success to the Gulf of Maine cod stock and the mean northward wind velocity measured in Massachusetts Bay during May. Based on these findings, we propose a wind index for strong recruitment success of age‐1 cod to the Gulf of Maine stock.  相似文献   

6.
Despite management practices to achieve sustainability, commercial landings for Florida spiny lobster (Panulirus argus) have experienced a drastic decline (57%) since 2000. This is cause for concern not only for economic reasons, but for issues of sustainability. An annual index of P. argus post‐larval (puerulus) abundance, estimated with a generalized linear model with significant mean sea‐level effects, shows a 36% decrease in annual puerulus supply since 1988. In addition, local Florida spawning stock biomass estimated from an age‐structured sequential population analysis decreased 57% since 1988. Puerulus abundance follows a highly correlated (R = 0.76) trend with a 12‐month delayed spawning stock abundance, which supports the contention that the Florida spawning population is a significant contributing factor to post‐larval recruitment in Florida. Residuals about the puerulus on spawning stock abundance function follow closely an interannual North Atlantic Oscillation Index signal. This residual effect is thought of as a secondary regional population effect on Florida puerulus recruitment. The Florida spiny lobster stock is exploited with no fishing mortality controls due to the Pan Caribbean recruitment concept adopted in Florida spiny lobster management. Therefore, the potential of recruitment overfishing exists if fishing mortality controls to protect local spawning stock abundance, such as catch quotas, are not introduced.  相似文献   

7.
In order to avoid recruitment overfishing, fish stocks must have sufficient reproductive ability. The spawning stock biomass (SSB), which ignores the value of immature fish, is widely used as an index of stock sustainability. From the perspective of sustainability, immediate reproduction, as well as future spawning, must be considered. We developed an index of long-term stock productivity, called the population reproductive potential (PRP). PRP is defined as the expected total reproductive value of the standing stock. We used PRP to assess the western Atlantic bluefin tuna (WBT) stock. The trends in SSB, numbers (N), biomass and PRP of WBT are inconsistent when compared to each other, due to fluctuation in age composition. We evaluated the long-term productivity of WBT by computer simulation and compared the result with trends in the abundance indices. The result of the computer simulation was highly consistent with the trend in the PRP. Short-term trends in SSB and N often do not reflect long-term stock trends, because they are highly sensitive to age-composition dynamics. The PRP is useful for evaluating stock trends, especially when the age composition is unstable.  相似文献   

8.
The introduction of 200 n.m. exclusive economic zones (EEZs) in the late 1970s required increased collaboration among neighbouring coastal states to manage transboundary and straddling fish stocks. The established agreements ranged from bilateral to multilateral, including high‐seas components, as appropriate. However, the 1982 United Nations Convention on the Law of the Sea does not specify how quotas of stocks crossing EEZs should be allocated, nor was it written for topical scenarios, such as climate change with poleward distribution shifts that differ across species. The productive Northeast Atlantic is a hot spot for such shifts, implying that scientific knowledge about zonal distribution is crucial in quota negotiations. This diverges from earlier, although still valid, agreements that were predominately based on political decisions or historical distribution of catches. The bilateral allocations for Barents Sea and North Sea cod remain robust after 40 years, but the management situation for widely distributed stocks, as Northeast Atlantic mackerel and Norwegian spring‐spawning herring, appears challenging, with no recent overall agreements. Contrarily, quotas of Northern hake are, so far, unilaterally set by the EU despite the stock's expansion beyond EU waters into the northern North Sea. Negotiations following the introduction of EEZs were undertaken at the end of the last cooler Atlantic Multidecadal Oscillation (AMO) period, that is, with stock distributions generally in a southerly mode. Hence, today's lack of management consensus for several widely distributed fish stocks typically relates to more northerly distributions attributed to the global anthropogenic signal accelerating the spatial effect of the current warmer AMO.  相似文献   

9.
Recruitment dynamics are challenging to assess or predict because of the many underlying drivers that vary in their relevance over time and space. Stock size, demographic and trait composition, condition and distribution of spawning fish and the spatio‐temporal dynamics of trophic and environmental interactions all influence recruitment processes. Exploring common patterns among stocks and linking them to potential drivers may therefore provide insights into key mechanisms of recruitment dynamics. Here, we analysed stock‐recruitment data of 64 stocks from the north‐east Atlantic Ocean for common trends in variation and synchrony among stocks using correlation, cluster and dynamic factor analyses. We tested common trends in recruitment success for relationships with large‐scale environmental processes as well as stock state indicators, and we explored links between recruitment success and demographic, environmental and ecological variables for a subset of individual stocks. The results revealed few statistically significant correlations between stocks but showed that underlying common trends in recruitment success are linked to environmental indices and management indicators. Statistical analyses confirmed previously suggested relationships of environmental–ecological factors such as the subpolar gyre and Norwegian coastal current with specific stocks, and indicated a large relevance of spawning stock biomass and demographics, as well as predation, whereas other suggested relationships were not supported by the data. Our study shows that despite persistent challenges in determining drivers of recruitment due to poor data quality and unclear mechanisms, combining different data analysis techniques can improve our understanding of recruitment dynamics in fish stocks.  相似文献   

