首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of chloropicrin fumigation on the soil populations of Spongospora subterranea and the development of powdery scab, formation of root galls and tuber yield was investigated in seven field trials conducted in Minnesota and North Dakota. Sixteen potato cultivars, with different levels of susceptibility to disease on roots and tubers, were planted in plots treated with chloropicrin at rates ranging from zero to 201.8 kg a.i. ha?1. The amount of S. subterranea DNA in soil was determined using qPCR. Bioassays were conducted to further assess the effect of chloropicrin fumigation on root colonization by S. subterranea in two potato cultivars with contrasting disease susceptibility. In the field, chloropicrin applied at rates between 70.1 to 201.8 kg a.i. ha?1 significantly decreased S. subterranea initial inoculum in soil but increased the amount of disease observed on roots and tubers of susceptible cultivars. The effect of increasing disease was confirmed in controlled conditions experiments. Although the amount of S. subterranea DNA in roots of bioassay plants increased with increasing chloropicrin rates, it remained similar among potato cultivars. Chloropicrin fumigation significantly increased tuber yield which in cultivars such as Shepody and Umatilla Russet were associated with the amount root galls (r = 0.30; P < 0.03). Results of these studies contradict earlier reports on the use of chloropicrin fumigation for the control of powdery scab. Factors other than inoculum level, such as environmental conditions that affect inoculum efficiency and host susceptibility, may be significant contributors to the development of powdery scab and root gall formation.  相似文献   

2.
Verticillium wilt is a fungal disease of potato caused by two species of Verticillium, V. dahliae and V. albo atrum. The pathogen infects the vascular tissue of potato plants through roots, interfering with the transport of water and nutrition, and reducing both the yield and quality of tubers. We have evaluated the reaction of 283 potato clones (274 cultivars and nine breeding selections) to inoculation with V. dahliae under greenhouse conditions. A significant linear correlation (r = 0.4, p < 0.0001) was detected between plant maturity and partial resistance to the pathogen, with late maturing clones being generally more resistant. Maturity-adjusted resistance, that takes into consideration both plant maturity and resistance, was calculated from residuals of the linear regression between the two traits. Even after adjusting for maturity, the difference in the resistance of clones was still highly significant, indicating that a substantial part of resistance cannot be explained by the effect of maturity. The highest maturity-adjusted resistance was found in the cv. Navajo, while the most susceptible clone was the cv. Pungo. We hope that the present abundance of data about the resistance and maturity of 283 clones will help potato breeders to develop cultivars with improved resistance to V. dahliae.  相似文献   

3.
The precise level of environmental control in vitro may aid in identifying genetically superior plant germplasm for rooting characteristics (RC) linked to increased foraging for plant nitrogen (N). The objectives of this research were to determine the phenotypic variation in root morphological responses of 49 Solanum chacoense (chc), 30 Solanum tuberosum Group Phureja – Solanum tuberosum Group Stenotomum (phu-stn), and three Solanum tuberosum (tbr) genotypes to 1.0 and 0.5 N rate in vitro for 28 d, and identify genotypes with superior RC. The 0.5 N significantly increased density of root length, surface area, and tips. All RC were significantly greater in chc than in either phu-stn or tbr. Based upon clustering on root length, surface area, and volume, the cluster with the greatest rooting values consisted of eight chc genotypes that may be utilized to initiate a breeding program to improve RC in potato.  相似文献   

4.
Potato mop top virus (PMTV) induced necrosis can cause tuber quality loss at harvest and storage. Stored potatoes help maintain a constant supply of potatoes to the market and processing industry. PMTV-induced necrosis continues to develop during storage and appropriate timelines are needed for growers to make marketing decisions of their potatoes before incurring any significant quality losses. Survival analysis was used to estimate the time to event occurrence (PMTV-induced necrosis) in four (red-, russet-, white-, and yellow-skinned) potato market types across six post-harvest assessments conducted over two years. At each assessment the presence and absence of PMTV-induced necrosis was recorded and probability of tuber survival was estimated. Survival curves were significantly different among the four market type potato cultivars (Log-Rank test, P < 0.0005). Red- and russet-market type cultivars showed low and high survival probability, respectively, demonstrating that red cultivars need priority marketing. The survival probabilities decreased with increased storage time during both years, indicating that PMTV-induced necrosis development is dependent on potato cultivar and post-harvest storage. The median (50% of tubers with symptoms) survival times were estimated as 167 and 214 days for red- and other market type potato cultivars. The information from this study could potentially help growers regulate storage times for their cultivars to minimize tuber quality loss due to PMTV-induced tuber necrosis.  相似文献   

