首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
对离体培养植物细胞(胡萝卜细胞和烟草细胞)的表面进行了扫描电镜观察。结果表明,愈伤组织表面细胞的表面上分布有颗粒和纤丝。颗粒的形态、大小及分布及各种各样,有些颗粒顶部凹陷成小坑。纤丝大多与颗粒相连,在有些细胞表面上纤丝交织成网络。对这些颗粒和纤丝的分泌活动及调节,以及颗粒和纤丝在细胞之间粘连中的作用,进行了讨论。  相似文献   

2.
In estimating responses of crops to future climate realisations, it is necessary to understand and differentiate sources of uncertainty. This paper considers the specific aspect of input weather data quality from a Regional Climate Model (RCM) leading to differences in estimates made by three crop models. The availability of hindcast RCM estimates enables comparison of crop model outputs derived from observed and modelled weather data. Errors in estimating the past climate implies biases in future projections, and thus affect modelled crop responses. We investigate the complexities in using climate model projections representing different spatial scales within climate change impacts and adaptation studies. This is illustrated by simulating spring barley with three crop models run using site-specific observed (12 UK sites), original (50 × 50 km) and bias corrected downscaled (site-specific) hindcast (1960–1990) weather data from the HadRM3 RCM. Though the bias correction downscaling method improved the match between observed and hindcast data, this did not always translate into better matching of crop model estimates. At four sites the original HadRM3 data produced near identical mean simulated yield values as from the observed weather data, despite evaluated (observed-hindcast) differences. This is likely due to compensating errors in the input weather data and non-linearity in the crop models processes, making interpretation of results problematic. Understanding how biases in climate data manifest themselves in individual crop models gives greater confidence in the utility of the estimates produced using downscaled future climate projections and crop model ensembles. The results have implications on how future projections of climate change impacts are interpreted. Fundamentally, considerable care is required in determining the impact weather data sources have in climate change impact and adaptation studies, whether from individual models or ensembles.  相似文献   

3.
基于连续投影算法的小麦湿面筋近红外校正模型优化   总被引:3,自引:1,他引:2  
为减少建模过程中的计算量、提高模型的稳健性及预测精度,将连续投影算法用于小麦湿面筋近红外校正模型的建立。首先采用SPXY算法选择具有代表性的校正集样本,然后对光谱数据作不同预处理,增强光谱特征;运用连续投影算法对原始光谱和预处理后的光谱进行敏感波点提取,进而分别建立多元线性回归校正模型。测试结果表明,对光谱标准正态变量变换后利用连续投影算法提取敏感波点所建多元线性回归模型预测效果最好,预测均方根误差和预测相关系数分别为1.3332和0.94319,优于同等条件下建立的偏最小二乘回归模型。  相似文献   

4.
为了快速、简便、准确地测定小麦蛋白质的含量,本文提出了应用近红外光谱分析技术结合遗传算法(GA)的BP神经网络的建模方法。采用SPXY算法对光谱数据进行了合理划分,并运用连续投影算法(SPA)将预处理过的数据压缩,对光谱数据提取最佳敏感波点作为GA-BP神经网络的输入,建立小麦蛋白质含量的校正模型。模型的预测均方根误差和预测相关系数为1.3379和0.979,并与BP神经网络所建立的校正模型进行了比较。结果表明:GA-BP神经网络所建模型收敛速度快、训练时间短、准确度也较高,能够实现对小麦蛋白质含量快速高效的检测。  相似文献   

5.
We investigated the impact of GCM-projected climate change on dryland crop rotations of wheat-fallow and wheat-corn-fallow in the Central Great Plains (Akron in Colorado, USA) using the CERES 4.0 crop modules in RZWQM2. The climate change scenarios for CO2, temperature, and precipitation were produced by 22 GCM projections for Colorado based on the A1B scenario. The climate change for years 2050 and 2075 was super-imposed on measured 30-year-baseline climate data (1989–2008). For all the cropping rotations and projection years, simulated yields of wheat and corn decreased significantly (P < 0.05) with increasing temperatures. The yield declines due to the elevated temperatures should be attributable to the shortening of crop maturity duration and concurrent decreases in soil water and evapotranspiration. The model was also projected to decrease crop yields for the combined climate change scenarios of CO2, temperature, and precipitation in the dryland cropping rotations.  相似文献   

