首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Mediterranean evergreen oak woodlands of southern Portugal, the main tree species are Quercus ilex ssp. rotundifolia Lam. (holm oak) and Quercus suber L. (cork oak). We studied a savannah-type woodland where these species coexist, with the aim of better understanding the mechanisms of tree adaptation to seasonal drought. In both species, seasonal variations in transpiration and predawn leaf water potential showed a maximum in spring followed by a decline through the rainless summer and a recovery with autumn rainfall. Although the observed decrease in predawn leaf water potential in summer indicates soil water depletion, trees maintained transpiration rates above 0.7 mm day(-1) during the summer drought. By that time, more than 70% of the transpired water was being taken from groundwater sources. The daily fluctuations in soil water content suggest that some root uptake of groundwater was mediated through the upper soil layers by hydraulic lift. During the dry season, Q. ilex maintained higher predawn leaf water potentials, canopy conductances and transpiration rates than Q. suber. The higher water status of Q. ilex was likely associated with their deeper root systems compared with Q. suber. Whole-tree hydraulic conductance and minimum midday leaf water potential were lower in Q. ilex, indicating that Q. ilex was more tolerant to drought than Q. suber. Overall, Q. ilex seemed to have more effective drought avoidance and drought tolerance mechanisms than Q. suber.  相似文献   

2.
ABSTRACT

A natural holm oak forest was selectively thinned to test thinning as a tool to reduce tree mortality, increase productivity, and reverse the recent regression of the dominant species (Quercus ilex) induced by climate change. Thinning increased aboveground productivity and reduced stem mortality in this Mediterranean forest during four years just after thinning, contributing to the maintenance of forest functioning under changing climatic conditions. Q. ilex was the only species positively affected by the thinning: stem growth increased for all stem sizes, and mortality was significantly lower in thinned plots. On the contrary, mortality rates of Phillyrea latifolia and Arbutus unedo were not significantly lower. Stem growth increased for P. latifolia only in the smallest stem-size class. Our results highlight the suitability of selective thinning for improving the forest productivity and ensuring the conservation of Mediterranean coppices. Other benefits of selective thinning, such as a decrease in the risk of fire dispersion and an increase in the water supply for human populations, are also discussed.  相似文献   

3.
The physiological responses to water deficits of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) were studied under Mediterranean mountain climate. Minimum leaf water potentials were ?3.2 MPa for oak and ?2.1 MPa for pine, with higher predawn values for pubescent oak. Relative sap flow declined in both species when vapour pressure deficit (D) went above ca. 1.2 kPa, but stomatal control was stronger for pine during the 2003 summer drought. P. sylvestris plant hydraulic conductance on a half-total leaf area basis (k L,s?1) was 1.2–2.6 times higher than the values shown by Q. pubescens, and it showed a considerably steeper decrease during summer. Leaf-level gas exchange was positively related to k L,s?1 in both species. Scots pine was more vulnerable to xylem embolism and closed stomata to prevent substantial conductivity losses. The results of this study confirm that pubescent oak is more resistant to extreme drought events.  相似文献   

4.
We studied stomatal responses to decreasing predawn water potential (Psipd) and increasing leaf-to-air water vapor pressure difference (VPD) of co-occurring woody Mediterranean species with contrasting leaf habits and growth form. The species included two evergreen oaks (Quercus ilex subsp. ballota (Desf.) Samp. and Q. suber L.), two deciduous oaks (Q. faginea Lam. and Q. pyrenaica Willd.) and two deciduous shrubs (Pyrus bourgaeana Decne. and Crataegus monogyna Jacq.). Our main objective was to determine if stomatal sensitivity is related to differences in leaf life span and leaf habit. The deciduous shrubs had the least conservative water-use characteristics, with relatively high stomatal conductance and low stomatal sensitivity to soil and atmospheric drought. As a result, Psipd decreased greatly in both species during the growing season, resulting in early leaf abscission in the summer. The deciduous oaks showed intermediate water-use characteristics, having maximum stomatal conductances and CO2 assimilation rates similar to or even higher than those of the deciduous shrubs. However, they had greater stomatal sensitivity to soil drying and showed less negative Psipd values than the deciduous shrubs. The evergreen oaks, and especially the species with the greatest leaf longevity, Q. ilex, exhibited the most conservative water-use behavior, having lower maximum stomatal conductances and greater sensitivity to VPD than the deciduous species. As a result, Psipd decreased less during the growing season in the evergreens than in the deciduous species, which may contribute to greater leaf longevity by avoiding irreversible damage during the summer drought. However, the combination of low maximum CO2 assimilation rates and high stomatal sensitivity to drought must have a negative impact on the final carbon budget of leaves with a long life span.  相似文献   