5.
The effect of essential oil (EO) from anise (Pimpinellia anisum) on the mortality of young larvae of Colorado potato beetles has been studied. In our bioassays, P. anisum EO significantly increased the mortality of the second instar larvae of L. decemlineata. Significantly different values of LD50 and LD90 were established for acute (LD50 = 1.76, and LD90 = 8.29) as well as chronic toxicity (LD50 = 0.45, and LD90 = 1.01). Decrease of both values over experimental period was evident, which showed that the larval mortality was slow and cumulative. The composition of EO used for biological experiments was also assessed. The main component detected in EO from P. anisum was anethole (79.87%), followed by anisaldehyde (7.74%), estragole (5.88%) and β-linalool (1.07%). Within five days, residual concentration of EO decreased from 3.87 mg/g of dry weight immediately after foliar applications to 0.9 mg per g of dry weight. The effect of this slow evaporation could be explained by dominant presence of anethole or by the type of formulation and the addition of oil and tween. Results of our study demonstrate that EO from P. anisum has insecticidal properties that may lead to the development of new organic products for the control of Colorado potato beetles.  相似文献   

6.
Phthorimaea operculella (Zeller) is one of the most common insect pests of cultivated potato in tropical and subtropical regions. In this research, a potential strategy to improve the insecticidal activity of plant essential oils for the effective management of P. operculella was studied. The insecticidal and residual effects of nanofiber oil (NFO) and pure essential oil (PEO) of Cinnamomum zeylanicum were assessed on PTM under laboratory conditions. The nanofibers were made by the electrospinning method using polyvinyl alcohol (PVA) polymer. The morphological characteristics of the nanofibers were evaluated by scanning electron microscopy and Fourier transform infrared spectroscopy. The chemical constituents of cinnamon essential oil (EO) were detected by GC/MS. Fumigant toxicity of NFO and PEO were evaluated on different growth stages (egg, male and female adults) of P. operculella. SEM and FTIR analyses confirmed the presence of EO on the nanofiber structure. The yield of the EO from C. zelanicum on the nanofibers was 1.86%. GC/MS analysis showed that cinnamaldehyde was the primary constituent (69.88%) of cinnamon EO. LC50 values of C. zelanicum EO and NFO were 4.92 and 1.76 μl/l air for eggs, 0.444 and 0.212 μl/l air for female adults, and 0.424 and 0.192 μl/l air for male adults, respectively. Fumigant bioassays revealed that NFO was more toxic than C. zeylanicum oil against at all stages of P. operculella. The residual effect of PEO and NFO was evaluated against the egg stage of the P. operculella. NFO lost insecticidal effectiveness 47 days after application, while the efficacy of PEO decreased 15 days after application. Our results suggest that NFO of C. zeylanicum can be used as an effective new tool for the management of P. operculella.  相似文献   

