首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective To assess the agreement between three measurements of arterial oxygen saturation (SpO2, SaO2 and ScO2) in anesthetized cynomolgus monkeys. Study Design Prospective study. Animals Eleven mature, male cynomolgus monkeys (Macaca fasicularis). Methods Monkeys were anesthetized with intramuscular ketamine followed by intravenous propofol. The trachea of each was intubated and the lungs ventilated. Arterial oxygen saturation was measured with a Nonin 8500 V pulse oximeter, using a lingual clip on the cheek. Arterial blood samples were taken from an indwelling catheter. Inspired oxygen concentration was varied from 12 to 20%, and 88 paired arterial blood samples and saturation measurements were taken. Arterial oxygen saturation in the blood samples was measured using a cooximeter. The saturation was also calculated from the arterial oxygen tension using the Adair equation. The results were compared using Bland and Altman's method. Results The pulse oximeter readings were 2.7% higher than that of the cooximeter, with a limit of agreement of ?3.9 to 9.3%. The pulse oximeter readings were 1.8% higher than the calculated saturation, with a limit of agreement of ?6.5% to 10.1%. The cooximeter readings were 0.9% lower than the calculated saturation, with a limit of agreement of ?5.6% to 3.8%. Conclusions The agreement between SpO2 and other measurements of arterial oxygen saturation in this study is typical for this technique. The bias and limits of agreement are consistent with reports in other species. Clinical relevance The Nonin 8500 V is a useful pulse oximeter for clinical use in primates.  相似文献   

2.
ObjectiveTo compare high definition oscillometry (HDO) to invasive blood pressure measurement in anaesthetized dogs.Study designProspective, clinical trial.AnimalsFifty dogs weighing 1.95–79 kg (mean 23.5 kg).Materials and methodsAnaesthetic and peri–anaesthetic management was chosen according to each dog's physical status and anaesthetist's preference. Direct arterial blood pressure measurements were performed using a catheter placed in the dorsal pedal artery and an electronic pressure transducer connected to a multiparameter monitor. Non–invasive blood pressure measurements were performed using an appropriately sized cuff placed around the tail base. Comparisons between the two methods were made using Bland and Altman plots. The data are reported as mean bias (lower, upper limits of agreement). Further analysis was performed after separating the data into the following categories based on invasive mean arterial blood pressure (MAP): high (MAP > 100 mmHg), medium (70 mmHg < MAP < 100 mmHg) and low (MAP < 70 mmHg) blood pressure (BP). The two methods were compared as used clinically.ResultsEight hundred measurement pairs for invasive and HDO BP readings were compared. Overall, the HDO measured lower values for SAP and DAP but higher for MAP than the invasive method. The lowest bias (upper, lower limits of agreement) were obtained for MAP, ?1 (?22, 19) mmHg. The biggest discrepancy between the methods was reflected by a large bias (limits of agreement) 5 (?34, 45) mmHg, was for SAP. The results for DAP were between those for SAP and MAP with a bias (limits of agreement) of 3 (?20, 27) mmHg. When the values were separated into the pressure range categories the HDO measured higher in the high, medium and low BP groups, with the exception of SAP in the low BP group.ConclusionsWhen considering the mean bias, the accuracy of HDO compared well with direct arterial blood pressure, but the precision was poor, as determined by wide limits of agreement.Clinical relevanceUsing trends and serial measurements rather than a single measurement for clinical decision making is recommended with both methods, when used as reported here.  相似文献   

3.
ObjectiveTo compare the accuracy of transcutaneous (tc) to arterial partial pressure of carbon dioxide (PaCO2) and partial pressure of oxygen (PaO2) in anesthetized rabbits.Study designProspective, randomized, experimental study.AnimalsEight healthy adult female New Zealand white rabbits weighing 4.05 ± 0.30 kg.MethodsIsoflurane anesthetized rabbits received six treatments in random order; PaCO2 < 35, 35-45, and >45 mmHg and PaO2 < 80, 100-200, >200 mmHg. Arterial and transcutaneous measurements were taken after 15 minutes of stabilization at each condition. Linear regression, correlation and Bland-Altman analysis were performed to compare PtcCO2 to PaCO2 and PtcO2 to PaO2.ResultsOver a range of measured PaCO2 values from 21 to 67 mmHg (n = 24) mean bias for PtcCO2 was -1 mmHg and the 95% limits of agreement were -7 to 5 mmHg. The correlation between PtcCO2 and PaCO2 was strong with R2 value of 0.9454. Over the entire range of measured PaO2 values (46-508 mmHg) mean bias for PtcO2 was -61 mmHg and the 95% limits of agreement were -226 to 104 mmHg. Correlation was poor with R2 = 0.5969. Comparing PtcO2 to PaO2 over a narrower range [PaO2 < 150 mmHg (n = 13)] improved the correlation, with an R2 value of 0.8518, mean bias of -7 mmHg and 95% limits of agreement from -33 to 19 mmHg.Conclusions and clinical relevanceIn healthy anesthetized rabbits, PtcCO2 closely approximated PaCO2. In contrast PtcO2 underestimated PaO2, particularly at high values. The PtcCO2 sensor may be a useful noninvasive way to assess adequacy of ventilation in anesthetized rabbits.  相似文献   