5.
The evergreen holm oak Quercus ilex L. is the most representative tree in Mediterranean forests. Accurate estimation of the limiting factors of photosynthesis for Q. ilex and the prediction of ecosystem water-use efficiency by mechanistic models can be achieved only by establishing whether this species shows heterogenic stomatal aperture, and, if so, the circumstances in which this occurs. Here, we collected gas-exchange and chlorophyll fluorescence data in Q. ilex leaves from a nursery to measure the effects of stomatal oscillations on PSII quantum yield (Φ(PSII)) under water stress. Stomatal conductance (g(s)) was used as an integrative indicator of the degree of water stress. Images of chlorophyll fluorescence showed heterogeneous Φ(PSII) when g(s) was <50 mmol H(2)O m(-2) s(-1), representative of severe drought and corresponding to a container capacity <45%. Stomatal patchiness was related to a coefficient of variation (CV) of Φ(PSII) values >2.5%. A parallel study in the forest confirmed heterogeneous Φ(PSII) values in leaves in response to declining water availability. Three kinds of Q. ilex individuals were distinguished: those resprouting after a clear-cut (resprouts, R); intact individuals growing in the same clear-cut area as resprouts (controls, C); and intact individuals in a nearby, undisturbed area (forest controls, CF). Patchiness increased in C and CF in response to increasing drought from early May to late July, whereas in R, Φ(PSII) values were maintained as a result of their improved water relations since the pre-existing roots were associated with a smaller aerial biomass. Patchiness was related to a % CV of Φ(PSII) values >4 and associated in the summer with mean g(s) values of 30 mmol H(2)O m(-2) s(-1). Under milder drought in spring, Φ(PSII) patchiness was less strictly related to g(s) variations, pointing to biochemical limitants of photosynthesis. The occurrence of heterogenic photosynthesis caused by patchy stomatal closure in Q. ilex during severe drought should be taken into account in ecosystem modelling in which harsher water stress conditions associated with climate change are predicted.  相似文献   

6.
Stöhr A  Lösch R 《Tree physiology》2004,24(2):169-180
We report on diurnal and seasonal variations in sap flow rate and stem water potential of Fraxinus excelsior L. saplings growing at the edge of a Fraxino-Aceretum forest in western Germany. Because of shallow soil, the trees were subjected to drought in summer. When soil water availability was not limiting, sap flow rate was related to changes in solar radiation and vapor pressure deficit. Maximum transpiration rates per leaf area were 3.5-7.4 mmol m-2 s-1, and maximum daily totals were 1.7-3.3 kg m-2 day-1. Under drought conditions, stem water potential dropped to midday minima of -2.6 to -3.5 MPa and sap flow rate was strongly related to this parameter. After the drought period, reduced apparent (whole-plant) hydraulic conductance was observed, which was attributed to a continued reduction in stomatal conductance after the drought stress had ceased. A model was developed that linked sap flow rate directly to climatic variables and stem water potential. Good correlation between measured and simulated sap flow rates allowed the model to be used for data interpretation.  相似文献   

7.
We compared seedling water relations of three Mediterranean Quercus species (the evergreen shrub Q. coccifera L., the evergreen tree Q. ilex L. subsp. ballota (Desf.) Samp. and the deciduous or marcescent tree Q. faginea L.). We also explored seedling potential for acclimation to contrasting growing conditions. In March, 1-year-old seedlings of the three species were planted in pots and grown outdoors in a factorial combination of two irrigation regimes (daily (HW) and alternate day watering (LW)) and two irradiances (43 and 100% of full sunlight). At the end of July, predawn and midday water potentials (Psi(pd), Psi(md)) were measured, and pressure-volume (P-V) curves were obtained for mature current-year shoots. Species exhibited similar Psi(pd) and Psi(md) values, but differed in leaf morphology and water relations. The evergreens possessed larger leaf mass per area (LMA) and were able to maintain positive turgor pressure at lower water potentials than the deciduous species because of their lower osmotic potential at full turgor. However, the three species had similar relative water contents at the turgor loss point because Q. faginea compensated for its higher osmotic potential with greater cell wall elasticity. Values of Psi(pd) had a mean of -1.12 MPa in LW and -0.63 MPa in HW, and Psi(md) had a mean of -1.13 MPa in full sunlight and -1.64 MPa in shade, where seedlings exhibited lower LMA. However, the P-V curve traits were unaffected by the treatments. Our results suggest that Q. faginea seedlings combine the water-use characteristics of mesic deciduous oak and the drought-tolerance of xeric evergreen oak. The ability of Q. coccifera to colonize drier sites than Q. ilex was not a result of higher drought tolerance, but rather may be associated with other dehydration postponement mechanisms including drought-induced leaf shedding. The lack of treatment effects may reflect a relatively low contrast between treatment regimes, or a low inherent responsiveness of these traits in the study species, or both.  相似文献   