10.
Two approaches were used to qualify observed variability in Greenland cod (Gadus morhua) recruitment. In the first analysis, we used the linear trend of the Greenland cod recruitment time series and climatic variables, such as air temperatures from the Denmark Strait and wind conditions off East Greenland and Southwest Greenland, to explain the interannual variation in cod recruitment off Greenland. The model resulting from this ‘trend/environmental approach’, explained 79% of the interannual variation in cod recruitment off Greenland. In the second, analytical approach, the ‘regime approach’, multiple linear regression models were used, with the input data being the time series of cod recruitment and spawning stock biomass (SSB) from Iceland and Greenland, sea surface and air temperatures around Greenland, and zonal wind components between Iceland and Greenland. Model results indicated that, during the decades between 1950 and 1990, there were three different cause–effect regimes which significantly influenced the variability of cod recruitment. The three regimes included: (a) the 1950s and 1960s, a regime with favorable sea surface temperatures and a self‐sustaining cod stock off Greenland with high SSB that produced a series of above‐average, strong year classes; (b) the 1970s and 1980s, a regime of declining SSB and recruitment, with recruitment dependent on advection from Iceland; and (c) the 1990s, when the advective potential for recruitment from the Icelandic cod stock was the only available source for replenishment of the Greenland cod stocks, because cod recruitment in Greenland waters was negligible. The three models explained 76–77% of the observed interannual variation in cod recruitment off Greenland. Both approaches suggested that advective factors were the dominant influences for cod recruitment in the ‘Iceland–Greenland System’.  相似文献   

11.
We applied a physiological individual‐based model for the foraging and growth of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae, using observed temperature and prey fields data from the Irish Sea, collected during the 2006 spawning season. We used the model to estimate larval growth and survival and explore the different productivities of the cod and haddock stocks encountered in the Irish Sea. The larvae of both species showed similar responses to changes in environmental conditions (temperature, wind, prey availability, daylight hours) and better survival was predicted in the western Irish Sea, covering the spawning ground for haddock and about half of that for cod. Larval growth was predicted to be mostly prey‐limited, but exploration of stock recruitment data suggests that other factors are important to ensure successful recruitment. We suggest that the presence of a cyclonic gyre in the western Irish Sea, influencing the retention and/or dispersal of larvae from their spawning grounds, and the increasing abundance of clupeids adding predatory pressure on the eggs and larvae; both may play a key role. These two processes deserve more attention if we want to understand the mechanisms behind the recruitment of cod and haddock in the Irish Sea. For the ecosystem‐based management approach, there is a need to achieve a greater understanding of the interactions between species on the scale a fish stock is managed, and to work toward integrated fisheries management in particular when considering the effects of advection from spawning grounds and prey–predator reversal on the recovery of depleted stocks.  相似文献   

12.
The reproductive success of marine ectotherms is especially vulnerable in warming oceans due to alterations in adult physiology, as well as embryonic and larval survival prospects. These vital responses may, however, differ considerably across the species' geographical distribution. Here we investigated the life history, focusing on reproductive ecology, of three spatially distant populations (stocks) of Atlantic cod (Gadus morhua, Gadidae) (50–80° N), in the Irish/Celtic Seas-English Channel Complex, North and Barents Seas, under past and projected climate. First, experimental tracking of spawning behaviour evidenced that the ovulation cycle is highly distressed at ≥9.6 (±0.25)°C (Tup). This knife-edge threshold resulted in erratic spawning frequencies, whereas vitellogenin sequestration remained unaffected, indicating endocrine rather than aerobic scope constraints. Cod in the Celtic Sea-English Channel are, therefore, expected to show critical stock depensation over the next decades as spawning grounds warm above Tup, with Irish Sea cod subsequently at risk. Second, in the relatively cooler North Sea, the northward retraction of Calanus finmarchicus (Calanidae) and Para-Pseudocalanus spp. (Clausocalanidae) (1958–2017) limit cod larvae feeding opportunities, particularly in the southernmost subarea. However, the contrasting increase in Calanus helgolandicus (Calanidae) does not counteract this negative effect, likely because cod larvae hatch ahead of its abundance peaks. Overfishing again comes as a twin effect. Third, in the still relatively cold Barents Sea, the sustainably harvested cod benefit from improved food conditions in the recent ice-free polar region but at the energetic cost of lengthier and faster spawning migrations. Consequently, under climate change local stocks are stressed by different mechanistic factors of varying management severity.  相似文献   