4.
ObjectiveTo evaluate agreement between end-tidal carbon dioxide (Pe′CO2) and PaCO2 with sidestream and mainstream capnometers in mechanically ventilated anesthetized rabbits, with two ventilatory strategies.Study designProspective experimental study.AnimalsA total of 10 New Zealand White rabbits weighing 3.6 ± 0.3 kg (mean ± standard deviation).MethodsRabbits anesthetized with sevoflurane were intubated with an uncuffed endotracheal tube (3.0 mm internal diameter) and adequate seal. For Pe′CO2, the sidestream capnometer sampling adapter or the mainstream capnometer was placed between the endotracheal tube and Bain breathing system (1.5 L minute–1 oxygen). PaCO2 was obtained from arterial blood collected every 5 minutes. A time-cycled ventilator delivered an inspiratory time of 1 second and 12 or 20 breaths minute–1. Peak inspiratory pressure was initially set to achieve Pe′CO2 normocapnia of 35–45 mmHg (4.6–6.0 kPa). A total of five paired Pe′CO2 and PaCO2 measurements were obtained with each ventilation mode for each capnometer. Anesthetic episodes were separated by 7 days. Agreement was assessed using Bland-Altman analysis and linear mixed models; p < 0.05.ResultsThere were 90 and 83 pairs for the mainstream and sidestream capnometers, respectively. The mainstream capnometer underestimated PaCO2 by 12.6 ± 2.9 mmHg (proportional bias 0.44 ± 0.06 mmHg per 1 mmHg PaCO2 increase). With the sidestream capnometer, ventilation mode had a significant effect on Pe′CO2. At 12 breaths minute–1, Pe′CO2 underestimated PaCO2 by 23.9 ± 8.2 mmHg (proportional bias: 0.81 ± 0.18 mmHg per 1 mmHg PaCO2 increase). At 20 breaths minute–1, Pe′CO2 underestimated PaCO2 by 38.8 ± 5.0 mmHg (proportional bias 1.13 ± 0.10 mmHg per 1 mmHg PaCO2 increase).Conclusions and clinical relevanceBoth capnometers underestimated PaCO2. The sidestream capnometer underestimated PaCO2 more than the mainstream capnometer, and was affected by ventilation mode.  相似文献   