8.
We sought to explain the declining distribution in the Balearic Islands of the endemic shrub Rhamnus ludovici-salvatoris R. Chodat, by comparing its photosynthetic response to drought with that of several widely distributed, competing Mediterranean species (R. alaternus L., Quercus ilex L., Pistacia lentiscus L., Q. humilis Mill. and P. terebinthus L.). All of the study species, except for the two Rhamnus species, avoided desiccation by rapidly adjusting their stomatal conductance at the onset of drought, and maintaining constant leaf relative water content. The two Rhamnus species showed desiccation-tolerant behavior; i.e., as drought progressed, their predawn leaf relative water content decreased simultaneously with stomatal closure. All four desiccation-avoiding species showed a significant positive correlation between leaf thermal dissipation (estimated by the fluorescence parameter NPQ (non-photochemical quenching)) and the de-epoxidation state of the xanthophyll cycle (DPS). The two Rhamnus species exhibited maximum DPS regardless of treatment, but only R. alaternus increased NPQ in response to drought. Rhamnus ludovici-salvatoris had a high ratio of photorespiration to photosynthesis and a low intrinsic water-use efficiency; traits that are likely to be unfavorable for plant productivity under arid conditions. It also had the lowest DPS and thermal dissipation among the six species. We conclude that the photosynthetic traits of R. ludovici-salvatoris account for its limited ability to compete with other species in the Mediterranean region.  相似文献   

9.
In 2003, Central Europe experienced the warmest summer on record combined with unusually low precipitation. We studied plant water relations and phenology in a 100-year- old mixed deciduous forest on a slope (no ground water table) near Basel using the Swiss Canopy Crane (SCC). The drought lasted from early June to mid September. We studied five deciduous tree species; half of the individuals were exposed to elevated CO(2) concentration ([CO(2)]) (530 ppm) using a free-air, atmospheric CO(2)-enrichment system. In late July, after the first eight weeks of drought, mean predawn leaf water potential about 30 m above ground was -0.9 MPa across all trees, dropping to a mean of -1.5 MPa in mid-August when the top 1 m of the soil profile had no plant accessible moisture. Mean stomatal conductance and rates of maximum net photosynthesis decreased considerably in mid-August across all species. However, daily peak values of sap flow remained surprisingly constant over the whole period in Quercus petraea (Matt.) Liebl., and decreased to only about half of the early summer maxima in Fagus sylvatica L. and Carpinus betulus L. (stomatal down- regulation of flux). Although we detected no differences in most parameters between CO(2)-treated and control trees, predawn leaf water potential tended to be less negative in trees exposed to elevated [CO(2)]. Leaf longevity was greater in 2003 compared with the previous years, but the seasonal increase in stem basal area reached only about 75% of that in previous years. Our data suggest that the investigated tree species, particularly Q. petraea, did not experience severe water stress. However, an increased frequency of such exceptionally dry summers may have a more serious impact than a single event and would give Q. petraea a competitive advantage in the long run.  相似文献   

