首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of long‐term application of pendimethalin in a maize–wheat rotation on herbicide persistence was investigated. Pendimethalin was applied at 1.5 kg AI ha−1 separately as one or two annual applications for five consecutive years in the same plots. Residues of pendimethalin were determined by gas chromatography. Harvest‐time residues of the herbicide decreased gradually over the years and at the end of five years less than 3% of applied pendimethalin was recovered from soil as against 18% in the first year. Residues were found distributed in the soil profile up to 90 cm depth at the end of the experiment with peak distribution of 0.03 µg g−1 in the surface layer of soil treated with 10 herbicide applications. The minimum distribution was, however, in the deepest soil (75–90 cm) profile. Some of the metabolites of pendimethalin ie dealkylated pendimethalin derivative, partially reduced derivative and cyclized product were also traced in surface and sub‐surface soils up to 90 cm. A study of the rate of degradation of pendimethalin in field‐treated soils under laboratory conditions revealed faster degradation compared to control soils. Only the surface soil (0–15 cm) showed this enhanced degradation of the herbicide, which could be due to the adaptability of the aerobic micro‐organisms to degrade pendimethalin. Microbes capable of degrading herbicide were isolated, identified and pendimethalin degradation was confirmed in nutrient broth. © 2000 Society of Chemical Industry  相似文献   

2.
Biodegradation of [ring-14C] mecoprop (2-(4-chloro-2-methylphenoxy)propionic acid) was determined in surface and sub-surface soil at concentrations of 0·0005, 0·05, 0·5, 5, 50, 500, 5000 and 25000 mg kg-1. The kinetics of mineralisation were evaluated from the mineralisation rates as a function of time and by non-linear regression analysis. In the sub-surface soil, degradation was 6–8 times slower than in surface soil, but the shape of the curves was the same in both layers. At concentrations between 0·0005 and 0·5 mg kg-1, in both surface and sub-surface soil, degradation was initially zero-order followed by first-order kinetics. At 5 to 500 mg kg-1 in surface soil and 5 to 50 mg kg-1 in sub-surface soil the degradation rate was initially either constant or decreasing followed by exponential degradation indicating increasing populations of mecoprop decomposers in the soil. At 5000 and 25000 mg kg-1 in the surface soil and at 500, 5000 and 25000 mg kg-1 in the sub-surface soil, the degradation was negligible, as determined by the percentage [14C] carbon dioxide evolved. By non-linear regression, the three-half order model was found to describe the mineralisation. © 1998 SCI  相似文献   

3.
The adsorption of carbofuran on soils from water‐methanol mixtures has been evaluated by batch shake testing. Two uncontaminated soils having different physicochemical properties were used in these experiments. The volume fraction of methanol in the liquid phase (fs) was varied from 0.25 to 1.0. Higher adsorption of carbofuran was observed in medium black (silt loam) soil than in alluvial (sandy loam) soil; calculated values of the Freundlich constant (Km) and distribution coefficient (Kd) showed that adsorption of carbofuran in both soils decreased with increase in fS values. The decreased carbofuran adsorption in methanol–water mixtures meant a greater potential of ground‐water contamination through leaching from potential sites. The data have been used to evaluate the co‐solvent theory for describing adsorption of carbofuran in methanol–water mixtures. The aqueous phase partition coefficient Kdw (mol g−1) normalized with respect to foc and the aqueous phase adsorption constant Kw for carbofuran were evaluated by extrapolating to fS = 0. © 2000 Society of Chemical Industry  相似文献   

4.
Residues of carbofuran ( 1 ) and 2,3-dihydro-3-hydroxy-2,2-dimethylbenzofuran-7-yl methylcarbamate ( 2 ) in and on mushrooms, cultivated on casing soils containing added carbofuran granular insecticide, were determined. The quantitative estimations in cleaned mushroom extracts were done on thin-layer plates using a cholinesterase inhibition method. Samples were analysed, which had been harvested at different times from cultures, to which different amounts of carbofuran were added. Residues in washed and unwashed mushroom samples were compared. Residues did not exceed 0.5 mg (carbofuran) kg?1 and 0.25 mg (compound 2 ) kg?1 for fresh unwashed mushrooms grown on casing soil treated with carbofuran granules 1 g (a.i.) m?2.  相似文献   

