首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Teff (Eragrostis tef) is a fine stemmed annual grass and gluten free small grain that is of interest as a forage, cover, or a rotation crop. Little is known about the susceptibility of teff to many diseases. Teff could be grown in rotation with potato in the northwestern United States provided teff cultivation is economical and does not increase soil populations for pathogens affecting rotation crops such as Verticillium dahliae. Verticillium dahliae infects a wide range of dicotyledonous plants, making it one of the most important fungal pathogens of crop plants in North America, including potato. The objective of this study was to quantify the susceptibility of teff to eight V. dahliae isolates and compare the susceptibility of teff to eggplant. Teff was confirmed as a host for V. dahliae, as indicated by the presence of microsclerotia in teff stems and roots after artificial inoculation in two years of greenhouse studies. The number of microsclerotia produced in teff did not differ between mint and potato pathotypes of V. dahliae. No V. dahliae isolate produced significantly greater numbers of microsclerotia than any of the seven other isolates tested in a two-year study. Microsclerotia production of V. dahliae in teff was consistently less than in susceptible eggplant cv. Night shadow in both greenhouse experiments (P?<?0.02). It is unlikely that teff infected by V. dahliae will proliferate microsclerotia of mint or potato-aggressive pathotypes, especially when compared to susceptible eggplant cultivars.  相似文献   

2.
Leaf rolling is one of the most significant symptoms of drought stress in plant. Previously, we identified a dominant negative mutant, termed rolled and erect 1 (hereafter referred to rel1-D), regulating leaf rolling and erectness in rice. However, the role of REL1 in drought response is still poorly understood. Here, our results indicated that rel1-D displayed higher tolerance to drought relative to wild type, and the activity of superoxide dismutase (SOD) and drought responsive genes were significantly up-regulated in rel1-D. Moreover, our results revealed that rel1-D was hypersensitive to ABA and the expression of ABA associated genes was significantly increased in rel1-D, suggesting that REL1 likely coordinates ABA to regulate drought response. Using the RNA-seq approach, we identified a large group of differentially expressed genes that regulate stimuli and stresses response. Consistently, we also found that constitutive expression of REL1 alters the expression of biotic and abiotic stress responsive genes by the isobaric tags for relative and absolute quantification (iTRAQ) analysis. Integrative analysis demonstrated that 8 genes/proteins identified by both RNA-seq and iTRAQ would be the potential targets in term of the REL1-mediated leaf morphology. Together, we proposed that leaf rolling and drought tolerance of rel1-D under normal condition might be caused by the endogenously perturbed homeostasis derived from continuous stressful dynamics.  相似文献   

3.
Air temperature (Ta) is commonly used for modeling rice phenology. However, since the growing point of rice is under water during the vegetative and the early part of the reproductive period, water temperature (Tw) is likely to have a greater influence on crop developmental rates than Ta during this period. To test this hypothesis, we monitored Tw, Ta, and crop phenology in three commercial irrigated rice fields in California, USA. Sampling locations were set up on along a transect from the water inlet into the field. (Water warms up as it moves into the field.) Ta averaged 22.7 °C across sampling locations within each field, but average seasonal Tw increased from 22 °C near the inlet to 23.4 °C furthest away from the inlet. Relative to Tw furthest from the inlet, low Tw near the inlet delayed time to panicle initiation (PI 5 days) and heading (HD 8 days) and the appearance of one yellow hull on the main stem panicle (R7 9 days). Using Tw instead of Ta when the active growing point is under water until booting (midway between PI and HD) in a thermal time model improved accuracy (root-mean-square error, RMSE) for predicting time to PI by 2.5 days and HD by 1.6 days and R7 by 1.8 days. This model was further validated under more typical field conditions (i.e., not close to cold water inlets) in six locations in California. Under these conditions, average Tw was 2.6 °C higher than Ta between planting and booting, primarily due to higher daily maximum Tw values. Using Tw in the model until booting improved RMSE by 1.2 days in predicting time to HD. Using Tw instead of Ta during this period could improve the accuracy of rice phenology models.  相似文献   

4.

