首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一株类禽型H1N1亚型猪流感病毒的反向遗传系统的建立   总被引:1,自引:0,他引:1  
为建立H1N1亚型猪流感病毒A/swine/Jiangsu/40/2011(JS40)的反向遗传系统,本研究分别构建了JS40株8个基因节段的重组质粒,经转染293T和MDCK混合细胞,拯救出病毒R-JS40。序列测定结果表明,救获病毒与亲本病毒的核苷酸序列一致,无氨基酸变异,可以稳定传代;抗原性未发生变化;对小鼠的致病性结果显示R-JS40与JS40对小鼠的组织嗜性以及在肺脏中复制的病毒滴度基本一致。以上结果表明R-JS40保持了亲本病毒JS40的生物学特性,该病毒反向遗传操作系统的建立,为进一步开展病毒的致病分子基础以及新型疫苗的研制提供有效的技术平台。  相似文献   

2.
为建立禽源猪流感病毒A/swine/Guangdong/K6/2010(H6N6)的反向遗传系统,本试验构建了包含有GDK6毒株基因组的8个重组质粒,转染293T细胞后成功拯救出病毒r GDK6。救获病毒与亲本病毒拥有相同基因序列,其抗原性、经HI试验、TCID50试验和小鼠攻毒试验表明,救获病毒的生物学特性与对小鼠的致病性与亲本病毒一致。禽源猪流感H6N6病毒的反向遗传系统的成功建立为进一步研究H6亚型流感病毒的分子致病机理与病毒基因功能及新型疫苗创制提供了技术平台。  相似文献   

3.
为建立H7N3亚型禽流感病毒(Avian influenza virus,AIV)A/Duck/Zhejiang/690/2009(H7N3)(ZJ690)、A/Duck/Zhejiang/766/2009(H7N3)(ZJ766)反向遗传操作系统,本研究采用8质粒系统共转染293T细胞,成功拯救出了R-ZJ690和R-ZJ766 2株病毒。对获救病毒株进行全基因序列的测定,证实获救病毒的序列与亲本毒的序列完全一致。将H7N3亚型AIV亲本毒ZJ690株、ZJ766株和拯救病毒R-ZJ690株、R-ZJ766株均以106EID50剂量经鼻腔感染6周龄BALB/c小鼠,病毒均引起小鼠的体重下降但不造成死亡,感染后d4,仅在小鼠的鼻和肺中可以分离到病毒。由此可见,R-ZJ690、R-ZJ766与其亲本毒ZJ690株、ZJ766株保持了一致的生物学特性。本研究成功建立了H7N3 AIV ZJ690、ZJ766株的反向遗传操作系统,为H7亚型AIV的致病机理和跨宿主传播机制研究等奠定了基础。  相似文献   

4.
利用RT-PCR技术扩增古典H1N1亚型猪流感病毒A/Swine/Guangdong/1/2011株的8个目的基因片段,分别克隆至双向转录表达载体p BD上。将8个重组质粒纯化后共转染293T细胞,48 h后收集上清,接种MDCK细胞。当细胞出现明显病变时,收集MDCK细胞上清,其血凝效价为1:64,与原始野生株血凝效价一致;提取拯救病毒的RNA并进行8个目的片段扩增及序列分析,测序结果显示与野生株病毒相同,表明病毒拯救成功。古典H1N1亚型猪流感病毒反向遗传操作平台的成功建立,不仅为探索流感病毒致病机理、感染机制及功能研究奠定了基础,同时也为H1N1亚型猪流感病毒新型疫苗的研制开辟了新的途径。  相似文献   

5.
猪流感是猪常见的呼吸道传染病,临床以高热、呼吸困难、咳嗽和衰竭、迅速康复或死亡为特征。猪流感不仅给养猪业造成巨大损失,也严重威胁着人类健康。本研究从发病猪场中分离到1株H1N1亚型猪流感病毒,序列分析结果显示,分离毒株属于欧洲类禽猪流感H1N1亚型病毒。将分离毒株分别接种到MDCK与ST细胞,观察病毒的生长特性,结果显示分离的猪流感病毒在ST细胞中复制能力较强。采用RT-PCR技术分别扩增8个基因片段,克隆到流感病毒反向遗传系统,成功拯救出猪流感病毒毒株,测序结果显示拯救的猪流感病毒与亲本毒序列一致。本研究成功分离的猪流感病毒,以及建立的反向遗传技术为研究欧洲类禽猪流感病毒跨种传播的机制以及研发新型猪流感疫苗株奠定了基础。  相似文献   

