首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Despite decades of research, there is an intense debate about the consistency of the hump-shaped pattern describing the relationship between diversity and disturbance as predicted by the intermediate disturbance hypothesis (IDH). Previous meta-analyses have not explicitly considered interactive effects of disturbance frequency and intensity of disturbance on plant species diversity in terrestrial landscapes.

Objective

We conducted meta-analyses to test the applicability of IDH by simultaneously examining the relationship between species richness, disturbance frequency (quantified as time since last disturbance as originally proposed) and intensity of disturbance in forest landscapes.

Methods

The effects of disturbance frequency, intensity, and their interaction on species richness was evaluated using a mixed-effects model.

Results

We found that species richness peaks at intermediate frequency after both high and intermediate disturbance intensities, but the richness-frequency relationship differed between intensity classes.

Conclusions

Our study highlights the need to measure multiple disturbance components that could help reconcile conflicting empirical results on the effect of disturbance on plant species diversity.
  相似文献   

2.

Context

‘Conserving Nature’s stage’ has been advanced as an important conservation principle because of known links between biodiversity and abiotic environmental diversity, especially in sensitive high-latitude environments and at the landscape scale. However these links have not been examined across gradients of human impact on the landscape.

Objectives

To (1) analyze the relationships between land-use intensity and both landscape-scale biodiversity and geodiversity, and (2) assess the contributions of geodiversity, climate and spatial variables to explaining vascular plant species richness in landscapes of low, moderate and high human impact.

Methods

We used generalized additive models (GAMs) to analyze relationships between land-use intensity and both geodiversity (geological, geomorphological and hydrological richness) and plant species richness in 6191 1-km2 grid squares across Finland. We used linear regression-based variation partitioning (VP) to assess contributions of climate, geodiversity and spatial variable groups to accounting for spatial variation in species richness.

Results

In GAMs, geodiversity correlated negatively, and plant species richness positively, with land-use intensity. Both relationships were non-linear. In VP, geodiversity best accounted for species richness in areas of moderate to high human impact. These overall contributions were mainly due to variation explained jointly with climate, which dominated the models. Independent geodiversity contributions were highest in pristine environments, but low throughout.

Conclusions

Human action increases biodiversity but may reduce geodiversity, at landscape scale in high-latitude environments. Better understanding of the connections between biodiversity and abiotic environment along changing land-use gradients is essential in developing sustainable measures to conserve biodiversity under global change.
  相似文献   

3.

Context

Common species important for ecosystem restoration stand to lose as much genetic diversity from anthropogenic habitat fragmentation and climate change as rare species, but are rarely studied. Salt marshes, valuable ecosystems in widespread decline due to human development, are dominated by the foundational plant species black needlerush (Juncus roemerianus Scheele) in the northeastern Gulf of Mexico.

Objectives

We assessed genetic patterns in J. roemerianus by measuring genetic and genotypic diversity, and characterizing population structure. We examined population connectivity by delineating possible dispersal corridors, and identified landscape factors influencing population connectivity.

Methods

A panel of 19 microsatellite markers was used to genotype 576 samples from ten sites across the northeastern Gulf of Mexico from the Grand Bay National Estuarine Research Reserve (NERR) to the Apalachicola NERR. Genetic distances (FST and Dch) were used in a least cost transect analysis (LCTA) within a hierarchical model selection framework.

Results

Genetic and genotypic diversity results were higher than expected based on life history literature, and samples structured into two large, admixed genetic clusters across the study area, indicating sexual reproduction may not be as rare as predicted in this clonal macrophyte. Digitized coastal transects buffered by 500 m may represent possible dispersal corridors, and developed land may significantly impede population connectivity in J. roemerianus.

Conclusions

Results have important implications for coastal restoration and management that seek to preserve adaptive potential by sustaining natural levels of genetic diversity and conserving population connectivity. Our methodology could be applied to other common, widespread and understudied species.
  相似文献   

4.

Context

Seed dispersal is recognized as having profound effects on the distribution, dynamics and structure of plant populations and communities. However, knowledge of how landscape structure shapes carnivore-mediated seed dispersal patterns is still scarce, thereby limiting our understanding of large-scale plant population processes.

Objectives

We aim to determine how the amount and spatial configuration of forest cover impacted the relative abundance of carnivorous mammals, and how these effects cascaded through the seed dispersal kernels they generated.

Methods

Camera traps activated by animal movement were used for carnivore sampling. Colour-coded seed mimics embedded in common figs were used to know the exact origin of the dispersed seed mimics later found in carnivore scats. We applied this procedure in two sites differing in landscape structure.

Results

We did not find between-site differences in the relative abundance of the principal carnivore species contributing to seed dispersal patterns, Martes foina. Mean dispersal distance and the probability of long dispersal events were higher in the site with spatially continuous and abundant forest cover, compared to the site with spatially aggregated and scarcer forest cover. Seed deposition closely matched the spatial patterning of forest cover in both study sites, suggesting behaviour-based mechanisms underpinning seed dispersal patterns generated by individual frugivore species.

Conclusions

Our results provide the first empirical evidence of the impact of landscape structure on carnivore-mediated seed dispersal kernels. They also indicate that seed dispersal kernels generated strongly depend on the effect that landscape structure exerts on carnivore populations, particularly on habitat-use preferences.
  相似文献   

5.

Context

Anthropogenic activities readily result in the fragmentation of habitats such that species persistence increasingly depends on their ability to disperse. However, landscape features that enhance or limit individual dispersal are often poorly understood. Landscape genetics has recently provided innovative solutions to evaluate landscape resistance to dispersal.