5.
Objective: To collate canine cardiopulmonary measurements from previously published and unpublished studies in instrumented, unsedated, normovolemic and moderately hypovolemic dogs. Design: Collation of data obtained from original investigations in our research laboratory. Setting: Research laboratory, School of Veterinary Medicine. Subjects: Sixty‐eight dogs. Interventions: Subjects were percutaneously instrumented with an arterial catheter and a thermodilution cardiac output catheter. A femoral artery catheter was percutaneously placed for blood removal. Measurements and main results: Body weight, arterial and mixed‐venous pH and blood gases, arterial, pulmonary arterial, pulmonary artery occlusion, and central venous blood pressure, cardiac output, and core body temperature were measured. Body surface area, bicarbonate concentration, standard base excess, cardiac index (CI), stroke volume, systemic and pulmonary vascular resistance, left and right ventricular work and stroke work indices, left and right rate‐pressure product, alveolar PO2, alveolar–arterial PO2 gradient, arterial and mixed‐venous and pulmonary capillary oxygen content, oxygen delivery, oxygen consumption, oxygen extraction, venous admixture, arterial and venous blood carbon dioxide content, arterial–venous carbon dioxide gradient, carbon dioxide production were calculated. In 68 dogs, hypovolemia sufficient to decrease mean arterial blood pressure (ABPm) to an average of 62 mmHg, was associated with the following changes: arterial partial pressure of carbon dioxide (PaCO2) decreased from 40.0 to 32.9 mmHg; arterial base deficit (BDa) increased from ?2.2 to ?6.3 mEq/L; lactate increased from 0.85 to 10.7 mm /L, and arterial pH (pHa) did not change. Arterial partial pressure of oxygen (PaO2) increased from 100.5 to 108.3 mmHg while mixed‐venous PO2 (PmvO2) decreased from 49.1 to 34.1 mmHg. Arterial and mixed‐venous oxygen content (CaO2 and CmvO2) decreased from 17.5 to 16.5 and 13.8 to 9.6 mL/dL, respectively. The alveolar–arterial PO2 gradient (A‐a PO2) increased from 5.5 to 8.9 mmHg while venous admixture decreased from 2.9% to 1.4%. The ABPm decreased from 100 to 62 mmHg; pulmonary arterial pressure (PAPm) decreased from 13.6 to 6.4 mmHg; and pulmonary arterial occlusion pressure (PAOP) decreased from 4.9 to 0.1 mmHg. CI decreased from 4.31 to 2.02 L/min/m2. Systemic and pulmonary vascular resistance (SVRI and PVRI) increased from 1962 to 2753 and 189 to 269 dyn s/cm5, respectively. Oxygen delivery (DO2) decreased from 787 to 340 mL/min/m2 while oxygen consumption (VO2) decreased from 172 to 141 mL/min/m2. Oxygen extraction increased from 20.9% to 42.3%. Conclusions: Moderate hypovolemia caused CI and oxygen delivery to decrease to 47% and 42% of baseline. Oxygen extraction, however, doubled and, therefore, oxygen consumption decreased only to 82% of baseline.  相似文献   

6.
Objective: To determine the effect of bilateral nasal oxygen supplementation on tracheal airway and arterial blood gas parameters. Design: Original research. Setting: Research Laboratory. Animals: Eight normal dogs. Interventions: None. Measurements: Intra‐tracheal oxygen concentration and arterial oxygen partial pressure at three different oxygen flow rates given through either unilateral or bilateral nasal catheters. Main results: FIO2 and PaO2 were significantly increased with higher total oxygen flow rates, but the increase was the same whether the higher flow was delivered through one nasal catheter or divided and administered though two nasal catheters. The use of bilateral nasal catheters allowed a tracheal FIO2 as high as 0.60 with minimal patient discomfort. Conclusions: The benefit of bilateral nasal catheters for oxygen supplementation is the ability to provide high total oxygen flows with decreased risk of patient discomfort. If the desired oxygen flow can be achieved with a unilateral nasal catheter, then the only benefit of bilateral catheters is increased patient comfort. The use of bilateral nasal oxygen catheters for oxygen supplementation can result in an FIO2 that is high enough to produce oxygen toxicity with prolonged administration.  相似文献   

7.
Objective – To evaluate the tolerance of a continuous positive airway pressure (CPAP) mask in tranquilized dogs and compare PaO2 in arterial blood in dogs receiving oxygen with a regular face mask or CPAP mask set to maintain a pressure of 2.5 or 5 cm H2O. Design – Prospective, randomized clinical study. Setting – University teaching hospital. Animals – Sixteen client‐owned dogs without evidence of cardiopulmonary disease were studied. Interventions – Eight animals were randomly assigned to each of 2 treatment groups: group A received 2.5 cm H2O CPAP and group B received 5 cm H2O CPAP after first receiving oxygen (5 L/min) by a regular face mask. Animals were tranquilized with acepromazine 0.05 mg/kg, IV and morphine 0.2 mg/kg, IM. An arterial catheter was then placed to facilitate blood sampling for pHa, PaO2, and PaCO2 determinations before and after treatments. Direct mean arterial pressure, heart rate, respiratory rate, and temperature were also recorded after each treatment. Measurements and Main Results – CPAP administration was well tolerated by all animals. The mean arterial pressure, heart rate, respiratory rate, temperature, PaCO2, and pHa, did not differ at any time point between groups. Differences were seen in oxygenation; in group A, PaO2 significantly increased from a mean of 288.3±47.5 mm Hg with a standard mask to a mean of 390.3±65.5 mm Hg with the CPAP mask and in group B, PaO2 increased similarly from 325.0±70.5 to 425.2±63.4 mm Hg (P<0.05); no differences were detected between the 2 CPAP treatments. Conclusions – In healthy tranquilized dogs noninvasive CPAP is well tolerated and increases PaO2 above values obtained when using a regular face mask.  相似文献   