6.
Abstract: This paper discusses my collaboration with Harold Brookfield in the study of Chimbu land and society. We began in 1958 at the Australian National University and worked together until 1965 in joint fieldwork and writing, and then collaborated occasionally after that. It began both of our professional contributions that continued throughout our professional careers. The work could never have been done by one person, either geographer or anthropologist. Our joint paper of 1990 may be the only multigenerational land study in anthropology/geography. Our long‐term study of the Mintima area is a constant reminder of the hazards of short‐sighted development projections. Brookfield always knew what he wanted to find out, and always constructed original methods of research and analysis. The Chimbu–Mintima maps were redrawn many times with many different measuring methods, new air photography and increasing precision. He always connected any specific study and report of work to general theory and would compare a wide range of related findings in other places. His work is a model of scientific method and its place in geographical theory.  相似文献   

7.
易翔  吕新  张立福  田敏  张泽  范向龙 《作物杂志》2023,39(2):245-3287
为分析棉花叶片全氮含量(LNC)与冠层光谱反射特征的关系,实现作物生长过程中氮素水平的快速、准确和无损监测,以石河子大学教学试验场2019年棉花小区试验为基础,选用多元散射校正、SG平滑算法、变量标准化校正和一阶导数4种方法分别对棉花冠层原始光谱进行预处理,使用随机蛙跳(random frog,RF)和连续投影算法(successive projections algorithm,SPA)筛选特征波长并结合偏最小二乘回归法建立棉花LNC光谱估算模型。RF和SPA算法从棉花冠层398~1000nm的光谱中优选5组LNC的敏感特征波段,波段数目下降了93.0%~96.3%,有效降低了光谱的冗余信息;基于SPA算法筛选的敏感波段构建的LNC偏最小二乘回归模型的决定系数和均方根误差分别为0.52和2.55,模型验证的决定系数和均方根误差分别为0.70和2.37,模型具有较好的精度和稳定性,可作为棉花LNC的无人机高光谱估算方法。  相似文献   

8.
Precipitation has generally increased in Norway during the last century, and climate projections indicate a further increase. The growing season has also become longer with higher temperatures, particularly in autumn. Previous studies have shown negative effects of high temperatures and, depending upon temperature conditions, contrasting effects of waterlogging on hardening capacity of timothy. We studied effects of waterlogging on seedlings of timothy (Phleum pratense, cv. Noreng) under three pre-acclimation temperatures: 3°C, 7°C, 12°C, and in autumn natural light in a phytotron at Holt, Tromsø (69°N). After temperature treatments, all plants were cold acclimated at 2°C for three weeks under continued waterlogging treatments. Freezing tolerance was determined by intact plants being frozen in pots at incremental temperature decreases in a programmable freezer. Waterlogging resulted in a higher probability of death after freezing, and a significantly reduced regrowth after three weeks at 18°C, 24 hrs light in a greenhouse. Increasing pre-acclimation temperatures also had a clear negative effect on freezing tolerance, but there was no interaction between temperatures and waterlogging. The results indicate that waterlogging may have negative implications for hardening of timothy and may contribute to reduced winter survival under the projected increase in autumn temperatures and precipitation.  相似文献   

9.
In the Mekong Region, the Asian Development Bank and partners have promoted economic corridors as a way to achieve regional economic integration and growth. This study evaluates how a transboundary policy narrative of shared prosperity around the East–West Economic Corridor programme emerged, and then how it was elaborated and used, taking a set of border policies of the government of Thailand as cases. For two decades the shared prosperity narrative has been used by a coalition of elite actors to support a programme of investments in road infrastructure, as well as to push for agreements on trade, border logistics, investment and tourism. The shared prosperity narrative has helped maintain support for the programme despite its failures to meet projections and expectations. Although criticised by civil society and experts from time to time, no coherent shared counter‐narrative emerged. Policy elites in Thailand have used the transboundary narrative to justify investments in special economic zones, and transport infrastructure near the border and inside neighbouring countries. Thailand has also reproduced the narrative in support of efforts to bolster tourism cooperation, and negotiate cross‐border trade and logistics agreements. Roads and bridges have been built, underlining how discursive practices have material consequences and reinforce the narrative.  相似文献   