13.
Assumptions about the future productivity of a stock are necessary to calculate sustainable catches in fisheries management. Fisheries scientists often assume the number of young fish entering a population (recruitment) is related to the biomass of spawning adults and that recruitment dynamics do not change over time. Thus, managers often use a target biomass based on spawning biomass as the basis for calculating sustainable catches. However, we show recruitment and spawning biomass are not positively related over the observed range of stock sizes for 61% of 224 stocks in the RAM Legacy Stock Assessment Database. Furthermore, 85% of stocks for which spawning biomass may not drive recruitment dynamics over the observed ranges exhibit shifts in average recruitment, which is often used in proxies for target biomasses. Our results suggest that the environment more strongly influences recruitment than spawning biomass over the observed stock sizes for many stocks. Management often endeavours to maintain stock sizes within the observed ranges, so methods for setting management targets that include changes within an ecosystem may better define the status of some stocks, particularly as climate changes.  相似文献   

14.
A paradigm of fisheries science holds that spawning stock biomass (SSB) is directly proportional to total egg production (TEP) of fish stocks. This “SSB–TEP proportionality” paradigm has been a basic premise underlying the spawner–recruitment models for fisheries management and numerous studies on recruitment mechanisms of fish. Studies on maternal effects on reproductive potential of a stock have progressed during the last few decades, leading to doubt concerning the paradigm. Nonetheless, a direct test of the paradigm at multidecadal scales has been difficult because of data limitations in the stock assessment systems worldwide. Here, we tested the paradigm for marine fish based on a novel combination of two independent 38‐year time series: fishery‐dependent stock assessment data and fishery‐independent egg survey data. Through this approach, we show that the SSB–TEP proportionality is distorted by density dependence in total egg production per spawner individual (TEPPS) or spawner unit weight (TEPPSW) at a multidecadal scale. The TEPPS/TEPPSW exponentially declined with biomass and thus was density‐dependent for Japanese sardine, a small pelagic species exhibiting a high level of population fluctuation, in the western North Pacific. By contrast, the TEPPS/TEPPSW was sardine‐density‐dependent for Japanese anchovy, another small pelagic species exhibiting a moderate level of population fluctuation well‐known for being out of phase with sardine. Our analysis revealed intraspecific (sardine) and interspecific (anchovy) density dependence in TEPPS/TEPPSW, which was previously unaccounted for in spawner–recruitment relationships. Such density‐dependent effects at the time of spawning should be considered in fisheries management and studies on recruitment mechanisms.  相似文献   

15.
Different stock–recruitment models were fitted to North Atlantic albacore (Thunnus alalunga) recruitment and spawning stock biomass data. A classical density dependence hypothesis, a recent environmental‐dependence hypothesis and a combination of both were considered. For the latter case, four stock–environment–recruitment models were used: Ricker, Beverton‐Holt, Deriso's General Model (modified to take into account environmental effects) and conditioned Neural Networks. Cross‐validation analysis showed that the modified Deriso model had the best predictive capability. It detected an inverse effect of the North Atlantic Oscillation (NAO) on recruitment, a Ricker‐type behaviour with density dependent overcompensation when environmental conditions are unfavourable and a Beverton–Holt‐type behaviour towards an asymptotic recruitment carrying capacity with favourable environmental conditions. The Neural Network model also detected that under favourable environmental conditions high spawning stock biomass does not necessarily have a depensatory effect on recruitment. Moreover, they suggest that under extremely favourable environmental conditions, albacore recruitment could increase well above the asymptotic carrying capacity predicted by Beverton–Holt‐type models. However, the general decrease in spawning stock biomass in recent years and increasing NAO trends suggest that there is low probability of exceptionally large recruitment in the future and instead there is a danger of recruitment overfishing.  相似文献   

16.
Is there a genetic basis to growth in Atlantic cod?   总被引:4,自引:0,他引:4  
There is still much disagreement and debate about whether or not genetically based growth differences occur in Atlantic cod, and there is evidence on both sides. In this review, data on genetically based growth differences in cod will be presented to shed light on this hypothesis. Motivated by the hypothesis that growth patterns may reflect specific genotype adaptations, we review stock‐specific responses on growth. An example of genetically based differences between the population units at two spawning localities off south Iceland is discussed. Here, significant differences in growth performance of the different SypI genotypes were found. Also, the cod sampled at Loftstaðahraun displayed higher mean weight and length compared to the cod from Kantur indicating that these population units may display different life histories. Other studies have shown conflicting results depending on which side of the Atlantic the problem has been investigated. We propose that a common‐garden meta‐analysis with several cod stocks from both sides of the Atlantic is needed to give any reasonable answer to the question of genetically based growth differences. Until such studies have been conducted, it is premature to conclude one way or the other. In this review, we have not tried to quantify how large the environmental part of growth regulation versus the genetic part is, as this information is not available in the published literature on cod. Based on recent research on two flatfish species (turbot and Atlantic halibut), approximately 30% of growth variation is caused by genetical factors, but it remains to be seen if this is similar in cod. A fruitful way to continue this research might be to conduct controlled experiments, where performance (growth, food intake, feed conversion efficiency, feeding behaviour, etc.) and environmental factors (e.g. temperature, oxygen, photoperiod, predation risk, food availability) are studied simultaneously for different genotypes and different stocks.  相似文献   