8.
Arterial blood samples were collected under sedation, from the femoral artery of 35 dogs suffering from laryngeal paralysis. Pre-operatively, the dogs showed a moderate degree of arterial hypoxaemia (mean PaO2 77 mmHg), with the worst affected clinically showing the most severe hypoxia. Following corrective surgery there was a significant improvement in PaO2 tensions (90 mmHg). A group of 20 control dogs were also sedated and sampled. Their mean arterial oxygen tension was 91 mmHg, indicating that the pre-operative hypoxaemia found in the dogs with laryngeal paralysis was not the result of sedation.  相似文献   

9.
ObjectiveTo evaluate the agreement between invasive blood pressure (IBP) and Doppler ultrasound blood pressure (DUBP) using three cuff positions and oscillometric blood pressure (OBP) in anesthetized dogs.Study designProspective study.AnimalsNine adult dogs weighing 14.5–29.5 kg.MethodsThe cuff was placed above and below the tarsus, and above the carpus with the DUBP and above the carpus with the OBP monitor. Based on IBP recorded via a dorsal pedal artery catheter, conditions of low, normal, and high systolic arterial pressures [SAP (mmHg) <90, between 90 and 140, and >140, respectively] were induced by changes in isoflurane concentrations and/or dopamine administration. Mean biases ± 2 SD (limits of agreement) were determined.ResultsAt high blood pressures, regardless of cuff position, SAP determinations with the DUBP underestimated invasive SAP values by more than 20 mmHg in most instances. With the DUBP, cuff placement above the tarsus yielded better agreement with invasive SAP during low blood pressures (0.2 ± 16 mmHg). The OBP underestimated SAP during high blood pressures (?42 ± 42 mmHg) and yielded better agreement with IBP for mean (MAP) and diastolic (DAP) arterial pressure measurements [overall bias: 2 ± 15 mmHg (MAP) and 0.2 ± 16 mmHg (DAP)].ConclusionsAgreement of SAP determinations with the DUBP is poor at SAP > 140 mmHg, regardless of cuff placement. Measurement error of the DUBP with the cuff placed above the tarsus is clinically acceptable during low blood pressures. Agreement of MAP and DAP measurements with this OBP monitor compared with IBP was clinically acceptable over a wide pressure range.Clinical relevanceWith the DUBP device, placing the cuff above the tarsus allows reasonable agreement with IBP obtained via dorsal pedal artery catheterization. Only MAP and DAP provide reasonable estimates of direct blood pressure with the OBP monitor evaluated.  相似文献   

10.
Objective: The objective of this study was to determine the PO2 at 50% hemoglobin oxygenation (P50) of feline hemoglobin (Hb). Design: Prospective in vitro laboratory study. Setting: Research laboratory. Animals: Blood from 10 healthy cats. Interventions: Individual blood samples were equilibrated with calibrated gases of 95, 21, 8, 5, 4, and 2.5% oxygen for tonometric analysis. Measurements: Partial pressure of oxygen (PO2), oxygen content, oxyhemoglobin saturation, methemoglobin (MetHb), carboxyhemoglobin (COHb), Hb, packed cell volume, hydrogen ion concentration (pH), and partial pressure of carbon dioxide (PCO2) were measured in duplicate for each blood sample by tonometry. The P50 was calculated from both PO2/oxyhemoglobin saturation and PO2/oxygen content (per gram of Hb) curves. Main results: The P50 from the PO2/oxyhemoglobin saturation curve was 35.6 mmHg and from the PO2/oxygen content (per gram of Hb) curve was 36.2 mmHg. Conclusions: The oxyhemoglobin dissociation curve for the cat is shifted to the right, and thus, feline Hb has lower oxygen affinity compared with human and canine Hb.  相似文献   