7.
Lupinus albus seeds contain conglutin gamma (Cγ) protein, which exerts a hypoglycemic effect and positively modifies proteins involved in glucose homeostasis. Cγ could potentially be used to manage patients with impaired glucose metabolism, but there remains a need to evaluate its effects on hepatic glucose production. The present study aimed to analyze G6pc, Fbp1, and Pck1 gene expressions in two experimental animal models of impaired glucose metabolism. We also evaluated hepatic and renal tissue integrity following Cγ treatment. To generate an insulin resistance model, male Wistar rats were provided 30% sucrose solution ad libitum for 20 weeks. To generate a type 2 diabetes model (STZ), five-day-old rats were intraperitoneally injected with streptozotocin (150 mg/kg). Each animal model was randomized into three subgroups that received the following oral treatments daily for one week: 0.9% w/v NaCl (vehicle; IR-Ctrl and STZ-Ctrl); metformin 300 mg/kg (IR-Met and STZ-Met); and Cγ 150 mg/kg (IR-Cγ and STZ-Cγ). Biochemical parameters were assessed pre- and post-treatment using colorimetric or enzymatic methods. We also performed histological analysis of hepatic and renal tissue. G6pc, Fbp1, and Pck1 gene expressions were quantified using real-time PCR. No histological changes were observed in any group. Post-treatment G6pc gene expression was decreased in the IR-Cγ and STZ-Cγ groups. Post-treatment Fbp1 and Pck1 gene expressions were reduced in the IR-Cγ group but increased in STZ-Cγ animals. Overall, these findings suggest that Cγ is involved in reducing hepatic glucose production, mainly through G6pc inhibition in impaired glucose metabolism disorders.  相似文献   

8.
Potato psyllid, Bactericera cockerelli (?ulc), causes economic damage to potato crops throughout the major potato growing regions of western North America. When cultivated crops are not available, potato psyllid often occurs on non-crop hosts. In the southern U.S. and northern Mexico, native species of Lycium (Solanaceae) are important non-crop hosts for the psyllid. We determined whether Old World species of Lycium now widespread in the Pacific Northwest are reservoirs of potato psyllid in this growing region. We examined Lycium spp. across a wide geographic region in Washington, Oregon, and Idaho at irregular intervals during three growing seasons. Potato psyllids were present at all locations. To determine whether Lycium is also a host during intervals of the year in which the potato crop is not available, we monitored a subset of these sites over the entire year. Six sites were monitored at 1- to 3-week intervals from June 2014 to June 2016. Psyllids were present on Lycium throughout the year at all sites, including during winter, indicating that Lycium is also a host when the potato crop is seasonally not available. Psyllid populations included a mixture of Northwestern and Western haplotypes. We observed well-defined spring and fall peaks in adult numbers, with peaks separated by long intervals in which psyllid numbers were very low. Seasonal patterns in psyllid numbers on these non-native Lycium hosts were very similar to what has been observed on native Lycium in the desert southwest region of the U.S. Our findings demonstrate that potato psyllid associates with Lycium across a broad geographic region within the Pacific Northwest. These results will assist in predicting sources of potato psyllid colonizing potatoes in this important growing region.  相似文献   

9.
Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a devastating disease in potato and tomato and causes yield and quality losses worldwide. The disease first emerged in central America and has since spread in North America including the United States and Canada. Several new genotypes of P. infestans have recently emerged, including US-22, US-23 and US-24. Due to significant economic and environmental impacts, there has been an increasing interest in the rapid identification of P. infestans genotypes. In addition to providing details regarding the various phenotypic characteristics such as fungicide resistance, host preference, and pathogenicity associated with various P. infestans genotypes, information related to pathogen movement and potential recombination may also be determined from the genetic analyses. Restriction fragment length polymorphism (RFLP) analysis with the RG57 loci is one of the most reliable procedures used to genotype P. infestans. However, the RFLP procedure requires propagation and isolation of the pathogen and relatively large amounts of DNA. Isolation of the late blight pathogen is sometimes impossible due to the poor condition of the infected tissues or the presence of fungicide residues. In this study, we describe a procedure to identify P. infestans at the molecular level in planta using terminal restriction fragment length polymorphism (T-RFLP) of the RG57 loci. This T-RFLP assay is sufficiently sensitive to detect and differentiate P. infestans genotypes directly in planta without propagation and isolation of the pathogen, to facilitate the timely implementation of best management practices.  相似文献   