10.
The possible impact of climate change on frequency and severity of weather extremes is hotly debated among climate scientists. Weather extremes can have a significant impact on agricultural production, but their effect is often unclear; this due to interaction with other factors that affect yield and due to lack of precise definitions of relevant weather extremes. We show that an empirical analysis of historical yields can help to identifying such rare, high impact climate events. A reconstructed time series of ware potato production in Flevoland (The Netherlands) over the last 60 years (1951-2010) enabled us to identify the two main yield affecting weather extremes. In around 10% of the years yield anomalies were larger than −20%. We found that these anomalies could be explained from two weather extremes (and no other), namely a wet start of the growing season and wet end of the growing season. We derived quantitative, meteorological definitions of these extremes. Climate change scenarios for 2050 show either no change or increased frequency of the two extremes. We demonstrate there is large uncertainty about past and future frequencies of the extremes, caused by a lack of sufficiently long historical weather records and uncertainties in climate change projections on precipitation. The approach to identify weather extremes presented here is generally applicable and shows the importance of long term crop and weather observations for investigating key climatic risks to production.  相似文献   

11.
Increasing heat and water stress are important threats to wheat growth in rain-fed conditions. Using climate scenario-based projections from the Coupled Model Intercomparison Project phase 5 (CMIP5), we analysed changes in the probability of heat stress around wheat flowering and relative yield loss due to water stress at six locations in eastern Australia. As a consequence of warmer average temperatures, wheat flowering occurred earlier, but the probability of heat stress around flowering still increased by about 3.8%–6.2%. Simulated potential yield across six sites increased on average by about 2.5% regardless of the emission scenario. However, simulated water-limited yield tended to decline at wet and cool locations under future climate while increased at warm and dry locations. Soils with higher plant available water capacity (PAWC) showed a lower response of water-limited yield to rainfall changes except at very dry sites, which means soils with high PAWC were less affected by rainfall changes compared with soils with low PAWC. Our results also indicated that a drought stress index decreased with increasing PAWC and then stagnated at high PAWC. Under high emission scenario RCP8.5, drought stress was expected to decline or stay about the same due to elevated CO2 compensation effect. Therefore, to maintain or increase yield potential in response to the projected climate change, increasing cultivar tolerance to heat stress and improving crop management to reduce impacts of water stress on lower plant available water holding soils should be a priority for the genetic improvement of wheat in eastern Australia.  相似文献   

12.
Crop models are suitable tools to assess the potential impacts of climate change on crop productivity. While the associated assessment reports have been focused on major rice production regions, there is little information on how climate change will impact the future rice crop production in mountainous highland regions. This study investigated effects of climate change on yield of paddy rice (Oryza sativa) in mountainous highland terrains of Korea using the CERES-Rice 4.0 crop model. The model was first calibrated and validated based on observed data and then applied to simulations for the future projections of rice yield in a typical mountainous terrain which borders North and South Korea, the Haean Basin in Kangwon Province, Republic of Korea. Rice yield in the highland terrain was projected to increase by 2050 and 2100 primarily due to elevated CO2 concentration. This effect of CO2 fertilization on yield (+10.9% in 2050 and +20.0% in 2100) was also responsible for increases in water-use efficiency and nitrogen-use efficiency. With management options, such as planting date shift and increasing nitrogen application, additional yield gains were predicted in response to the future climate in this area. We also found that improving genetic traits should be another option to get further yield increases. All in all, climate change in mountainous highland areas should positively influence on paddy rice productivity.  相似文献   