11.
ObjectiveTo assess agreement between carotid arterial pressure and auricular arterial, thoracic limb Doppler or thoracic limb oscillometric blood pressure measurements.Study designProspective experimental study.AnimalsSix adult New Zealand white rabbits.MethodsRabbits were anesthetized with isoflurane in oxygen at 1, 1.5 and 2 MAC on two separate occasions. Catheters in the auricular and the contralateral external carotid artery were connected to calibrated pressure transducers via non-compliant tubing. Inflatable cuffs of width equal to approximately 40% of the limb circumference were placed above the carpus on both thoracic limbs with a Doppler transducer placed distal to the cuff on one. Systolic (SAP) and mean (MAP) arterial blood pressure measurements were obtained at each dose, on each occasion. Agreement between measurement techniques was evaluated by repeated measures Bland Altman analysis with carotid pressure as the reference. Variation in bias over the measurement range was evaluated by regression analysis.ResultsCarotid MAP and SAP ranged from 20 to 65 mmHg and 37 to 103 mmHg respectively. Bias and 95% limits of agreement for auricular and oscillometric MAP were 7 (0–14) and ?5 (?21–11) mmHg, respectively, and for auricular, oscillometric and Doppler SAP were 23 (8–37), ?2 (?24–20) and 13 (?14–39) mmHg, respectively. Bias varied significantly over the measurement range (p < 0.001) for all three SAP techniques but not for MAP measurements.Conclusions and clinical relevanceLimits of agreement for all measurements were large but less so for MAP than SAP. Variation in bias with SAP should be considered when using these measurements clinically.  相似文献   

12.
Objective: To determine the cardiovascular effects of desflurane in dogs following acute hemorrhage. Design: Experimental study. Animals: Eight mix breed dogs. Interventions: Hemorrhage was induced by withdrawal of blood until mean arterial pressure (MAP) dropped to 60 mmHg in conscious dogs. Blood pressure was maintained at 60 mmHg for 1 hour by further removal or replacement of blood. Desflurane was delivered by facemask until endotracheal intubation could be performed and a desflurane expiratory end‐tidal concentration of 10.5 V% was maintained. Measurements and main results: Systolic, diastolic, and mean arterial blood pressure (SAP, DAP and MAP), central venous pressure (CVP), cardiac output (CO), stroke volume (SV), cardiac index (CI), systemic vascular resistance (SVR), heart rate (HR), respiratory rate (RR), partial pressure of carbon dioxide in arterial blood (PaCO2), and arterial pH were recorded before and 60 minutes after hemorrhage, and 5, 15, 30, 45 and 60 minutes after intubation. Sixty minutes after hemorrhage, SAP, DAP, MAP, CVP, CO, CI, SV, PaCO2, and arterial pH decreased, and HR and RR increased when compared with baselines values. Immediately after intubation, MAP and arterial pH decreased, and PaCO2 increased. Fifteen minutes after intubation SAP, DAP, MAP, arterial pH, and SVR decreased. At 30 and 45 minutes, MAP and DAP remained decreased and PaCO2 increased, compared with values measured after hemorrhage. Arterial pH increased after 30 minutes of desflurane administration compared with values measured 5 minutes after intubation. Conclusions: Desflurane induced significant changes in blood pressure and arterial pH when administered to dogs following acute hemorrhage.  相似文献   

13.
Background: Central venous pressure (CVP) customarily has been measured in veterinary patients with water manometry. However, many institutions are now using stallside electronic monitors in both anesthesia and intensive care units for many aspects of patient monitoring. Hypothesis: Electronic stall side monitoring devices will agree with water manometry for measurement of CVP in horses. Animals: Ten healthy adult horses from the university research herd. Methods: Central venous catheters were placed routinely, and measurements were obtained in triplicate with each of the 3 methods every 12 hours for 3 days. Data were analyzed by a Lin concordance correlation coefficient and modified Bland‐Altman limits of agreement, with all devices compared pairwise. Results: Compared with water manometry, agreement (bias) of the Passport was ?1.94 cmH2O (95% limits of agreement, ?8.54 to 4.66 cmH2O) and of the Medtronic was ?1.83 cmH2O (95% limits of agreement, ?8.60 to 4.94 cmH2O). When compared with the Passport, agreement of the data obtained with the Medtronic was 0.27 cmH2O (95% limits of agreement, ?4.39 to 4.93 cmH2O). Conclusions and Clinical Importance: These data show that both electronic monitors systematically provide measurements that are approximately 2 cmH2O lower than water manometry, but differences between the 2 electronic devices are small enough (< 0.5 cmH2O) to be considered clinically unimportant. This discrepancy should be taken into account when interpreting data obtained with these monitoring devices.  相似文献   