5.
A laboratory study was conducted to determine the degradation rates and identify major metabolites of the herbicide metsulfuron-methyl in sterile and non-sterile aerobic soils in the dark at 20°C. Both [phenyl-U-14C]- and [triazine-2-14C]metsulfuron-methyl were used. The soil was treated with [14C]metsulfuron-methyl (0.1 mg kg−1) and incubated in flow-through systems for one year. The degradation rate constants, DT50, and DT90 were obtained based on the first-order and biphasic models. The DT50 (time required for 50% of applied chemical to degrade) for metsulfuron-methyl, estimated using a biphasic model, was approximately 10 days (9–11 days, 95% confidence limits) in the non-sterile soil and 20 days (12–32 days, 95% confidence limits) in the sterile soil. One-year cumulative carbon dioxide accounted for approximately 48% and 23% of the applied radioactivity in the [phenyl-U-14C] and [triazine-2-14C]metsulfuron-methyl systems, respectively. Seven metabolites were identified by HPLC or LC/MS with synthetic standards. The degradation pathways included O-demethylation, cleavage of the sulfonylurea bridge, and triazine ring opening. The triazine ring-opened products were methyl 2-[[[[[[[(acetylamino)carbohyl]amino]carbonyl]amino] carbonyl]-amino]sulfonyl]benzoate in the sterile soil and methyl 2-[[[[[amino[(aminocarbonyl)imino]methyl] amino]carbonyl]amino]sulfonyl]benzoate in the non-sterile soil, indicating that different pathways were operable. © 1999 Society of Chemical Industry  相似文献   

6.
The depletion of zeta‐cypermethrin residues in bovine tissues and milk was studied. Beef cattle were treated three times at 3‐week intervals with 1 ml 10 kg?1 body weight of a 25 g litre?1 or 50 g litre?1 pour‐on formulation (2.5 and 5.0 mg zeta‐cypermethrin kg?1 body weight) or 100 mg kg?1 spray to simulate a likely worst‐case treatment regime. Friesian and Jersey dairy cows were treated once with 2.5 mg zeta‐cypermethrin kg?1 in a pour‐on formulation. Muscle, liver and kidney residue concentrations were generally less than the limit of detection (LOD = 0.01 mg kg?1). Residues in renal‐fat and back‐fat samples from animals treated with 2.5 mg kg?1 all exceeded the limit of quantitation (LOQ = 0.05 mg kg?1), peaking at 10 days after treatment. Only two of five kidney fat samples were above the LOQ after 34 days, but none of the back‐fat samples exceeded the LOQ at 28 days after treatment. Following spray treatments, fat residues were detectable in some animals but were below the LOQ at all sampling intervals. Zeta‐cypermethrin was quantifiable (LOQ = 0.01 mg kg?1) in only one whole‐milk sample from the Friesian cows (0.015 mg kg?1, 2 days after treatment). In whole milk from Jersey cows, the mean concentration of zeta‐cypermethrin peaked 1 day after treatment, at 0.015 mg kg?1, and the highest individual sample concentration was 0.025 mg kg?1 at 3 days after treatment. Residues in milk were not quantifiable beginning 4 days after treatment. The mean concentrations of zeta‐cypermethrin in milk fat from Friesian and Jersey cows peaked two days after treatment at 0.197 mg kg?1 and 0.377 mg kg?1, respectively, and the highest individual sample concentrations were 2 days after treatment at 0.47 mg kg?1 and 0.98 mg kg?1, respectively. © 2001 Society of Chemical Industry  相似文献   