6.
《中国兽医学报》2017,(12):2321-2326
为了研究H1N1流感病毒对BALB/c小鼠的致病相关分子机制、传播机制以及开发新型疫苗,将本实验室保存的A/PR/8/34株的8个质粒参照Paulina构建的流感病毒8质粒突变系统做定点突变,利用反向遗传操作技术,成功拯救出H1N1流感病毒突变株PR8F。将PR8F株以106 TCID50/100μL的剂量滴鼻感染BALB/c小鼠,观察小鼠临床表现及体质量变化。解剖攻毒后不同时间小鼠并观察体内主要脏器的病理特征,提取各脏器RNA,通过实时荧光定量PCR方法,检测PR8F株在小鼠体内不同脏器中的病毒残留量和在BALB/c小鼠肺脏中的扩增效率。结果表明,H1N1流感病毒突变株PR8F感染小鼠4~7d后全部致死;PR8F株在小鼠体内各脏器中的病毒残留量有很大差异,肺脏中最多,且病毒在肺脏内呈指数形式扩增。本试验建立了H1N1流感病毒PR8F株对BALB/c小鼠的感染模型,为H1N1流感病毒致病机制和传播机制的研究奠定基础。  相似文献   

7.
为构建包装含有H1亚型流感病毒HA蛋白的伪型病毒,本研究将人工合成的H1N1流感病毒(A/Califorma/04/2009株)血凝素(Hemagglutinin,HA)基因连接至真核表达载体pcDNA3.1,该重组质粒与表达逆转录病毒相关元件的骨架质粒pHIT111及pHIT60共转染人胚胎肾细胞293T,构建了以鼠白血病病毒为核心、包装含有HA蛋白的伪型病毒.通过对伪病毒感染细胞中LacZ报告基因表达产物的检测,证明伪病毒可以感染MDCK细胞;同时其感染过程可被流感病毒免疫后的小鼠阳性血清所阻断,表明该伪型病毒可模拟野生型病毒完成对宿主细胞的感染过程.本研究所构建的伪病毒系统为研究H1亚型流感病毒HA蛋白抗原特性及新型中和抗体检测方法的建立提供了理想的工具.  相似文献   

8.
利用RT-PCR技术扩增三源重组H1N1亚型猪流感病毒A/Swine/Tianjin/10/2013(H1N1)的8个基因片段,分别克隆至双向转录/表达载体p BD上。将8个重组质粒纯化后共转染293T细胞,收取转染48 h后的细胞上清并接种MDCK细胞,成功拯救出有血凝活性的病毒。全基因序列测定结果表明,拯救病毒与野生病毒的核苷酸序列完全一致。生长曲线的测定结果表明,不同时间点野生毒株与拯救毒株在MDCK细胞上的病毒滴度没有明显差异。三源重组H1N1亚型猪流感病毒反向遗传操作平台的成功建立为进一步开展猪流感病毒的生物学特性研究奠定了基础,同时也为H1N1亚型猪流感疫苗的研制开辟了新的途径。  相似文献   

9.
为拯救具有高复制特性的G1-like型禽流感病毒(avian influenza virus, AIV)疫苗候选株,利用反向遗传操作技术,将高复制特性H9N2亚型CZ株(Y280-Like)的6个内部基因(PB2、PB1、PA、M、NP、NS)与H9N2亚型40926株(G1-like)的HA和NA基因进行重配,构建G1-like型重组病毒。通过HA、HI试验及基因测序对拯救病毒进行鉴定,并对病毒在鸡胚上的复制能力、遗传稳定性及免疫原性进行评价。结果表明,利用6+2质粒系统成功拯救出G1-Like型H9N2亚型重组流感病毒,并具有良好的复制特性和遗传稳定性;将拯救的重组病毒株灭活后免疫SPF鸡,能刺激产生较高的HI抗体,为防控G1-like型AIV流行提供了技术和疫苗候选株储备。  相似文献   

10.
为构建携带Strep标签的禽流感病毒(Avian infl uenza virus,AIV)A/Goose/Hunan/109/2014(H5N6,HN109)反向遗传操作系统,RT-PCR扩增AIV HN109株8个基因片段,分别连接至p BD双向转录表达载体。通过点突变技术将NS1基因的77~84位的氨基酸替换成Strep-tag。将8个重组质粒共转染293T细胞,48 h后收取细胞上清接种至9~11日龄SPF鸡胚,并检测血凝效价。结果显示,本研究成功拯救病毒株r HN109-NS1-Strep。r HN109-NS1-Strep的8个基因片段序列与亲本毒素HN109株一致;r HN109-NS1-Strep与亲本毒HN109株在MDCK细胞上复制水平相似,在小鼠体内病毒复制能力相似。结果表明,本研究已成功构建携带Strep-tag的H5N6亚型禽流感病毒反向遗传操作系统,为研究该病毒的分子致病机理、传播机制及新型疫苗的研制奠定了基础。  相似文献   