10.
Environmental controls on sap flow in a northern hardwood forest   总被引:1,自引:0,他引:1  
Our objective was to gain a detailed understanding of how photosynthetically active radiation (PAR), vapor pressure deficit (D) and soil water interact to control transpiration in the dominant canopy species of a mixed hardwood forest in northern Lower Michigan. An improved understanding of how these environmental factors affect whole-tree water use in unmanaged ecosystems is necessary in assessing the consequences of climate change on the terrestrial water cycle. We used continuously heated sap flow sensors to measure transpiration in mature trees of four species during two successive drought events. The measurements were scaled to the stand level for comparison with eddy covariance estimates of ecosystem water flux (Fw). Photosynthetically active radiation and D together explained 82% of the daytime hourly variation in plot-level transpiration, and low soil water content generally resulted in increased stomatal sensitivity to increasing D. There were also species-specific responses to drought. Quercus rubra L. showed low water use during both dry and wet conditions, and during periods of high D. Among the study species, Acer rubrum L. showed the greatest degree of stomatal closure in response to low soil water availability. Moderate increases in stomatal sensitivity to D during dry periods were observed in Populus grandidentata Michx. and Betula papyrifera Marsh. Sap flow scaled to the plot level and Fw demonstrated similar temporal patterns of water loss suggesting that the mechanisms controlling sap flow of an individual tree also control ecosystem evapotranspiration. However, the absolute magnitude of scaled sap flow estimates was consistently lower than Fw. We conclude that species-specific responses to PAR, D and soil water content are key elements to understanding current and future water fluxes in this ecosystem.  相似文献   

11.
Recent studies have shown that, in some species, xylem hydraulic conductivity (K(h)) increases with increasing cation concentration of xylem sap. Evidence indicates that K(h) increases as a result of the de-swelling of pit membrane pectins caused by cation neutralization of polygalacturonanes. We tested whether this ionic effect partly compensates for the embolism-induced loss of stem hydraulic conductivity (PLC) by increasing K(h) of functioning conduits. We report changes in PLC, leaf water status and potassium concentration ([K(+)]) of xylem sap measured in April and July in two evergreens (Ceratonia siliqua L. and Phytolacca dioica L.) and one deciduous tree (Platanus orientalis L.) growing in the field in Sicily. In summer, Ceratonia siliqua and Phytolacca dioica showed similar native embolism (PLC = 30-40%) and [K(+)] of xylem sap (14 to 17 mM), and K(h) of stems perfused with 10 to 25 mM KCl increased by 15 to 18% compared with K(h) of stems perfused with a low concentration of a multi-ionic solution. In contrast, native [K(+)] of sap of Platanus orientalis was 50% of that in the two evergreens in summer, with a parallel lack of detectable changes in PLC that was below 10% in both spring and summer. The ionic effect was PLC-dependent: the enhancement of K(h) induced by 10 to 25 mM KCl changed from 15% for fully hydrated stems to 50-75% for stems with PLC = 50%. In Ceratonia siliqua, PLC was less than 10% in spring and about 40% in summer; concurrently, xylem sap [K(+)] increased from 3 to about 15 mM. This [K(+)] at the recorded PLC would cause an increase in residual K(h) of about 30%. Hence, the actual reduction in water transport capacity of Ceratonia siliqua stems in summer is about 20%. Similar calculations for Phytolacca dioica suggest that the actual loss of hydraulic conductivity in stems of this species in summer would be only about 10%, and not 30% as suggested by hydraulic measurements performed in the laboratory. We conclude that an increase in [K(+)] of xylem sap might be involved in the up-regulation of residual K(h), thus substantially alleviating the embolism-induced reduction in leaf water supply.  相似文献   

12.
We studied the limits to maximum water transport in three diffuse-porous evergreen shrubs exposed to frequent winter freeze-thaw events (Rhododendron maximum L. and R. catawbiense Michaux from the Appalachian Mountains) and to a severe summer drought (R. macrophyllum G. Don. from the Oregon Cascades). Percent loss of hydraulic conductivity (PLC), vulnerability curves to xylem embolism and freezing point temperatures of stems were measured over 2 years. Controlled freeze-thaw experiments were also conducted to determine the effect of thaw rate on PLC. During both years, native PLC was significantly higher in winter than in summer for R. macrophyllum. Seasonal changes in PLC were variable in both R. catawbiense and R. maximum. Only R. maximum plants growing in gaps or clearings showed higher PLC than understory plants. A rapid (2-4 day) natural recovery of high native PLC during the winter was observed in both R. maximum and R. macrophyllum. Compared with the bench-dehydration method, vulnerability curves based on the air-injection method consistently had less negative slopes and greater variation. Fifty percent PLC (PLC(50)) obtained from vulnerability curves based on the dehydration method occurred at -1.75, -2.42 and -2.96 MPa for R. catawbiense, R. maximum and R. macrophyllum, respectively. Among the study species, R. macrophyllum, which commonly experiences a summer drought, had the most negative water potential at PLC(50). In all species, stem freezing point temperatures were not consistently lower in winter than in summer. A single fast freeze-thaw event significantly increased PLC, and R. catawbiense had the highest PLC in response to freezing treatments. Recovery to control PLC values occurred if a low positive hydraulic pressure was maintained during thawing. Rhododendron macrophyllum plants, which commonly experience few freeze-thaw events, had large stem diameters, whereas plants of R. catawbiense, which had small stem diameters, suffered high embolism in response to a single freeze-thaw event. Both drought-induced and winter-induced embolism caused a significant reduction in hydraulic conductivity in all species during periods when drought or freeze-thaw events occurred in their native habitats. However, rapid recovery of PLC following freezing or drought maintained the species above their relatively low margins of safety for complete xylem dysfunction.  相似文献   