Background

The rice Pi2/9 locus harbors multiple resistance (R) genes each controlling broad-spectrum resistance against diverse isolates of Magnaporthe oryzae, a fungal pathogen causing devastating blast disease to rice. Identification of more resistance germplasm containing novel R genes at or tightly linked to the Pi2/9 locus would promote breeding of resistance rice cultivars.

Results

In this study, we aim to identify resistant germplasm containing novel R genes at or tightly linked to the Pi2/9 locus using a molecular marker, designated as Pi2/9-RH (Pi2/9 resistant haplotype), developed from the 5′ portion of the Pi2 sequence which was conserved only in the rice lines containing functional Pi2/9 alleles. DNA analysis using Pi2/9-RH identified 24 positive lines in 55 shortlisted landraces which showed resistance to 4 rice blast isolates. Analysis of partial sequences of the full-length cDNAs of Pi2/9 homologues resulted in the clustering of these 24 lines into 5 haplotypes each containing different Pi2/9 homologues which were designated as Pi2/9-A5, ?A15, ?A42, ?A53, and -A54. Interestingly, Pi2/9-A5 and Pi2/9-A54 are identical to Piz-t and Pi2, respectively. To validate the association of other three novel Pi2/9 homologues with the blast resistance, monogenic lines at BC3F3 generation were generated by marker assisted backcrossing (MABC). Resistance assessment of the derived monogenic lines in both the greenhouse and the field hotspot indicated that they all controlled broad-spectrum resistance against rice blast. Moreover, genetic analysis revealed that the blast resistance of these three monogenic lines was co-segregated with Pi2/9-RH, suggesting that the Pi2/9 locus or tightly linked loci could be responsible for the resistance.

Conclusion

The newly developed marker Pi2/9-RH could be used as a potentially diagnostic marker for the quick identification of resistant donors containing functional Pi2/9 alleles or unknown linked R genes. The three new monogenic lines containing the Pi2/9 introgression segment could be used as valuable materials for disease assessment and resistance donors in breeding program.
  相似文献   

5.
6.
In food industry, roselle beverages and their subproducts could be functional ingredients since they are an excellent source of bioactive compounds with improved performance due to their important anthocyanins content. The aim of this study was to analyze anthocyanin content and antioxidant properties of aqueous infusions elaborated with color contrasting Hibiscus materials and design a mathematical model in order to predict color-composition relationship. Color measurements of beverages from roselle (Negra, Sudan and Rosa) were made by transmission spectrophotometry, anthocyanins quantification was determined by HPLC, and antioxidant potential was evaluated by in vitro methods (ABTS and FRAP assays). Beverages prepared with particle size minor of 250 μm presented until 4- and 2- times more anthocyanins content and antioxidant capacity respectively, in comparison to beverages prepared with powders with particle size major of 750 μm. Positive correlations among pigments composition and color parameters were found (p?<?0.05), showing that anthocyanins content, antioxidant capacity, C*ab and hab values increased in relation with the smallest particle size of flours. Also, mathematical models were stablished to predict anthocyanin content (r?≥?0.97) and antioxidant capacity (r?≥?0.89) from color data; we propose equations for quick estimation of the antioxidant capacity in the Hibiscus beverages with high anthocyanin content. The obtained models could be an important tool to be used in food industry for pigment characterization or functional compounds with potential health benefits.  相似文献   

7.
The precise level of environmental control in vitro may aid in identifying genetically superior plant germplasm for rooting characteristics (RC) linked to increased foraging for plant nitrogen (N). The objectives of this research were to determine the phenotypic variation in root morphological responses of 49 Solanum chacoense (chc), 30 Solanum tuberosum Group Phureja – Solanum tuberosum Group Stenotomum (phu-stn), and three Solanum tuberosum (tbr) genotypes to 1.0 and 0.5 N rate in vitro for 28 d, and identify genotypes with superior RC. The 0.5 N significantly increased density of root length, surface area, and tips. All RC were significantly greater in chc than in either phu-stn or tbr. Based upon clustering on root length, surface area, and volume, the cluster with the greatest rooting values consisted of eight chc genotypes that may be utilized to initiate a breeding program to improve RC in potato.  相似文献   