7.
BACKGROUND: The 2,4‐D degradation ability of the microbiota of three arable Mediterranean soils was estimated. The impact of soil moisture and temperature on 2,4‐D degradation was investigated. RESULTS: The microbiota of the three soils regularly exposed to 2,4‐D were able rapidly to mineralise this herbicide. The half‐life of 2,4‐D ranged from 8 to 30 days, and maximum mineralisation of 14C‐2,4‐D ranged from 57 to 71%. Extractable 14C‐2,4‐D and 14C‐bound residues accounted for less than 1 and 15% respectively of the 14C‐2,4‐D initially added. The highest amounts of 14C‐2,4‐D bound residues were recorded in the soil with the lowest 2,4‐D‐mineralising ability. Although all three soils were able to mineralise 2,4‐D, multivariate analysis revealed that performance of this degrading microbial activity was dependent on clay content and magnesium oxide. Soil temperature affected the global structure of soil microbial community, but it had only a moderate effect on 2,4‐D‐mineralising ability. 2,4‐D‐mineralising ability was positively correlated with soil moisture content. Negligible 2,4‐D mineralisation occurred in all three soils when incubated at 10 or 15% soil moisture content, i.e. within the range naturally occurring under the Mediterranean climate of Algeria. CONCLUSION: This study shows that, although soil microbiota can adapt to rapid mineralisation of 2,4‐D, this microbial activity is strongly dependent on climatic parameters. It suggests that only limited pesticide biodegradation occurs under Mediterranean climate, and that arable Mediterranean soils are therefore fragile and likely to accumulate pesticide residues. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
Atmospheric emission of the soil fumigant 1,3‐dichloropropene (1,3‐D) is of environmental concern because of its toxicity and carcinogenicity. Thiosulfate fertilizers have been found to rapidly transform 1,3‐D in soil to non‐volatile ions which are less toxic. We investigated the use of surface application of ammonium thiosulfate (ATS) for reducing 1,3‐D volatilization. In packed soil columns, emission of 1,3‐D applied by sub‐surface injection decreased with increasing ATS application rate and the amount of water used for delivering ATS. When ATS was applied in 9 mm water at 64 g m−2, total 1,3‐D emission was reduced by 61%. The reduction was 89% when ATS was applied at 193 g m−2. Bioassays showed that ATS application did not affect the effectiveness of 1,3‐D for controlling citrus nematodes. In field plots where a 1,3‐D emulsified formulation was applied via sub‐surface drip, surface spray of ATS reduced 1,3‐D emissions by 50%, and by 71% when the surface was also covered with polyethylene film. ATS application had no effect on the efficacy of root‐knot nematode control or tomato yields. These results suggest that surface application of thiosulfate fertilizers may be a feasible and effective strategy for minimizing 1,3‐D emissions. © 2000 Society of Chemical Industry  相似文献   

9.
Tri-allate degraded faster in soil from a site (T1) that had received 1·7 kg ha?1 of tri-allate annually for 23 years than in soil from an adjacent site (TO) that had received no pesticide application. Soil from the untreated site, which had been removed to a glasshouse and treated three times per annum with tri-allate at 1·7 kg ha?1 for 7 years (T2), also showed faster degradation. Soil previously treated with tri-allate showed an increased degradation rate for carbofuran and EPTC but not for aldicarb. A further experiment, 2 years after the last treatment with tri-allate, showed that the enhanced degradation effect was still present. Degradation rates were always in the order T1 > T2 > T0 for tri-allate, EPTC and carbofuran. Half-life for degradation was reduced for tri-allate and carbofuran by approximately 40% in the previously treated soils and for EPTC by approximately 80% when compared with the previously untreated soil.  相似文献   

10.
Rates of degradation and adsorption of acetochlor [2‐chloro‐N‐ethoxymethyl‐6′‐ethylaceto‐o‐ toluidide] and terbuthylazine [N 2tert‐butyl‐6‐chloro‐N4‐ethyl‐1,3,5‐triazine‐2,4‐diamine] in a Horotiu sandy loam soil (Typic Orthic Allophanic) were determined under controlled temperature and soil moisture regimes. These were then combined with site‐specific soil properties and climatic conditions in the Pesticide Root Zone Model (PRZM‐3) to predict dissipation and leaching of the herbicides in the field. PRZM‐3 significantly under‐estimated dissipation of both herbicides in the field using parameters derived from the laboratory incubation studies. When these parameters were derived from the field trials, PRZM‐3 adequately predicted dissipation of both herbicides using a two‐rate dissipation sub‐model but under‐predicted the dissipation when a simpler single‐rate sub‐model was used. Earlier‐than‐expected appearance of both herbicides in sub‐soil layers were postulated to result from the non‐equilibrium adsorption/transport of the herbicides and preferential flow, which cannot be simulated by PRZM‐3. © 2000 Society of Chemical Industry  相似文献   