14.
ObjectiveTo compare noninvasive (NIBP) with invasive blood pressure (IBP) measurements from a Datex S/5 Compact monitor in anaesthetized adult dogs, and to evaluate it according to the American College of Veterinary Internal Medicine (ACVIM) and the Association for the Advancement of Medical Instrumentation (AAMI) criteria.Study designProspective clinical study.AnimalsA group of 34 client-owned adult dogs.MethodsDogs were anaesthetized for different surgical procedures using different anaesthetic protocols. IBP was measured using a catheter placed in a dorsal pedal artery. A blood pressure cuff was placed over the contralateral dorsal pedal artery for NIBP measurement. Data were recorded using the Datex iCollect program, and paired readings were matched every 3 minutes for 60 minutes. Bland-Altman and error grid analyses were used to estimate the agreement between IBP and NIBP measurements, and its clinical significance, respectively. Data were reported as mean bias [lower, upper limits of agreement (LoA)].ResultsThe Datex S/5 monitor conformed to most ACVIM criteria. The correlation coefficient was less than 0.9 for systolic, diastolic, and mean arterial pressures (MAP). The best agreement between the noninvasive and invasive methods was observed for MAP, with LoA (–17 to 13 mmHg) and higher percentage of NIBP readings within 5 (55.6%), 10 (81.7%) and 20 (98.6%) mmHg of the IBP values. The Datex S/5 NIBP technology did not meet the AAMI validation criteria and less than 95% of the paired measurements were found within the green zone of the error grid analysis.Conclusions and clinical relevanceThe Datex S/5 monitor conformed to most ACVIM criteria but not with the more rigorous AAMI standards. Despite good agreement between IBP and NIBP for MAP measurements, care must be taken when using this device to guide therapeutic interventions of blood pressure in anaesthetized healthy adult dogs.  相似文献   

15.
Arterial blood gas analysis is an important diagnostic and monitoring tool for respiratory abnormalities. In human medicine, lung complications often occur as a result of liver disease. Although pulmonary complications of liver disease have not been reported in dogs, we have frequently encountered hypoxemia in dogs with liver disorders, especially extrahepatic biliary obstruction. In addition, respiratory disorders account for 20% of perioperative fatalities in dogs. Therefore, in this study, we evaluated the respiratory status in dogs with hepatobiliary disease by arterial blood gas analysis. PaO2 and PaCO2 were measured. Alveolar-arterial oxygen difference (AaDO2), the indicator of gas exchange efficiency, was calculated. Compared to healthy dogs (control group), hepatobiliary disease dogs had significantly lower PaO2 and higher AaDO2. Hypoxemia (PaO2 of ≤80 mmHg) was observed in 28/71 dogs with hepatobiliary disease. AaDO2 was higher (≥30 mmHg) than the control group range (11.6 to 26.4 mmHg) in 32/71 hepatobiliary disease dogs. By classifying type of hepatobiliary disease, dogs with extrahepatic biliary obstruction and chronic hepatitis showed significantly lower PaO2 and higher AaDO2 than in a control group. Dogs with chronic hepatitis also had significantly lower PaCO2. The present study shows that dogs with hepatobiliary disease have respiratory abnormalities more than healthy dogs. Preanesthetic or routine arterial blood gas analysis is likely beneficial to detect the respiratory abnormalities in dogs with hepatobiliary disease, especially extrahepatic biliary obstruction and chronic hepatitis.  相似文献   

16.
The cardiovascular effects following epidural injection of xylazine or isotonic saline during isoflurane anesthesia were assessed in six healthy dogs. Dogs were anesthetized with isoflurane in O2 and maintained at 2.0% end-tidal concentration. Ventilation was controlled to maintain PaCO2 at 35 to 45 mm Hg. The dorsal pedal artery was cannulated for measurement of arterial blood pressure (AP)(systolic AP, mean AP, diastolic AP) and for blood sample collection. Arterial pH and blood gas tensions (PaO2 and PaCO2) were determined. Cardiac output was measured by thermodilution. The electrocardiogram (ECG), heart rate (HR), core body temperature, central venous pressure (CVP), mean pulmonary AP, and end-tidal isoflurane concentration (ETISO) and CO2 tension (ETCO2) were monitored. Systemic vascular resistance (SVR), arterial HCO2 concentration, base balance, and cardiac index (CI) were calculated. After baseline measurements were taken, either xylazine (0.2 mg/kg) in 5 mL isotonic saline or 5 mL of isotonic saline was injected into the lumbosacral epidural space. Data were then recorded at 5, 15, 30, 45, 60, 75, 90, 105, and 120 minutes after epidural injection. Data were analyzed by two-way analysis of variance (ANOVA) for repeated measures. When significant differences were encountered, mean values were compared using Bonferroni's test. The level of significance was set at P <.05. Mean values for diastolic AP decreased at 90 and 120 minutes compared with the mean value at 15 minutes after epidural injection of xylazine. No differences were detected at any time or between treatments for HR, systolic AP, mean AP, CVP, CI, SVR, mean pulmonary AP, temperature, ETCO2, ETISO, arterial pH, PaCO2, PaO2, plasma bicarbonate concentration, or base balance. Results of this study indicate that epidural injection of xylazine (0.2 mg/kg) is associated with minimal cardiovascular side effects during isoflurane anesthesia in mechanically ventilated dogs.  相似文献   