13.
A heritability-adjusted GGE biplot for test environment evaluation   总被引:2,自引:0,他引:2  
Test environment evaluation has become an increasingly important issue in plant breeding. In the context of indirect selection, a test environment can be characterized by two parameters: the heritability in the test environment and its genetic correlation with the target environment. In the context of GGE biplot analysis, a test environment is similarly characterized by two parameters: its discrimination power and its similarity with other environments. This paper investigates the relationships between GGE biplots based on different data scaling methods and the theory of indirect selection, and introduces a heritability-adjusted (HA) GGE biplot. We demonstrate that the vector length of an environment in the HA-GGE biplot approximates the square root heritability (\( \sqrt H \)) within the environment and that the cosine of the angle between the vectors of two environments approximates the genetic correlation (r) between them. Moreover, projections of vectors of test environments onto that of a target environment approximate values of \( r\sqrt H \), which are proportional to the predicted genetic gain expected in the target environment from indirect selection in the test environments at a constant selection intensity. Thus, the HA-GGE biplot graphically displays the relative utility of environments in terms of selection response. Therefore, the HA-GGE biplot is the preferred GGE biplot for test environment evaluation. It is also the appropriate GGE biplot for genotype evaluation because it weights information from the different environments proportional to their within-environment square root heritability. Approximation of the HA-GGE biplot by other types of GGE biplots was discussed.  相似文献   

14.
According to climate change projections, winter cereal production will likely be exposed to increasing air temperatures and prolonged summer droughts. During the 2009/10 and 2010/11 growing seasons at Braunschweig, Germany, four cultivars each of barley (Hordeum vulgare L.), rye (Secale cereale L.), triticale (Triticosecale Wittmack), and wheat (Triticum aestivum L.) were grown in a mobile rain-out shelter with a nearby irrigated control to determine the maximal impact of water shortage on phenology, physiology, and yield. The rain-out shelter plots were subjected to severe drought stress by withholding rain during tillering to harvest. Permanent prevention of water supply caused an average 2 day earlier heading and flowering and a 19 day earlier loss of green leaves. Midday thermal images revealed consistently higher canopy temperatures under drought stress than under well-watered conditions. The drought related temperature increase was 3.7 K across crops and years. Contrary to canopy temperature, the spectral moisture stress index and the normalized difference water index did not clearly separate the dry from the wet environment. The drought-induced yield loss averaged 5.9 t ha−1 (63%) for grain dry matter and 9.2 t ha−1 (51%) for above-ground dry matter. Among the four cereal species, rye produced the highest grain and above-ground dry matter under both dry and wet conditions, and also had the coolest canopy. Based on the results of the present study, it is expected that rye will cope best, and barley second-best with the drier conditions of the changing climate.  相似文献   

15.
The studies on anthropogenic climate change performed in the last decade over Europe show consistent projections of increases in temperature and different patterns of precipitation with widespread increases in northern Europe and decreases over parts of southern and eastern Europe. In many countries and in recent years there is a tendency towards cereal grain yield stagnation and increased yield variability. Some of these trends may have been influenced by the recent climatic changes over Europe.A set of qualitative and quantitative questionnaires on perceived risks and foreseen impacts of climate and climate change on agriculture in Europe was distributed to agro-climatic and agronomy experts in 26 countries. Europe was divided into 13 Environmental Zones (EZ). In total, we had 50 individual responses for specific EZ. The questionnaires provided both country and EZ specific information on the: (1) main vulnerabilities of crops and cropping systems under present climate; (2) estimates of climate change impacts on the production of nine selected crops; (3) possible adaptation options as well as (4) adaptation observed so far. In addition we focused on the overall awareness and presence of warning and decision support systems with relevance for adaptation to climate change.The results show that farmers across Europe are currently adapting to climate change, in particular in terms of changing timing of cultivation and selecting other crop species and cultivars. The responses in the questionnaires show a surprisingly high proportion of negative expectations concerning the impacts of climate change on crops and crop production throughout Europe, even in the cool temperate northern European countries.The expected impacts, both positive and negative, are just as large in northern Europe as in the Mediterranean countries, and this is largely linked with the possibilities for effective adaptation to maintain current yields. The most negative effects were found for the continental climate in the Pannonian zone, which includes Hungary, Serbia, Bulgaria and Romania. This region will suffer from increased incidents of heat waves and droughts without possibilities for effectively shifting crop cultivation to other parts of the years. A wide range of adaptation options exists in most European regions to mitigate many of the negative impacts of climate change on crop production in Europe. However, considering all effects of climate change and possibilties for adaptation, impacts are still mostly negative in wide regions across Europe.  相似文献   