11.
The influence of 1 and 50 mg active ingredient (AI) kg-1 soil of 17 fungicides on transformations of urea nitrogen in soil was studied by determining the amounts of urea hydrolysed and the amounts of nitrate and nitrite produced when samples of two coarse-textured and two fine-textured soils were incubated aerobically for various times after treatment with urea. When applied at the rate of 1 mg AI kg-1 soil, anilazine, benomyl, captan, chloranil, mancozeb and thiram retarded urea hydrolysis in the two coarse-textured soils and maneb retarded urea hydrolysis in all four of the soils used. Most of the fungicides tested retarded nitrification of urea nitrogen in the two coarse-textured soils when applied at the rate of 1 mg AI kg-1 soil, but only etridiazole markedly retarded nitrification of urea nitrogen in all of the soils used when applied at this rate. When the fungicides were applied at the rate of 50 mg AI kg-1 soil, anilazine, captan, chloranil, fenaminosulf, folpet, maneb, mancozeb and thiram retarded urea hydrolysis in the four soils studied, and all fungicides tested except chloroneb, fenarimol and iprodione retarded nitrification of urea nitrogen in these soils. One-way analysis of variance and correlation analyses indicated that the inhibitory effects of the 17 fungicides tested on nitrification of urea nitrogen in soil increased with decrease in the organic-matter content and increase in the sand content of the soil. © of SCI.  相似文献   

12.
Surveys of inorganic bromide ion residues in tomatoes, cucumbers and selfblanching celery, commercially produced in England following soil sterilisation with bromomethane, have been carried out since 1979. The mean bromide ion level in 29 late-season cucumber samples was approximately 28 mg kg−1 and ranged up to 109 mg kg−1. Analysis of 242 tomato samples gave estimated mean bromide ion levels per plant ranging from 6 to 187 mg kg−1 in fruit picked throughout the season from seven holdings, on six of which bromomethane had been used fairly recently prior to planting. A statistically significant fall in bromide levels over the growing season was shown on four of the sites. In 38 samples of self-blanching celery, the mean bromide ion level was 104 mg kg−1 even though the mean interval between fumigation and planting was in excess of 1 year. Retail surveillance indicated that a large number of crops are likely to have bromide ion levels below 10mg kg−1.  相似文献   

13.
The hydrolysis of triasulfuron, metsulfuron‐methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH‐sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2–6.2) than under neutral and moderately alkaline conditions (8.2–9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo‐first‐order kinetics. There were no significant differences (P = 0.05) in the rate constants (k, day−1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the ‘rate constant’ on pH. The hydrolysis involving attack by neutral water was at least 100‐fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O‐demethylation of metsulfuron‐methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural alkaline soils. © 2000 Society of Chemical Industry  相似文献   

14.
A. HELWEG 《Weed Research》1987,27(4):287-296
MCPA was weakly absorbed in soils with 2.4, 3.0 and 2.9% humus. Kd-values were 0.7, 0.9 and 1.0, respectively. In soil, not previously treated with MCPA, the degradation of 0.05 mg kg?114C-MCPA followed first-order reaction kinetics whereas degradation of 5 mg kg?1 was only first-order for 2 weeks; exponentially increasing degradation rates followed indicating enrichment of the soil with MCPA decomposers. Degradation was monitored by evolution of 14CO2. The influence of temperature on degradation of MCPA (4 mg kg?1) could initially be described by Q10 values or by the Arrhenius equation. After 1 day of incubation in two field soils Q10 values were 3.3 and 2.9, respectively, between 0°C and 29°C; the activation energies were 87 and 76 kj mol?1. Exponentially increasing degradation rates followed with doubling times of about 4.0, 1.8, 1.2 and 0.6 days at 6,10, 15 and 21°C, respectively. After 51 days of incubation, at temperatures between 6°C and 29°C, about 60%14C was evolved in CO2 and only traces of MCPA were left in the soil. At 0°C and at 40°C only 1% and 10%14C, respectively, were evolved as CO2 after 51 days. 14C-MCPA (4 mg kg?1) was incubated at moisture contents from that in air-dried soil to 2.3 times field capacity. Optimum for degradation was from 0.6 to 1.2. field capacity. Degradation was very slow where water contents were below the level of wilting point and was nil in air-dried soil. In wet soil degradation was delayed, but even in water-logged soil (2.3 times field capacity) MCPA was decomposed after 4 to 5 weeks at 10°C.  相似文献   