17.
How climatic variability and anthropogenic pressures interact to influence recruitment is a key factor in achieving sustainable resource management. However, the combined effects of these pressures can make it difficult to detect non‐stationary interactions or shifts in the relationships with recruitment. Here we examine the links between climate and Irish Sea cod recruitment during a period of declining spawning stock biomass (SSB). Specifically, we test for a shift in the relationship between recruitment, SSB and climate by comparing an additive (generalized additive model, GAM) and non‐additive threshold model (TGAM). The relationship between recruitment success, SSB and the climatic driver, sea surface temperature, was best described by the TGAM, with a threshold identified between recruitment and SSB at approximately 7900 t. The analysis suggests a threshold shift in the relationship between recruitment and SSB in Irish Sea cod, with cod recruitment being more sensitive to climatic variability during the recent low SSB regime.  相似文献   

18.
Data from 40 published studies of the diet composition of larval and juvenile cod (Gadus morhua) from around the northern North Atlantic were summarized to assess generic patterns in ontogenetic and regional variability in the key prey. The results showed that larvae at the northern edge of the latitudinal range of cod depend primarily on development stages of the copepod Calanus finmarchicus, whilst those at the southern edge depend on Para‐ and Pseudocalanus species. Juvenile cod preyed on a wider range of taxa than larvae, but euphausiids were the main target prey. Analysis of regional variations in the relative abundances of C. finmarchicus and Para/Pseudocalanus spp. in the plankton, as estimated by the continuous plankton recorder (CPR) surveys, showed a similar geographical pattern to the larval cod stomach contents. Comparison of CPR data from the 1960s and 70s with data from the 1990s showed that the boundary between C. finmarchicus and Para/Pseudocalanus spp. dominance has shifted northwards on both sides of the Atlantic, whilst the abundance of euphausiids in the southern cod stock regions has declined. The results are discussed in relation to regional differences in the response of cod stocks to climate variability.  相似文献   

19.
Fish populations may spawn a vast number of offspring, while only a small and highly variable fraction of a new cohort survives long enough to enter into the fisheries as recruits. It is intuitive that the size and state of the spawning stock, the adult part of the fish population, is important for recruitment. Additionally, environmental conditions can greatly influence survival through vulnerable early life stages until recruitment. To understand what regulates recruitment, an essential part of fish population dynamics, it is thus necessary to explain the impact of fluctuations in both spawning stock and environment, including interactions. Here, we examine if the connection between the environment and recruitment is affected by the state of the spawning stock, including biomass, mean age and age diversity. Specifically, we re-evaluate the hypothesis stating that recruitment from a spawning stock dominated by young fish and few age classes is more vulnerable to environmental fluctuations. We expand upon earlier work on the Barents Sea stock of Atlantic cod, now with data series extended in time both backwards and forwards to cover the period 1922–2019. While our findings are correlative and cannot prove a specific cause and effect mechanism, they support earlier work and strengthen the evidence for the hypothesis above. Furthermore, this study supports that advice to fisheries management should include considerations of environmental status.  相似文献   

20.
Synthesis studies of fish stocks worldwide suggest improving status of mainly target species that are fully assessed. Other analyses, primarily based on catch data alone, but which include a wider range of species as well as bycatch, present a different view. Catch‐only analyses could be more robust if fishery‐independent data were used and discards accounted for. We develop a model that uses only survey biomass at length and landings data to estimate fishing mortality, spawning stock biomass (SSB) and discards. An analysis of species from the North Sea shows the model results compare well with most fully assessed stocks. When applied to bycatch species with limited data, trends in fishing mortality and SSB typically reflect those of the target species. In the last decade, mean fishing mortality rates have tended to decline, while mean SSB has increased. Despite increasing SSB, recent mean recruitment appears to have been lower than previously which may limit future biomass recovery. Species usually associated with more northerly distributions appear to show the greatest effect of weaker recruitment, which may be linked to climate. Estimated discards have tended to decline in magnitude as a result of reduced fishing mortality and associated lower total catches. The model offers a simple way to use both landings and survey data to obtain more detailed population trends for data limited species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号