8.
Potato psyllid, Bactericera cockerelli (?ulc), causes economic damage to potato crops throughout the major potato growing regions of western North America. When cultivated crops are not available, potato psyllid often occurs on non-crop hosts. In the southern U.S. and northern Mexico, native species of Lycium (Solanaceae) are important non-crop hosts for the psyllid. We determined whether Old World species of Lycium now widespread in the Pacific Northwest are reservoirs of potato psyllid in this growing region. We examined Lycium spp. across a wide geographic region in Washington, Oregon, and Idaho at irregular intervals during three growing seasons. Potato psyllids were present at all locations. To determine whether Lycium is also a host during intervals of the year in which the potato crop is not available, we monitored a subset of these sites over the entire year. Six sites were monitored at 1- to 3-week intervals from June 2014 to June 2016. Psyllids were present on Lycium throughout the year at all sites, including during winter, indicating that Lycium is also a host when the potato crop is seasonally not available. Psyllid populations included a mixture of Northwestern and Western haplotypes. We observed well-defined spring and fall peaks in adult numbers, with peaks separated by long intervals in which psyllid numbers were very low. Seasonal patterns in psyllid numbers on these non-native Lycium hosts were very similar to what has been observed on native Lycium in the desert southwest region of the U.S. Our findings demonstrate that potato psyllid associates with Lycium across a broad geographic region within the Pacific Northwest. These results will assist in predicting sources of potato psyllid colonizing potatoes in this important growing region.  相似文献   

9.
10.

Background

Fungal endophytes are the living symbionts which cause no apparent damage to the host tissue. The distribution pattern of these endophytes within a host plant is mediated by environmental factors. This study was carried out to explore the fungal endophyte community and their distribution pattern in Asparagus racemosus and Hemidesmus indicus growing in the study area.

Results

Foliar endophytes were isolated for 2 years from A. racemosus and H. indicus at four different seasons (June–August, September–November, December–February, March–May). A total of 5400 (675/season/year) leaf segments harbored 38 fungal species belonging to 17 genera, 12 miscellaneous mycelia sterile from 968 isolates and 13 had yeast like growth. In A. racemosus, Acremonium strictum and Phomopsis sp.1, were dominant with overall relative colonization densities (RCD) of 7.11% and 5.44% respectively, followed by Colletotrichum sp.3 and Colletotrichum sp.1 of 4.89% and 4.83% respectively. In H. indicus the dominant species was A. strictum having higher overall RCD of 5.06%, followed by Fusarium moniliforme and Colletotrichum sp.2 with RCD of 3.83% and 3%, respectively. Further the overall colonization and isolation rates were higher during the wet periods (September–November) in both A. racemosus (92.22% and 95.11%) and H. indicus (82% and 77.11%).

Conclusion

Study samples treated with 0.2% HgCl2 and 75% EtOH for 30 s and 1 min, respectively, confirmed most favorable method of isolation of the endophytes. Owing to high mean isolation and colonization rates, September–November season proved to be the optimal season for endophyte isolation in both the study plants. Assessing the bioactive potential of these endophytes, may lead to the isolation of novel natural products and metabolites.
  相似文献   

11.

Background

Interspecific hybridisation is common between many plant species and causes rapid changes in a variety of plant characters. This may pose problems for herbivores because changes in recognition characters may be poorly correlated with changes in quality characters. Many studies have examined different systems of hybrids and herbivores in attempts to understand the role of hybridisation in the evolution of plant resistance. The results from different systems are variable. Studies of hybrids between Salix caprea (L., Salicaceae) and S. repens show that they are intermediate between the two parental species in most resistence characters. However, a plants herbivore resistence depends also on its biotic and abiotic environment. Important biotic factors that may influence plant growth and plant chemistry include the interactions between different herbivores that occur through their exploitation of common host plants. Although the effects on plants of previous herbivory are likely to be strongly affected by environmental conditions, they are also species-specific. Damage may therefore have different effects on hybrids than on their parental species, and this could influence the performance of herbivores on pure and hybrid species of plants. To evaluate the effects of hybridisation on insect performance, the development and survival rates of Phratora vitellinae (L. 1758, Coleoptera: Chrysomelidae) larvae on pure S. repens, pure S. caprea and Fl hybrids of the two species was monitored. Further, to examine the effect of herbivorous mammals on the performance of the larvae, plants were damaged to simulate winter foraging by voles or spring leaf stripping by moose.