13.
Shade and irrigation are frequently used to increase the success of Mediterranean Quercus spp. plantations. However, there is controversy about the combined effects of these treatments on plant performance. We assessed the effects of two irradiances (full sunlight and moderate shade) and two summer watering regimes (high (daily) and low (alternate days)) on leaf and whole-plant traits of 1-year-old seedlings of Quercus coccifera, Q. ilex subsp. ballota and Q. faginea grown outdoors for 8.5 months. Leaf traits included measures of morphology, nitrogen concentration, gas exchange and photochemical efficiency, and measures of whole-plant traits included biomass allocation patterns, growth phenology, across-summer leaf area change and relative growth rate (RGR). Moderate shade reduced leaf mass per area, increased photochemical efficiency, maximum carbon assimilation rate (Amax) and allocation to leaves, and prolonged the growing period in one or more of the species. Daily watering in summer increased Amax of Q. ilex and prolonged the growing period of Q. ilex and Q. faginea. Both treatments tended to increase RGR. The effect of shade was greater in the low-watering regime than in the high-watering regime for two of the 15 studied traits, with treatment effects being independent for the remaining 13 traits. Leaf nitrogen and the ability to maintain leaf area after the arid period, rather than biomass allocation traits, explained the variation in seedling RGR. Trait responsiveness to the treatments was low and similar among species and between study scales, being unexpectedly low in Q. faginea leaves. This may be because selective pressures on leaf plasticity act differently in deciduous and evergreen species. We conclude that moderate shade and daily summer watering enhance the performance of Mediterranean Quercus seedlings through species-specific mechanisms.  相似文献   

14.
Large, declining beech (Fagus sylvatica L.) trees (diameter at breast height = 50 cm), growing on heavy clay soils in the highlands near Zurich, Switzerland, were amply irrigated in late summer. During irrigation, the xylem sap flow rate, Q(wt), was measured by the stem-tissue heat balance method with internal heating and sensing. Only a gradual and slight increase in Q(wt) in response to irrigation was observed in the control trees, whereas Q(wt) in the declining trees, whose transpiration rates were only 2-20% those of the control trees, increased 2-5 times within minutes. This suggests, that severe local drought was the major factor limiting tree growth at the site. The extent of the response permits estimation of the supply-limited (soil water) and demand-limited (tree structure) components of stress. Drought caused a decline in Q(wt) in the trees with short crowns and limited root systems that had originally been growing in dense canopies and had become suddenly exposed to full illumination as a result of a severe wind storm and thinning. Trees with deep, narrow, dense crowns, growing in more open places and adapted over a long period to high irradiance remained healthy during drought. Prolonged, periodic water shortage reduced the amount of foliage up to 90% but during drought stimulated the growth of fine roots in the surface and upper soil layers. The stem conductive systems of the declining trees were still partially functional.  相似文献   