17.
AIMS: To determine if abdominal insufflation with medical air will improve oxygenation and ventilation parameters when compared to insufflation with CO2 in xylazine-sedated sheep undergoing laparoscopic artificial insemination (AI).

METHODS: Forty-seven sheep underwent oestrus synchronisation and were fasted for 24 hours prior to laparoscopic AI. Each animal was randomised to receive either CO2 or medical air for abdominal insufflation. An auricular arterial catheter was placed and utilised for serial blood sampling. Respiratory rates (RR) and arterial blood samples were collected at baseline, after xylazine (0.1?mg/kg I/V) sedation, 2 minutes after Trendelenburg positioning, 5 minutes after abdominal insufflation, and 10 minutes after being returned to a standing position. Blood samples were collected in heparinised syringes, stored on ice, and analysed for arterial pH, partial pressure of arterial O2 (PaO2), and CO2 (PaCO2). The number of ewes conceiving to AI was also determined.

RESULTS: Repeated measures ANOVA demonstrated temporal effects on RR, PaO2, PaCO2 and arterial pH during the laparoscopic AI procedure (p<0.001), but no difference between insufflation groups (p>0.01). No sheep experienced hypercapnia (PaCO2>50?mmHg) or acidaemia (pH<7.35). Hypoxaemia (PaO2<70?mmHg) was diagnosed during the procedure in 14/22 (64%) ewes in the CO2 group compared with 8/23 (35%) ewes in the medical air group (p=0.053). Overall, 15/20 (75%) ewes in the CO2 group conceived to AI compared with 16/22 (72.7%) in the medical air group (p=0.867).

CONCLUSIONS AND CLINICAL RELEVANCE: There were no statistical or clinical differences in RR, PaO2, PaCO2, pH, or conception to AI when comparing the effects of CO2 and medical air as abdominal insufflation gases. None of the sheep experienced hypercapnia or acidaemic, yet 42% (19/45) of sheep developed clinical hypoxaemia, with a higher percentage of ewes in the CO2 group developing hypoxaemia than in the medical air group. Based on the overall analysis, medical air could be utilised as a comparable alternative for abdominal insufflation during laparoscopic AI procedures.  相似文献   

18.
ObjectiveTo evaluate agreement with central systemic arterial pressure of an oscillometer and two cuff widths placed on the thoracic or pelvic limbs.Study designProspective experimental study.AnimalsA group of nine New Zealand White rabbits weighing 3.5 ± 0.3 kg.MethodsRabbits were sedated with dexmedetomidine and midazolam, then anesthetized with ketamine and sevoflurane. The femoral artery was surgically exposed and a 20 gauge, 5 cm catheter inserted to measure systolic (SAP), mean (MAP) and diastolic (DAP) blood pressure at the iliac artery and caudal aorta junction. Adjustments of vaporizer dial and dobutamine infusion provided a range of invasive blood pressure (IBP). Two measurements of IBP were recorded during the oscillometer cycling phase, and the mean value was used in analyses. Oscillometer cuffs of bladder width 2.0 cm (S1) and 2.5 cm (S2) were placed proximal to the carpus and tarsus. Cuff width to circumference ratio was calculated. Oscillometer SAP, MAP and DAP were paired with corresponding IBP values. Agreement was assessed using linear mixed models (p < 0.05).ResultsCuff ratios for both limbs were 41% (S1 cuff) and 50% (S2 cuff) and 122–139 paired observations were obtained. There was significant limb × cuff interaction with SAP and MAP. The oscillometer overestimated SAP and MAP on the pelvic limb and underestimated SAP and MAP on the thoracic limb. For SAP, the oscillometer overestimated by constant bias (–19 ± 2 mmHg) and proportional bias (0.28 ± 0.02 mmHg per 1 mmHg increase). For MAP, the oscillometer underestimated by constant bias (4 ± 2 mmHg) and was worse with S2 on the thoracic limb. Overestimation was similar between cuffs on the pelvic limb. For DAP, the oscillometer underestimated by constant bias (15 ± 2 mmHg).Conclusions and clinical relevanceCuff S1 on the thoracic limb provided best estimation of MAP.  相似文献   