15.
The present study investigated the arsenic (As) remediation potential of barnyard grass (Echinochloa crus‐galli L. Beauv. var. formosensis Ohwi), with a special focus on the behavior of As in the soil in comparison with rice (Oryza sativa L. cv. Nipponbare). For both plants, very little growth inhibition was observed in the As‐contaminated soil. The amount of As in the soil was reduced by the plant's uptake and the level of As in the soil water from the rice‐growing pots was remarkably lower than that in the plant‐free soil water. In the soil with the barnyard grass, the amount of As in the soil water was higher than that in the plant‐free soil water, but the amount of As in the soil and the amount of As that was adsorbed on the soil solid were reduced by the plant's uptake. At the highest As level in the soil (100 mg kg?1), 249.60 and 101.26 µg As pot?1 were taken up by the rice shoot and barnyard grass shoot, respectively, and total amounts of 1468.65 and 1060.57 µg As pot?1 were taken up by the barnyard grass and rice seedlings, respectively. At the same As level in the soil, the As concentrations were 14.99 and 37.76 µg g?1 in the shoot of barnyard grass and rice, respectively, and 486.61 and 339.32 µg g?1 in the root of barnyard grass and rice, respectively. Barnyard grass took up more As than rice, but the As concentration in the shoot of barnyard grass was lower than that in the shoot of rice. A considerable amount of As was taken up by both barnyard grass and rice, suggesting that the plant species have the potential to remediate As‐contaminated soil.  相似文献   