16.
This paper offers projections of potential effects of climate change on rusts of wheat and how we should factor in a changing climate when planning for the future management of these diseases. Even though the rusts of wheat have been extensively studied internationally, there is a paucity of information on the likely effects of a changing climate on the rusts and their influence on wheat production. Due to the lack of published empirical research we relied on the few published studies of other plant diseases, our own unpublished work and relevant information from the vast literature on rusts of wheat to prepare this overview. Three broad areas of potential risks from a changing climate were described: increased loss from wheat rusts, new rust pathotypes evolving faster and the reduced effectiveness of rust resistances. Increased biomass of wheat crops grown in the presence of elevated CO2 concentrations and higher temperatures will increase the leaf area available for attack by the pathogen leading to increased inoculum production. If changed weather conditions were to accelerate the life cycle of a pathogen, the increased inoculum can lead to severe rust epidemics in many environments. Likewise should the effects of climate change result in more conducive conditions for rust development there will also be a corresponding increase in the rate of evolution of new pathotypes which could increase the rate of appearance of new virulences. The effectiveness of some rust resistance genes is influenced by temperature and crop development stage. Climate change may directly or indirectly influence the effectiveness of some resistance genes but this can not be ascertained due to a complete lack of knowledge. Since disease resistance breeding is a long term strategy it is important to determine if any of the important genes may become less effective due to climate change. Studies must be made to acquire new information on the rust disease triangle to increase the adaptive capacity of wheat under climate change. Leadership within the Borlaug Global Rust Initiative (BGRI) is needed to broker research on rust evolution and the durability of resistance under climate change.  相似文献   

17.
Climatic conditions and hence climate change influence agriculture. Most studies that addressed the vulnerability of agriculture to climate change have focused on potential impacts without considering adaptation. When adaptation strategies are considered, socio-economic conditions and farm management are often ignored, but these strongly influence current farm performance and are likely to also influence adaptation to future changes. This study analysed the adaptation of farmers and regions in the European Union to prevailing climatic conditions, climate change and climate variability in the last decades (1990–2003) in the context of other conditions and changes. We compared (1) responses in crop yields with responses in farmers’ income, (2) responses to spatial climate variability with responses to temporal climate variability, (3) farm level responses with regional level responses and (4) potential climate impacts (based on crop models) with actual climate impacts (based on farm accountancy data). Results indicated that impacts on crop yields cannot directly be translated to impacts on farmers’ income, as farmers adapt by changing crop rotations and inputs. Secondly, the impacts of climatic conditions on spatial variability in crop yields and farmers’ income, with generally lower yields in warmer climates, is different from the impacts of temporal variability in climate, for which more heterogeneous patterns are observed across regions in Europe. Thirdly, actual impacts of climate change and variability are largely dependent on farm characteristics (e.g. intensity, size, land use), which influence management and adaptation. To accurately understand impacts and adaptation, assessments should consider responses at different levels of organization. As different farm types adapt differently, a larger diversity in farm types reduces impacts of climate variability at regional level, but certain farm types may still be vulnerable. Lastly, we observed that management and adaptation can largely reduce the potential impacts of climate change and climate variability on crop yields and farmers’ income. We conclude that for reliable projections of the impacts of climate change on agriculture, adaptation should not be seen anymore as a last step in a vulnerability assessment, but as integrated part of the models used to simulate crop yields, farmers’ income and other indicators related to agricultural performance.  相似文献   