15.
We investigated the impact of drought on the physiology of 41-year-old Scots pine (Pinus sylvestris L.) in central Scotland. Measurements were made of the seasonal course of transpiration, canopy stomatal conductance, needle water potential, xylem water content, soil-to-needle hydraulic resistance, and growth. Comparison was made between drought-treated plots and those receiving average precipitation. In response to drought, transpiration rate declined once volumetric water content (VWC) over the top 20 cm of soil reached a threshold value of 12%. Thereafter, transpiration was a near linear function of soil water content. As the soil water deficit developed, the hydraulic resistance between soil and needles increased by a factor of three as predawn needle water potential declined from -0.54 to -0.71 MPa. A small but significant increase in xylem embolism was detected in 1-year-old shoots. Stomatal control of transpiration prevented needle water potential from declining below -1.5 MPa. Basal area, and shoot and needle growth were significantly reduced in the drought treatment. In the year following the drought, canopy stomatal conductance and soil-to-needle hydraulic resistance recovered. Current-year needle extension recovered, but a significant reduction in basal area increment was evident one year after the drought. The results suggest that, in response to soil water deficit, mature Scots pine closes its stomata sufficiently to prevent the development of substantial xylem embolism. Reduced growth in the year after a severe soil water deficit is most likely to be the result of reduced assimilation in the year of the drought, rather than to any residual embolism carried over from one year to the next.  相似文献   

16.
Water stress responses of seedlings of four Mediterranean oak species   总被引:1,自引:0,他引:1  
Effects of water stress on phenology, growth, stomatal activity and water status were assessed from April to November 1996 in 2-year-old seedlings of Quercus frainetto Ten. (Quercus conferta Kit.), Quercus pubescens Willd., Quercus macrolepis Kotschy (Quercus aegilops auct.) and Quercus ilex L. growing in containers in northern Greece. All four species developed more than 50% of their total leaf area before the beginning of June--an adaptation to arid climates. Well-irrigated plants tended to develop greater individual leaf area, number of leaves per plant, total plant leaf area, height and root:shoot ratios than water-stressed plants, but the difference between treatments was not significant for any parameter in any species. Quercus macrolepis appeared to be the most drought-tolerant of the four species. It maintained the highest number of leaves of the smallest size and increased the proportion of fine roots during drought. In all species, drought caused significant decreases in stomatal conductance and predawn and midday water potentials from mid-July until the end of August, when the lowest soil water content and highest mean daily air temperatures and midday leaf temperatures occurred; however, the responses were species-specific. Among the four species, Quercus macrolepis sustained the highest stomatal conductance despite very low water potentials, thus overcoming drought by means of desiccation tolerance. Quercus ilex decreased stomatal conductance even before severe water stress occurred, thereby avoiding desication during drought. Quercus pubescens had the highest water potential despite a high stomatal conductance, indicating that its leaf water status was independent of stomatal activity. Quercus frainetto was the least drought-resistant of the four species. During drought it developed very low water potentials despite markedly reduced stomatal aperture.  相似文献   

17.
The effect of drought on forest water use is often estimated with models, but comprehensive models require many parameters, and simple models may not be sufficiently flexible. Many tree species, Pinus species in particular, have been shown to maintain a constant minimum leaf water potential above the critical threshold for xylem embolism during drought. In such cases, prediction of the relative decline in daily maximum transpiration rate with decreasing soil water content is relatively straightforward. We constructed a soil-plant water flow model assuming constant plant conductance and daily minimum leaf water potential, but variable conductance from soil to root. We tested this model against independent data from two sites: automatic shoot chamber data and sap flow measurements from a boreal Scots pine (Pinus sylvestris L.) stand; and sap flow measurements from a maritime pine (Pinus pinaster Ait.) stand. To focus on soil limitations to water uptake, we expressed daily maximum transpiration rate relative to the rate that would be obtained in wet soil with similar environmental variables. The comparison was successful, although the maritime pine stand showed carry-over effects of the drought that we could not explain. For the boreal Scots pine stand, daily maximum transpiration was best predicted by water content of soil deeper than 5 cm. A sensitivity analysis revealed that model predictions were relatively insensitive to the minimum leaf water potential, which can be accounted for by the importance of soil resistance of drying soil. We conclude that a model with constant plant conductance and minimum leaf water potential can accurately predict the decline in daily maximum transpiration rate during drought for these two pine stands, and that including further detail about plant compartments would add little predictive power, except in predicting recovery from severe drought.  相似文献   