10.
Fusarium sambucinum is one of the most important causal agents that not only cause the dry rot disease of potato tubers in fields and stores worldwide but also capable of producing secondary metabolites toxic for people and animals. Here we present the first draft genome sequence of the strain (F-4) estimated to be around appx. 42.0 Mb. The genome has 12,845 protein coding genes with more than 35,900 exons and gene density of 3.13 per 10Kb. F. sambucinum is evolutionary more close to the F. graminearum among the Fusarium species complex. The genome sequence represents a valuable resource for understanding the pathogenecity and virulence factors, and their evolution within the complex and highly plastic genus Fusarium.  相似文献   

11.
Crop damage is associated with infection by plant pathogens but can also arise through abiotic factors. However, the plant pathogens are involved in biotic interactions with other plant pathogens, and these interactions may differ depending of the cultivar of the crop. Here, the interaction between the fungus Rhizoctonia solani (AG3) and free-living plant-parasitic nematodes was investigated in a pot experiment with different potato cultivars. No synergistic interaction between R. solani and plant-parasitic nematodes was found, instead there was an effect of treatment with lower tuber yield when nematodes occurred alone. There were differences among the cultivars regarding incidence of black scurf, dry weight of stems and tubers, and there was interactive effects between treatment and cultivar regarding dry weight of stolons and roots. Therefore, results concerning incidence and damage of R. solani and/or plant-parasitic nematodes found for one cultivar may not be applicable to other cultivars.  相似文献   

12.

Background

The brown planthopper (BPH) has become the most destructive and a serious threat to the rice production in Asia. Breeding the resistant varieties with improved host resistance is the most effective and ecosystem-friendly strategy of BPH biological management. As host resistance was always broken down by the presence of the upgrading BPH biotype, the more resistant varieties with novel resistance genes or pyramiding known identified BPH resistance genes would be needed urgently for higher resistant level and more durability of resistance.

Results

Here, we developed near isogenic lines of Bph9 (NIL-Bph9) by backcrossing elite cultivar 93–11 with Pokkali (harboring Bph9) using marker-assisted selection (MAS). Subsequently, we pyramided Bph6 and Bph9 in 93–11 genetic background through MAS. The resulting Bph6 and Bph9 pyramided line LuoYang69 had stronger antixenotic and antibiosis effects on BPH and exhibited significantly enhanced resistance to BPH than near isogenic lines NIL-Bph6 and NIL-Bph9. LuoYang69 derived hybrids, harboring heterozygous Bph6 and Bph9 genes, also conferred high level of resistance to BPH. Furthermore, LuoYang69 did not affect the elite agronomic traits and rice grain quality of 93–11. The current study also developed functional markers for Bph9. Using functional dominant marker, we screened and evaluated worldwide accessions of rice germplasm. Of the 673 varieties tested, 8 cultivars were identified to harbor functional Bph9 gene.

Conclusion

The development of Bph6 and Bph9 pyramided line LuoYang69 provides valuable resource to develop hybrid rice with highly and durable BPH resistance. The development of functional markers will promote MAS of Bph9. The identified Bph9 containing cultivars can be used as new sources for BPH resistance breeding programs.
  相似文献   

13.
Late blight, caused by Phytophthora infestans, is a devastating disease on potato worldwide and new lineages of the pathogen continue to develop in the U.S. Breeding for resistance is important for economic and environmental purposes. The Solanaceae Coordinated Agricultural Project (SolCAP) focuses on linking allelic variation in genes to valuable traits in elite cultivated potato germplasm. This research assessed the SolCAP diversity panel (206 clones in Washington and 213 clones in Wisconsin) for tuber resistance to the US-24 clonal lineage of P. infestans after potatoes were harvested from fields in Washington and Wisconsin in 2011. This is the first time this germplasm has been evaluated for tuber resistance to P. infestans using a non-intrusive zoospore inoculation technique. Clones with a percent incidence of 30% or less were considered resistant and only eight clones (Palisade Russet, AWN86514–2, MSL268-D, MSM171-A, MSM182–1, MSN230-1RY, Patagonia and Yukon Gem) were characterized as resistant at both locations. These clones have previously demonstrated high to moderate partial foliar resistance to isolates of P.infestans and therefore represent germplasm with both foliar and tuber resistance. Nine clones (AWN86514–2, F66041, MN 18747, MSM 182–1, MSN230-1RY, Modoc, Ama-Rosa, Patagonia and Purple Majesty), were characterized as slow-rotting at both locations with a mean percent internal rot of 75% or less after 33 days of storage. Two clones, MN 18747 and Modoc, are considered to have the highest risk of being a carrier for P. infestans of all the clones evaluated in the SolCAP collection. Not a single clone demonstrated complete tuber resistance to the US-24 strain at both locations.  相似文献   