16.
BACKGROUND: This work was undertaken to determine the preharvest interval (PHI) of buprofezin to minimize its residues in grapes and thereby ensure consumer safety and avoid possible non‐compliance in terms of residue violations in export markets. Furthermore, the residue dynamics in three grapevine soils of India was explored to assess its environmental safety. RESULTS: Residues dissipated following non‐linear two‐compartment first + first‐order kinetics. In grapes, the PHI was 31 days at both treatments (312.5 and 625 g a.i. ha?1), with the residues below the maximum permissible intake even 1 h after foliar spraying. Random sampling of 5 kg comprising small bunchlets (8–10 berries) collected from a 1 ha area gave satisfactory homogeneity and representation of the population. A survey on the samples harvested after the PHI from supervised vineyards that received treatment at the recommended dose showed residues below the maximum residue limit (MRL) of 0.02 mg kg?1 applicable for the European Union. In soil, the degradation rate was fastest in clay soil, followed by sandy loam and silty clay, with a half‐life within 16 days in all the soils. CONCLUSION: The recommendation of the PHI proved to be effective in minimizing buprofezin residues in grapes. Thus, this work is of high practical significance to the domestic and export grape industry of India to ensure safety compliance in respect of buprofezin residues, keeping in view the requirements of international trade. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Pyrazosulfuron‐ethyl {ethyl 5‐[(4,6‐dimethoxypyrimidin‐2‐ylcarbamoyl)‐sulfamoyl]‐1‐methylpyrazole‐4‐carboxylate} is a new rice herbicide belonging to the sulfonylurea group. This study reports the translocation of 14C‐pyrazosulfuron‐ethyl to rice plants and its degradation in rice‐planted and unplanted soil. RESULTS: Pyrazosulfuron‐ethyl did not show any appreciable translocation to rice shoots, as 14C‐activity translocated to the aerial portion never exceeded 1% of the initially applied 14C‐activity over a 25 day period. Results suggested that the dissipation of pyrazosulfuron‐ethyl from soils followed first‐order kinetics with a half‐life of 5.5 and 6.9 days in rice‐planted and unplanted soils respectively. HPLC analysis of the organic extract of soil samples showed the formation of three metabolites, namely ethyl 5‐(aminosulfonyl)‐1‐methyl‐1‐H‐pyrazole‐4‐carboxylate, 5‐[({[(4,6‐dimethoxy‐2 pyrimidinyl)‐amino]‐carbonyl} amino)‐sulfonyl]‐1‐methyl‐1H‐pyrazole‐4‐carboxylic acid and 2‐amino‐4,6‐dimethoxy pyrimidine, in both rice‐planted and unplanted soils. CONCLUSION: The study indicates that pyrazosulfuron‐ethyl was a short‐lived compound in the soil and was degraded relatively faster in rice‐planted soil than in unplanted soil. The herbicide did not show any appreciable translocation to rice plants. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
BACKGROUND: A mixture of trifloxystrobin and tebuconazole is excellent in controlling both powdery and downy mildew of grapes. The objective of the present work was to study the behaviour of trifloxystrobin and tebuconazole on grape berries and soil following treatment with Nativo 75 WG, a formulation containing both fungicides (trifloxystrobin 250 + tebuconazole 500 g kg?1). This study was carried out for planned registration of this mixture for use on grapes in India. RESULTS: Initial residue deposits of trifloxystrobin and tebuconazole on grapes were below their maximum residue limit (MRL) of 0.5 and 2 mg kg?1, respectively, when Nativo 75 WG was applied at the recommended dose of 175 g product ha?1. The residues dissipated gradually to 0.02 and 0.05 mg kg?1 by 30 days, and were below the quantifiable limit of 0.01 mg kg?1 at the time of harvest (60 days after the last treatment). Trifloxystrobin and tebuconazole dissipated at a pre‐harvest interval (PHI) of 36 and 34 days, respectively, from the recommended treatment dose. The acid metabolite of trifloxystrobin, CGA 321 113, was not detected in grape berries at any point in time. Soil at harvest was free of any pesticide residues. CONCLUSION: Residue levels of both trifloxystrobin and tebuconazole were below MRLs when grapes were harvested 30 days after the last of four applications of 175 g product ha?1 (trifloxystrobin 44 g AI ha?1, tebuconazole 88 g AI ha?1) under the semi‐arid tropical climatic conditions of India. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Herbicide degradation in soils is highly temperature‐dependent. Laboratory incubations and field experiments are usually conducted with soils from the temperate climatic zone. Few data are available for cold conditions and the validation of approaches to correct the degradation rate at low temperatures representative of Nordic environments is scarce. Laboratory incubation studies were conducted at 5, 15 and 28°C to compare the influence of temperature on the dissipation of metribuzin in silt/sandy loam soils in southern and northern Norway and in a sandy loam soil under temperate climate in France. Using 14C‐labelled metribuzin, sorption and biodegradation were studied over an incubation period of 49 days. Metribuzin mineralisation and total soil organic carbon mineralisation rates showed a positive temperature response in all soils. Metribuzin mineralisation was low, but metabolites were formed and their abundance depended on temperature conditions. The rate of dissipation of 14C‐metribuzin from soil pore water was strongly dependent on temperature. In Nordic soils with low organic content, metribuzin sorption is rather weak and biodegradation is the most important process controlling its mobility and persistence.  相似文献   

20.
An immunoassay (ELISA) for analysis of metsulfuron‐methyl was evaluated as a method for quantifying residues in soil. Soil samples were extracted with phosphate buffered saline (PBS), PBS + acetone (80 + 20 by volume) or ammonium carbonate and were analyzed with both ELISA and LC‐MS. A tendency for the ELISA to overstimate the metsulfuron‐methyl content was noted and matrix effects were pronounced, particularly in PBS + acetone or ammonium carbonate extracts. Dilution of extracts before analysis improved the situation but reduced the sensitivity of the assay. Using light standard concentrations it was shown that the extracts in PBS on dilutions exhibited a curve parallel with the standard curve, indicating no significant interference due to matrix effects. A working range of 10–250 ng litre−1 was found for ELISA on this type of extracts. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号