Results

The results show that development rates were highest on S. repens and equally low on S. caprea and the Fl hybrid. In addition, development of the plants treated to simulate mammalian herbivore damage was slower than that of corresponding controls.

Conclusions

The results of this experiment suggest that P. vitellinae has a higher development rate, and thus probably higher performance, on species with high concentrations of phenolic glucosides. Therefore, it would be of adaptive benefit for P. vitellinae females to have an ovipositional preference for S. repens, compared to S. caprea and intermediate preference for Fl hybrids. The faster development observed on S. repens supports the hypothesis that P. vitellinae obtains additional adaptive benefits from phenolic glucosides beyond protection against predators. Therefore, it is important to consider further factors, such as damage caused by other herbivores, when studying this hybrid complex.
  相似文献   

12.
Lupinus albus seeds contain conglutin gamma (Cγ) protein, which exerts a hypoglycemic effect and positively modifies proteins involved in glucose homeostasis. Cγ could potentially be used to manage patients with impaired glucose metabolism, but there remains a need to evaluate its effects on hepatic glucose production. The present study aimed to analyze G6pc, Fbp1, and Pck1 gene expressions in two experimental animal models of impaired glucose metabolism. We also evaluated hepatic and renal tissue integrity following Cγ treatment. To generate an insulin resistance model, male Wistar rats were provided 30% sucrose solution ad libitum for 20 weeks. To generate a type 2 diabetes model (STZ), five-day-old rats were intraperitoneally injected with streptozotocin (150 mg/kg). Each animal model was randomized into three subgroups that received the following oral treatments daily for one week: 0.9% w/v NaCl (vehicle; IR-Ctrl and STZ-Ctrl); metformin 300 mg/kg (IR-Met and STZ-Met); and Cγ 150 mg/kg (IR-Cγ and STZ-Cγ). Biochemical parameters were assessed pre- and post-treatment using colorimetric or enzymatic methods. We also performed histological analysis of hepatic and renal tissue. G6pc, Fbp1, and Pck1 gene expressions were quantified using real-time PCR. No histological changes were observed in any group. Post-treatment G6pc gene expression was decreased in the IR-Cγ and STZ-Cγ groups. Post-treatment Fbp1 and Pck1 gene expressions were reduced in the IR-Cγ group but increased in STZ-Cγ animals. Overall, these findings suggest that Cγ is involved in reducing hepatic glucose production, mainly through G6pc inhibition in impaired glucose metabolism disorders.  相似文献   

13.

Background

The rice blast resistance gene Pi54 was cloned from Oryza sativa ssp. indica cv. Tetep, which conferred broad-spectrum resistance against Magnaporthe oryzae. Pi54 allelic variants have been identified in not only domesticates but also wild rice species, but the majority of japonica and some indica cultivars lost the function.

Results

We here found that Pi54 (Os11g0639100) and its homolog Os11g0640600 (named as #11) were closely located on a 25 kbp region in japonica cv. Sasanishiki compared to a 99 kbp region in japonica cv. Nipponbare. Sasanishiki lost at least six genes containing one other R-gene cluster (Os11g0639600, Os11g0640000, and Os11g0640300). Eight AA-genome species including five wild rice species were classified into either Nipponbare or Sasanishiki type. The BB-genome wild rice species O. punctata was Sasanishiki type. The FF-genome wild rice species O. brachyantha (the basal lineage of Oryza) was neither, because Pi54 was absent and the orientation of the R-gene cluster was reversed in comparison with Nipponbare-type species. The phylogenetic analysis showed that #11gene of O. brachyantha was on the root of both Pi54 and #11 alleles. All Nipponbare-type Pi54 alleles were specifically disrupted by 143 and 37/44?bp insertions compared to Tetep and Sasanishiki type. In addition, Pi54 of japonica cv. Sasanishiki lost nucleotide-binding site and leucine-rich repeat (NBS–LRR) domains owing to additional mutations.