14.
From 2012 to 2015, a total of 226 isolates of Rhizoctonia solani were collected from the stem cankers on potato stems and sclerotia on tubers from different potato cultivation areas of Heilongjiang Province, China. These isolates were assigned to the anastomosis group (AG) by performing conventional PCR assays using previously published primers for ITS-rDNA regions, as well as by observing hyphal interactions where appropriate. Most of the isolates were assigned to AG-3PT (58.85 %), and several were assigned to AG-5 (21.68 %), AG-2-1 (7.08 %) and AG-4 (12.39 %). Pathogenicity tests showed that the AG-3 and AG-5 isolates had the highest virulence, and the disease indices were 1.96a and 2.47a for stem and 1.48a and 1.6a for root (P < 0.05) after analyzed by LSD multiple comparisons, respectively. Both two isolates consistently caused large brown lesions with sunken on the potato stems and roots in in vitro and greenhouse experiments. This is the first detailed report on the AG composition, variability and pathogenicity of R. solani isolates associated with stem cankers and black scurf found on potatoes cultivated in Heilongjiang Province.  相似文献   

15.
Camellia euphlebia (family, Theaceae) has been used for the prevention and treatment of cardiovascular diseases in Southern China. However, there has been no report on the hypolipidemic activity of Camellia euphlebia flower. This study evaluated the hypolipidemic activity of different preparation of Camellia euphlebia flower extracts using in vivo models. Mice intragastrically administered aqueous extract at 400 mg/kg dose or ethanol extract at 100 and 400 mg/kg doses of Camellia euphlebia flower for 28 days exhibited significant decreases in the levels of total cholesterol, triglycerides and low-density lipoprotein cholesterol, while displaying increased level of high-density lipoprotein cholesterol in the serum. The Camellia euphlebia flower extracts also improved the antioxidant ability of hyperlipidemic mice as well as protecting the animals against liver damage by lowering the level of glutamic-pyruvic transaminase activity. Furthermore, 400 mg/kg ethanol extract effectively down-regulated the mRNA levels of fatty acid synthase, 3-hydroxy-3-methylglutaryl CoA reductase and glycerol-3-phosphate acyl transferase, suggesting that Camellia euphlebia flower extract may potentially inhibit lipid accumulation in the liver by regulating the expression of fatty acid synthase, 3-hydroxy-3-methylglutaryl CoA reductase and glycerol-3-phosphate acyl transferase. These results provided support for the potential hypolipidemic activity of Camellia euphlebia flower and could partly explain the basis of using Camellia euphlebia for the treatment of hyperlipidemia.  相似文献   

16.
Causing potato brown rot, Ralstonia solanacearum (R. solanacearum) strains are reported as one of the most destructive bacteria to potato (Solanum tuberosum L.) in China. In this study, 113 strains were isolated from potato, collected in the four major agroecological zones in China. The study showed that 102 strains belonged to the phylotype IIB sequevar 1 (race 3 biovar 2). The 11 remaining strains belonged to the phylotype I, sequevar 13, 17, 18, 16 or 14 M, a new sequevar closely related to sequevar 14. Thirty-four strains were further characterized according to their virulence at low temperature on three wild potato species. IIB-1 strains all belonged to high and moderate virulence, while others belonged to the low virulence group, which had limited pathogenicity.  相似文献   