18.
We compared the water-use characteristics of co-occurring mature Quercus cerris L. and Quercus pubescens Willd. trees growing in resource-limited (mainly water) hilly habitats in Tuscany, Italy. The species differed in their distribution along soil water gradients and in their access to, and use of, water, even though the study year was wetter than average, though with a summer drought. Compared with Q. cerris, Q. pubescens had greater access to soil water (less negative predawn water potentials) and a more conservative water-use strategy based on its relatively low stomatal conductance, high instantaneous water-use efficiency, less negative midday water potential and high soil-to-leaf hydraulic conductance. Quercus cerris had less conservative water-use characteristics than Q. pubescens, exhibiting relatively high stomatal conductance, low instantaneous water-use efficiency, more negative midday water potentials and low soil-to-leaf hydraulic conductance; however, Q. cerris had higher photosynthetic rates than Q. pubescens. Photosynthesis and stomatal conductance were positively correlated in both species. Although a strong correlation between ring widths and precipitation patterns was not found, some dry periods influenced ring-width growth. Quercus pubescens has always grown faster than Q. cerris, probably because of more efficient water use, although stand dynamics (driven by exogenous disturbance factors, including coppicing, browsing and competition) cannot be excluded. Ring-width variability, as well as tree-ring growth in dry years, which should be unaffected by stand dynamics, were higher in Q. pubescens than in Q. cerris. Moreover, Q. pubescens recovered completely after the drought in the seventies, even showing higher tree-ring growth than in the recent past, whereas Q. cerris showed a minor growth decline followed by a recovery to values comparable with those observed before the 1970s drought. Beginning in the early eighties, tree-ring growth decreased in both species, though Q. pubescens showed consistently higher values than Q. cerris. These differences can be explained by differences in water-use efficiency. Despite differences between the species in water use and water status, the results are consistent with the interpretation that both are drought tolerant, but that Q. pubescens is at an advantage on xeric ridges because of its greater ability to access soil water and use it more conservatively compared with Q. cerris.  相似文献   

19.
Canopy and hydraulic conductance in young, mature and old Douglas-fir trees   总被引:1,自引:0,他引:1  
We tested for reductions in water transport with increasing tree size, a key component in determining whether gas exchange and growth are hydraulically limited in tall trees. During the summers of 1998 and 1999, we measured water transport with Granier-type, constant-heat sap flow probes, vapor pressure deficit, and leaf and soil water potentials in overstory Pseudotsuga menziesii (Mirb.) Franco trees in three stands differing in size and age (15, 32 and 60 m in height and about 20, 40 and 450 years in age, respectively) in a P. menziesii-dominated forest in the Pacific Northwest, USA. A total of 24 trees were equipped with sap flow sensors--six 60-m trees, nine 32-m trees and nine 15-m trees. Based on the sap flow measurements and leaf area information estimated from leaf area-sapwood area relationships, we estimated crown-averaged stomatal conductance (GS) and leaf-specific hydraulic conductance (KL). We tested the hypothesis that GS and KL vary inversely with tree height (15 > 32 > 60 m). Analysis of variance of GS ranked as 15 = 60 > 32 m during the early summer and 15 > 60 > 32 m during late season drought. Over the growing season, mean daily GS (+/- SE) was 29.2 +/- 4.4, 24.0 +/- 6.8 and 17.7 +/- 7.2 mmol m-2 s-1 for the 15-, 60- and 32-m trees, respectively. The value of K(L) differed among tree heights only during late season drought and ranked 15 > 32 = 60 m. A hydraulic mass balance suggests that greater sapwood conductivity in 60-m trees compared with 32- and 15-m trees is a likely cause for the departure of the above rankings from those predicted by height and leaf-to-sapwood area ratio.  相似文献   

20.
Holm oak (Quercus ilex L.) is native to hot, dry Mediterranean forests where limited water availability often reduces photosynthesis in many species, and forest fires are frequent. Holm oaks resprout after a disturbance, with improved photosynthetic activity and water relations compared with unburned plants. To better understand the role of water availability in this improvement, watering was withheld from container-grown plants, either intact (controls) or resprouts after excision of the shoot, to gradually obtain a wide range of soil water availabilities. At high water availability, gas exchange rates did not differ between controls and resprouts. At moderate soil dryness, net photosynthesis of control plants decreased as a result of increased stomatal limitation, whereas gas exchange rates of resprouts, which had higher midday and predawn leaf water potentials, were unchanged. Under severe drought, resprouts showed a less marked decline in gas exchange than controls and maintained photosystem II integrity, as indicated by chlorophyll fluorescence measurements. Photosynthesis was down-regulated in both plant types in response to reduced CO2 availability caused by high stomatal limitation. Lower non-stomatal limitations in resprouts than in control plants, as evidenced by higher carboxylation velocity and the capacity for ribulose-1,5-bisphosphate regeneration, conferred greater drought resistance under external constraints similar to summer conditions at midday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号