Conclusions

These results suggest that Pi54 might be derived from a tandem duplication of the ancestor #11 gene in progenitor FF-genome species. Two divergent structures of Pi54 locus caused by a mobile unit containing the nearby R-gene cluster could be developed before domestication. This study provides a potential genetic resource of rice breeding for blast resistance in modern cultivars sustainability.
  相似文献   

14.
15.
Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a devastating disease in potato and tomato and causes yield and quality losses worldwide. The disease first emerged in central America and has since spread in North America including the United States and Canada. Several new genotypes of P. infestans have recently emerged, including US-22, US-23 and US-24. Due to significant economic and environmental impacts, there has been an increasing interest in the rapid identification of P. infestans genotypes. In addition to providing details regarding the various phenotypic characteristics such as fungicide resistance, host preference, and pathogenicity associated with various P. infestans genotypes, information related to pathogen movement and potential recombination may also be determined from the genetic analyses. Restriction fragment length polymorphism (RFLP) analysis with the RG57 loci is one of the most reliable procedures used to genotype P. infestans. However, the RFLP procedure requires propagation and isolation of the pathogen and relatively large amounts of DNA. Isolation of the late blight pathogen is sometimes impossible due to the poor condition of the infected tissues or the presence of fungicide residues. In this study, we describe a procedure to identify P. infestans at the molecular level in planta using terminal restriction fragment length polymorphism (T-RFLP) of the RG57 loci. This T-RFLP assay is sufficiently sensitive to detect and differentiate P. infestans genotypes directly in planta without propagation and isolation of the pathogen, to facilitate the timely implementation of best management practices.  相似文献   

16.
Drought occurs throughout the world, affecting people more than any other major natural hazards. An important requirement for mitigating the impact of drought is an effective method of forecasting future drought events. This study investigated the applicability of Adaptive neuro-fuzzy inference system (ANFIS) for drought forecasting and quantitative value of drought indices, the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Khanhhoa Province Vietnam with three meteorological stations was selected as the study area. The sea surface temperature anomalies (SSTA) events at NinoW and Nino4 zones were selected as input variables to forecast drought. Fifteen ANFIS forecasting models for SPI/SPEI (1, 3, 6, and 12 months) were trained and tested. The results show the performance of the ANFIS forecasting models for SPI/SPEI of all stations is equivalent and most ANFIS forecasting models for SPEI are better than SPI; the performance of the ANFIS forecasting models for SPI/SPEI-12 is better than other ANFIS models for SPI/SPEI-1 to SPI/SPEI-6; the models with high performance are M10–M13; model with the highest performance is M12 model. The results of this research showed that ANFIS forecasting models with SSTAs events as input variables can forecast longer term than SPI and precipitation as input variables. The ANFIS forecasting model with SSTA events as input variables can be successfully applied and provide high accuracy and reliability for drought forecasting.  相似文献   

17.
Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is one of the most important diseases of potato in North America. Soil incorporation of alfalfa residues prior to planting potato could be a nonchemical Verticillium wilt management tactic by reducing the number of viable microsclerotia in field soil. Verticillium dahliae microsclerotia were quantified in field soils where organic material from alfalfa was incorporated, and numbers of microsclerotia were compared to fields where alfalfa residue was not incorporated. In addition, bacterial metagenomics was utilized to characterize soils where organic material from alfalfa was or was not incorporated to determine if alfalfa residue incorporation facilitates the formation of soils that suppress or kill V. dahliae microsclerotia. The number of V. dahliae microsclerotia in soil was greater (P = 0.0003) in fields where crop residue was incorporated than fields without incorporation when chloropicrin was used as a fumigant. Conversely, the number of V. dahliae microsclerotia observed in potato plants did not differ (P = 0.4020) between fields where residues were or were not incorporated if chloropicrin was used. Alfalfa residue incorporation did not significantly alter the soil bacterial metagenome compared to fields not subject to residue incorporation in both years of study. Despite these conclusions, the method can be employed to analyze the effect of grower practices with the intent of linking a field practice to increasing soil bacterial diversity and decreasing Verticillium wilt severity on potato.  相似文献   