11.
本试验旨在从山羊瘤胃中分离、筛选和鉴定单宁降解菌。从隆林山羊瘤胃采集内容物,采用单宁浓度耐受培养基进行初筛,再采用单宁酶活力鉴定培养基分离、筛选单宁降解菌,筛选出的细菌通过16S r DNA基因序列测定初步鉴定,将菌株在单宁浓度为0.5%、1%、1.5%的单宁酶诱导培养基中培养,测定酶活力。结果表明:共分离、筛选到4株降解单宁的细菌,根据16S r DNA基因序列分析结果,分别为产碱普罗威登斯菌(Providencia alcalifaciens)、克斯特菌(Kerstersia)、普罗威登斯菌(Providencia vermicola)和铜绿假单胞菌(Pseudomonas aeruginosa)。经单宁酶诱导培养基培养后,Kerstersia的胞内单宁酶活力高于其他3株菌,而其他3株菌的酶活力较为接近;Kerstersia、Providencia vermicola和Pseudomonas aeruginosa经1%单宁浓度诱导的单宁酶活力均高于经0.5%和1.5%单宁浓度诱导(P0.05)。本试验成功从山羊瘤胃中筛选、分离、鉴定出4株单宁降解菌,且它们均表现出较高的单宁酶活力。  相似文献   

12.
13.
稀土对鲤鱼肝胰脏和血液中部分酶活性的影响   总被引:2,自引:0,他引:2  
  相似文献   

14.
中国草地自然灾害及其防治对策   总被引:2,自引:0,他引:2  
介绍了中国草地的五大自然灾害,提出了综合防治的五项对策。  相似文献   

15.
In 2009, a novel swine-origin H1N1 influenza A virus (S-OIV), antigenically and genetically divergent from seasonal H1N1, caused a flu pandemic in humans. Development of an effective vaccine to limit transmission of S-OIV in animal reservoir hosts and from reservoir hosts to humans and animals is necessary. In the present study, we constructed and evaluated a vectored vaccine expressing the H1 hemagglutinin of a recent S-OIV isolate using equine herpesvirus 1 (EHV-1) as the delivery vehicle. Expression of the recombinant protein was demonstrated by immunofluorescence and western blotting and the in vitro growth properties of the modified live vector were found to be comparable to those of the parental virus. The EHV-1-H1 vaccine induced an influenza virus-specific antibody response when inoculated into mice by both the intranasal and subcutaneous routes. Upon challenge infection, protection of vaccinated mice could be demonstrated by reduction of clinical signs and faster virus clearance. Our study shows that an EHV-1-based influenza H1N1 vaccine may be a promising alternative for protection against S-OIV infection.  相似文献   

16.
2009年3以来,包括墨西哥、美国和加拿大在内的许多国家发生了甲型H1N1流感[Swine-origin Influenza A (A/H1N1)]疫情,WHO已于2009年6月20日将此次流感流行的预警级别提升至6级.现已基本明确,引起此次流感疫情的A/H1N1流感病毒是猪流感病毒(Swine Influenza Virus, SIV)的一种新型变异株.此次流感疫情的发生,再次使猪流感成为社会各界关注的焦点之一.本文就甲型H1N1流感的临床表现、病毒特征、相互关系及其对动物卫生监督工作的影响等作一综述.  相似文献   

17.
鸽禽I型副粘病毒油佐剂灭活苗对肉种鸽免疫效果观察   总被引:4,自引:0,他引:4  
用鸽A/PMV-1SX株(简称SX株)制成的油佐剂灭活苗与NDV油佐剂灭活苗分别免疫肉种鸽,免疫后20天抗体水平达到峰值,抗体水平在3log2以上维持30天以上。免疫后40天用鸽SX株和新城疫强毒对两种疫苗免疫鸽分别进行攻击,两种疫苗免疫组对NDV强毒攻击的保护率均为100%,鸽A/PMV-1油佐剂灭活苗免疫组对鸽SX株攻击的保护率为100%,而NDV油佐剂灭活苗免疫组对鸽SX株攻击的保护率仅为667%。鸽A/PMV-1油佐剂灭活苗田间试验抽检48份肉种鸽血清,抗体平均值为430±116log2。  相似文献   

18.
猪业资讯1     
《猪业科学》2008,25(5)
  相似文献   

19.
20.
百姓生活1     
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号