18.
Higher than optimum temperatures during cotton's (Gossypium hirsutum L.) growing season is a common occurrence in cotton‐growing areas around the world with negative consequences on productivity. According to climate projections, night temperatures are expected to increase more than day temperatures. The objective of this study was to monitor and record the effects of higher than optimum night temperatures during cotton's early reproductive stage on physiological (photosynthesis, respiration and membrane damage) and biochemical (leaf adenosine triphosphate (ATP) levels, as well as glutathione reductase (GR) content and soluble carbohydrate concentrations of the leaf subtending the flower buds. Number, dry weight, carbohydrate concentrations and GR levels of flower buds were also measured at the end of the experiment. Growth chamber experiments were conducted using cotton cultivar ST 5288 B2RF and treatments consisted of normal day/night temperatures (32/24 °C) and high night temperatures (32/30 °C) for 7 days at squaring (approximately 4 weeks after planting). The results indicated that high night temperatures had an immediate effect on leaf respiration rates and membrane damage by significantly increasing them compared to the control and a similar pattern was observed on leaf photosynthesis and ATP levels that were markedly decreased. Leaf GR levels were also substantially increased under conditions of high night temperatures, in contrast to flower bud GR content which remained unaffected. High night temperatures had a significant effect on leaf carbohydrate concentrations resulting in significant decreases in hexose, sucrose and starch levels. Nevertheless, flower bud sucrose content was substantially increased under conditions of high night temperatures, while hexose content was decreased and starch concentrations remained unaffected. A detrimental effect of elevated night temperatures on the number of flower buds per plant and on the dry weight of flower buds was observed, and it was concluded that high night temperatures had a negative effect on cotton flower bud production due to disruptions on flower bud carbohydrate metabolism as a result of the insufficient GR response.  相似文献   

19.
Because of the complexity of farming systems, the combined effects of farm management practices on nitrogen availability, nitrogen uptake by the crop and crop performance are not well understood. To evaluate the effects of the temporal and spatial variability of management practices, we used data from seventeen farms and projections to latent structures analysis (PLS) to examine the contribution of 11 farm characteristics and 18 field management practices on barley performance during the period 2009–2012. Farm types were mixed (crop-livestock) and arable and were categorized as old organic, young organic or conventional farms. The barley performance indicators included nitrogen concentrations in biomass (in grain and whole biomass) and dry matter at two growing stages. Fourteen out of 29 farm characteristics and field management practices analysed best explained the variation of the barley performance indicators, at the level of 56%, while model cross-validation revealed a goodness of prediction of 31%. Greater crop diversification on farm, e.g., a high proportion of rotational leys and pasture, which was mostly observed among old organic farms, positively affected grain nitrogen concentration. The highest average grain nitrogen concentration was found in old organic farms (2.3% vs. 1.7 and 1.4% for conventional and young organic farms, respectively). The total nitrogen translocated in grain was highest among conventional farms (80 kg ha−1 vs. 33 and 39 kg ha−1 for young and old organic farms, respectively). The use of mineral fertilizers and pesticides increased biomass leading to significant differences in average grain yield which became more than double for conventional farms (477 ± 24 g m−2) compared to organic farms (223 ± 37 and 196 ± 32 g m−2 for young and old organic farms, respectively). In addition to the importance of weed control, management of crop residues and the organic fertilizer application methods in the current and three previous years, were identified as important factors affecting the barley performance indicators that need closer investigation. With the PLS approach, we were able to highlight the management practices most relevant to barley performance in different farm types. The use of mineral fertilizers and pesticides on conventional farms was related to high cereal crop biomass. Organic management practices in old organic farms increased barley N concentration but there is a need for improved management practices to increase biomass production and grain yield. Weed control, inclusion of more leys in rotation and organic fertilizer application techniques are some of the examples of management practices to be improved for higher N concentrations and biomass yields on organic farms.  相似文献   

20.
近年来,随着人们对农产品品质的重视,关于农产品品质的无损检测新技术研究尤为迫切。主要从介电特性的基本原理、主要的测定方法、影响介电特性的主要因素3个主要方面进行了介绍,详细了解该方法在农产品无损检测中的最新应用,并为新技术在新疆特色农产品品质检测的应用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号