18.
Based on data collected from rice fields under drying–wetting cycle condition, the procedure of dual-crop coefficient (K cd) approaches was calibrated and validated to reveal its feasibility and improve its performance in rice evapotranspiration (ET c) estimation. It was found that K cd based on FAO-recommended basal crop coefficients (K cb) underestimated dual-crop coefficients in monsoon climate region in East China. The recommended coefficient (K cp) value of 1.2 was not high enough to reflect the pulse increase of rice ET c after soil wetting. The K cb values were calibrated as 1.52 and 0.63 in midseason and late season, and the K cp value was adjusted as 1.29 after soil wetting in rice field under drying–wetting cycle condition. The dual-crop coefficient curves based on locally calibrated K cbCal and K cpCor matched well with the measured crop coefficients and performed well in calculating rice evapotranspiration from paddy fields under drying–wetting cycle condition. So it can be concluded that the procedure of dual-crop coefficient method is feasible in rice ET c estimation, and locally calibrated K cb and K cp can improve its performance remarkably.  相似文献   

19.

Background

The gypsovag shrub Cistus clusii is locally dominant in semi-arid gypsum plant communities of North-Eastern Spain. This species commonly grows in species-poor patches even though it has nurse potential, suggesting interference on neighbouring species. Other Cistus species exert a chemically mediated interference on plant communities, suggesting that it might be a common phenomenon in this genus. This study aimed investigating whether C. clusii exerts chemically mediated interference on neighbouring species in gypsum plant communities. We tested in a greenhouse whether aqueous extracts from C. clusii leaves (L), roots (R) and a mixture of both (RL) affected germination, seedling survival, and growth of nine native species of gypsum communities, including C. clusii itself. We further assessed in the field richness and abundance of plants under the canopy of C. clusii compared to Gypsophila struthium (shrub with a similar architecture having a nurse role) and in open patches. Finally, we specifically assessed in the field the influence of C. clusii on the presence of the species tested in the greenhouse experiment.

Results

Aqueous extracts from C. clusii (R and RL) negatively affected either germination or survival in four of nine species. In the field, richness and abundance of plants were lower under the canopy of C. clusii than under G. struthium, but higher than in open patches. Specifically, five of nine species were less frequent than expected under the canopy of C. clusii.

Conclusions

Cistus clusii shows species-specific interference with neighbouring species in the community, which may be at least partially attributable to its phytotoxic activity. To our knowledge, this is the first report of species-specific interference by C. clusii.
  相似文献   

20.
Studying phenotypic and genomic modifications associated with pathogen adaptation to resistance is a crucial step to better understand and anticipate resistance breakdown. This short review summarizes recent results obtained using experimentally evolved populations of the potato cyst nematode Globodera pallida. In a first step, the variability of resistance durability was explored in four different potato genotypes carrying the resistance quantitative trait loci (QTL) GpaVvrn originating from Solanum vernei but differing by their genetic background. The consequences of the adaptation to resistance in terms of local adaptation, cross-virulence and virulence cost were then investigated. Finally, a genome scan approach was performed in order to identify the genomic regions involved in this adaptation. Results showed that nematode populations were able to adapt to the QTL GpaVvrn, and that the plant genetic background has a strong impact on resistance durability. A trade-off between the adaptations to different resistant potato genotypes was detected, and we also showed that adaptation to the resistance QTL GpaVvrn from S. vernei did not allow adaptation to the colinear locus from S. sparsipilum (GpaVspl). Unexpectedly, the adaptation to resistance led to an increase of virulent individual’s fitness on a susceptible host. Moreover, the genome scan approach allowed the highlighting of candidate genomic regions involved in adaptation to host plant resistance. This review shows that experimental evolution is an interesting tool to anticipate the adaptation of pathogen populations and could be very useful for identifying durable strategies for resistance deployment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号