17.
Water management is an important factor in regulating soil respiration and the net ecosystem exchange of CO2 (NEE) between croplands and atmosphere. However, how water management affects soil respiration and the NEE of paddy fields remains unexplored. Thus, a 2-year field experiment was carried out to study the effects of controlled irrigation (CI) during the rice season on the variation of soil respiration and NEE, with flooding irrigation (FI) as the control. A decrease of irrigation water input by 46.39% did not significantly affect rice yield but significantly increased irrigation water use efficiency by 0.99 kg m?3. The soil respiration rate of CI paddy fields was larger than that of FI paddy fields except during the ripening stage. Natural drying management during the ripening stage resulted in a significant increase of the soil respiration rate of the FI paddy fields. Variations of NEE with different water managements were opposite to soil respiration rates during the whole rice growth stages. Total CO2 emission of CI paddy fields through soil respiration (total R soil) increased by 11.66% compared with FI paddy fields. The increase of total R soil resulted in the significant decrease of total net CO2 absorption of CI paddy fields by 11.57% compared with FI paddy fields (p < 0.05). There were inter-annual differences of soil respiration and the NEE of paddy fields. Frequent alternate wetting and drying processes in the CI paddy fields were the main factors influencing soil respiration and NEE. CI management slightly enhanced the rice dry matter amount but accelerated the consumption and decomposition of soil organic carbon and significantly increased soil respiration, which led to the decrease of net CO2 absorption. CI management and organic carbon input technologies should be combined in applications to achieve sustainable use of water and soil resources in paddy fields.  相似文献   

18.
19.

Background

Rice plays an extremely important role in food safety because it feeds more than half of the world’s population. Rice grain yield depends on biomass and the harvest index. An important strategy to break through the rice grain yield ceiling is to increase the biological yield. Therefore, genes associated with organ size are important targets for rice breeding.

Results

We characterized a rice mutant gns4 (grain number and size on chromosome 4) with reduced organ size, fewer grains per panicle, and smaller grains compared with those of WT. Map-based cloning indicated that the GNS4 gene, encoding a cytochrome P450 protein, is a novel allele of DWARF11 (D11). A single nucleotide polymorphism (deletion) in the promoter region of GNS4 reduced its expression level in the mutant, leading to reduced grain number and smaller grains. Morphological and cellular analyses suggested that GNS4 positively regulates grain size by promoting cell elongation. Overexpression of GNS4 significantly increased organ size, 1000-grain weight, and panicle size, and subsequently enhanced grain yields in both the Nipponbare and Wuyunjing7 (a high-yielding cultivar) backgrounds. These results suggest that GNS4 is key target gene with possible applications in rice yield breeding.

Conclusion

GNS4 was identified as a positive regulator of grain number and grain size in rice. Increasing the expression level of this gene in a high-yielding rice variety enhanced grain yield. GNS4 can be targeted in breeding programs to increase yields.
  相似文献   

20.

Background

Male fertility is crucial for rice yield, and the improvement of rice yield requires hybrid production that depends on male sterile lines. Although recent studies have revealed several important genes in male reproductive development, our understanding of the mechanisms of rice pollen development remains unclear.

Results

We identified a rice mutant oslap6 with complete male sterile phenotype caused by defects in pollen exine formation. By using the MutMap method, we found that a single nucleotide polymorphism (SNP) variation located in the second exon of OsLAP6/OsPKS1 was responsible for the mutant phenotype. OsLAP6/OsPKS1 is an orthologous gene of Arabidopsis PKSA/LAP6, which functions in sporopollenin metabolism. Several other loss-of-function mutants of OsLAP6/OsPKS1 generated by the CRISPR/Cas9 genomic editing tool also exhibited the same phenotype of male sterility. Our cellular analysis suggested that OsLAP6/OsPKS1 might regulate pollen exine formation by affecting bacula elongation. Expression examination indicated that OsLAP6/OsPKS1 is specifically expressed in tapetum, and its product is localized to the endoplasmic reticulum (ER). Protein sequence analysis indicated that OsLAP6/OsPKS1 is conserved in land plants.

Conclusions

OsLAP6/OsPKS1 is a critical molecular switch for rice male fertility by participating in a conserved sporopollenin precursor biosynthetic pathway in land plants. Manipulation of OsLAP6/OsPKS1 has potential for application in hybrid rice breeding.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号