19.
Objective – To evaluate the effect of body position on the arterial partial pressures of oxygen and carbon dioxide (PaO2, PaCO2), and the efficiency of pulmonary oxygen uptake as estimated by alveolar‐arterial oxygen difference (A‐a difference). Design – Prospective, randomized, crossover study. Setting – University teaching hospital, intensive care unit. Animals – Twenty‐one spontaneously breathing, conscious, canine patients with arterial catheters placed as part of their management strategy. Interventions – Patients were placed randomly into lateral or sternal recumbency. PaO2 and PaCO2 were measured after 15 minutes in this position. Patients were then repositioned into the opposite position and after 15 minutes the parameters were remeasured. Measurements and Main Results – Results presented as median (interquartile range). PaO2 was significantly higher (P=0.001) when patients were positioned in sternal, 91.2 mm Hg (86.0–96.1 mm Hg), compared with lateral recumbency, 86.4 mm Hg (73.9–90.9 mm Hg). The median change was 5.4 mm Hg (1.1–17.9 mm Hg). All 7 dogs with a PaO2<80 mm Hg in lateral recumbency had improved arterial oxygenation in sternal recumbency, median increase 17.4 mm Hg with a range of 3.8–29.7 mm Hg. PaCO2 levels when patients were in sternal recumbency, 30.5 mm Hg (27.3–32.7 mm Hg) were not significantly different from those in lateral recumbency, 32.2 mm Hg (28.3–36.0 mm Hg) (P=0.07). The median change was ?1.9 mm Hg (?3.6–0.77 mm Hg). A‐a differences were significantly lower (P=0.005) when patients were positioned in sternal recumbency, 21.7 mm Hg (17.3–27.7 mm Hg), compared with lateral recumbency, 24.6 mm Hg (20.4–36.3 mm Hg). The median change was ?3.1 mm Hg (?14.6–0.9 mm Hg). Conclusions – PaO2 was significantly higher when animals were positioned in sternal recumbency compared with lateral recumbency, predominantly due to improved pulmonary oxygen uptake (decreased A‐a difference) rather than increased alveolar ventilation (decreased PaCO2). Patients with hypoxemia (defined as PaO2<80 mm Hg) in lateral recumbency may benefit from being placed in sternal recumbency. Sternal recumbency is recommended to improve oxygenation in hypoxemic patients.  相似文献   

20.
Cardiopulmonary effects of thoracoscopy in anesthetized normal dogs   总被引:1,自引:0,他引:1  
Objective To evaluate the effect of an open‐chest condition on oxygen delivery in anesthetized dogs. Study design Prospective, controlled experimental study. Animals Eight clinically normal adult Walker Hound dogs weighing 25.6–29.2 kg. Methods Eight anesthetized dogs underwent an open‐chest operation after the insertion of thoracoscopy cannulae in the lateral chest walls . A Swan Ganz catheter was used to both measure hemodynamic parameters and obtain mixed venous blood samples for blood gas analysis. A dorsal pedal catheter was placed to both measure arterial blood pressure and obtain blood samples for blood gas analysis. Oxygen delivery index and oxygen extraction ratio were calculated. A randomized block anova for repeated measures was used to evaluate the effect of the treatment on hemodynamic and pulmonary parameters. Results Creation of an open chest did not significantly affect oxygen delivery index (DO2I; p = 0.545). It induced a significant decrease in arterial oxygen partial pressure (PaO2; p = 0.018) and arterial oxygen content (CaO2; p = 0.025). It induced a significant increase in shunt fraction (p = 0.023), physiologic dead space (p = 0.015), and alveolar‐arterial oxygen difference (p = 0.019). Arterial partial pressure of carbon dioxide (PaCO2; p = 0.766) and arterial hemoglobin oxygen saturation (SaO2; p = 0.178) were not significantly affected. Diastolic (DPAP; p = 0.050) and mean (MPAP; p = 0.033) pulmonary arterial pressures were significantly increased by opening the chest. Other hemodynamic parameters were not significantly affected. Conclusions Opening the thoracic cavity is not detrimental to hemodynamic function and oxygen delivery in normal dogs, although impaired gas exchange does occur. Clinical relevance Close monitoring of patients is recommended during open‐chest thoracoscopy as adverse effects on gas exchange can contribute to hypoxemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号