Objectives

We studied the dispersal of the common meadow brown butterfly, Maniola jurtina, in agricultural landscapes, using a replicated study design and rigorous statistical analyses. Based on existing behavioral and life history research, we hypothesized that the meadow brown would preferentially disperse through its preferred grassy habitats (meadows and road verges) and avoid dispersing through woodlands and the agricultural matrix.

Methods

Samples were collected in 18 study landscapes of 5 × 5 km in three contrasting agricultural French regions. Using circuit theory, least cost path and transect-based methods, we analyzed the effect of the landscape on gene flow separately for each sex.

Results

Analysis of 1681 samples with 6 microsatellites loci revealed that landscape features weakly influence meadow brown butterfly gene flow. Gene flow in both sexes appeared to be weakly limited by forests and arable lands, whereas grasslands and grassy linear elements (road verges) were more likely to enhance gene flow.

Conclusion

Our results are consistent with the hypothesis of greater dispersal through landscape elements that are most similar to suitable habitat. Our spatially replicated landscape genetics study allowed us to detect subtle landscape effects on butterfly gene flow, and these findings were reinforced by consistent results across analytical methods.
  相似文献   

6.

Context

Woody plant encroachment—the conversion of grasslands to woodlands—is among the greatest challenges faced by rangelands worldwide. Yet this phenomenon is poorly understood, and complex land use dynamics make interpreting the timing and extent of land cover changes a global challenge.

Objectives

For many regions, the true degree and rate of historical change in woody cover and cropland remain unknown. We quantify these processes and explore the effects of prior cultivation on woody plant distribution.

Methods

In the Lampasas Cut Plain, USA, we measured rangeland transformation using digital classification of aerial imagery 1937–2012. Our study is the first to use data of such high spatial and temporal resolution to address this question at this scale. We also provide some of the first documentation of dramatic regional cropland abandonment.

Results

Although total woody cover remained almost unchanged (1937: 28%, 2012: 27 %), woody cover underwent a major redistribution across the landscape. Formerly open areas attained much greater levels of woody cover, and previously wooded areas lost woody cover. As cropland area declined by 78 %, woody plants invaded former croplands more slowly than the rangeland portions of the area (0.1 % year?1 vs. 0.3 % year?1, respectively).

Conclusions

These findings conflict with widely held assumptions and suggest that woody plant encroachment is more nuanced than often recognized. Multiple dynamics and past conditions interact in complex ways to produce landscape change. Because perceptions of encroachment determine how we respond to this challenge, great care should be taken in interpreting observed woody plant encroachment of the world’s rangelands.
  相似文献   

7.

Context

The ability to detect ecological networks in landscapes is of utmost importance for managing biodiversity and planning corridors.

Objectives

The objective of this study was to evaluate the information provided by a synthetic aperture radar (SAR) image for landscape connectivity modeling compared to aerial photographs (APs).

Methods

We present a novel method that integrates habitat suitability derived from remote sensing imagery into a connectivity model to explain species abundance. More precisely, we compared how two resistance maps constructed using landscape and/or local metrics derived from AP or SAR imagery yield different connectivity values (based on graph theory), considering hedgerow networks and forest carabid beetle species as a model.

Results

We found that resistance maps using landscape and local metrics derived from SAR imagery improve landscape connectivity measures. The SAR model is the most informative, explaining 58% of the variance in forest carabid beetle abundance. This model calculates resistance values associated with homogeneous patches within hedgerows according to their suitability (canopy cover density and landscape grain) for the model species.

Conclusions

Our approach combines two important methods in landscape ecology: the construction of resistance maps and the use of buffers around sampling points to determine the importance of landscape factors. This study was carried out through an interdisciplinary approach involving remote sensing scientists and landscape ecologists. This study is a step forward in developing landscape metrics from satellites to monitor biodiversity.
  相似文献   

8.

Context

Organisms commonly respond to their environment across a range of scales, however many habitat selection studies still conduct selection analyses using a single-scale framework. The adoption of multi-scale modeling frameworks in habitat selection studies can improve the effectiveness of these studies and provide greater insights into scale-dependent relationships between species and specific habitat components.

Objectives

Our study assessed multi-scale nest/roost habitat selection of the federally “Threatened” Mexican spotted owl (Strix occidentalis lucida) in northern Arizona, USA in an effort to provide improved conservation and management strategies for this subspecies.

Methods

We conducted multi-scale habitat modeling to assess habitat selection by Mexican spotted owls using survey data collected by the USFS. Each selected covariate was included in multi-scale models at their “characteristic scale” and we used an all-subsets approach and model selection framework to assess habitat selection.

Results

The “characteristic scale” identified for each covariate varied considerably among covariates and results from multi-scale models indicated that percent canopy cover and slope were the most important covariates with respect to habitat selection by Mexican spotted owls. Multi-scale models consistently outperformed their analogous single-scale counterparts with respect to the proportion of deviance explained and model predictive performance.

Conclusions

Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective conservation and management strategies.
  相似文献   

9.

Context

Human and natural systems interact at multiple scales which are context specific in relation to ecosystem service supply. Scenic beauty is recognised as a cultural ecosystem service whose aesthetic value is perceived at a holistic landscape level.

Objectives

In this study we provide methodological advancements for assessing the relationship between landscape visual character and scenic beauty based on crowdsourced geographic information. The final aim is to demonstrate, through a case study application, an empirical method for mapping the scenic beauty of complex mountain landscapes from the perspective of observers which are realistically exposed to the environment being evaluated.

Methods

We propose a viewshed based approach which relies on visual indicators and the location of visitors retrieved by public image storage analysis. A cluster analysis was used to integrate visual characters of the landscape and visiting users’ preferences.

Results

Four different typologies of landscapes were finally characterized by distinct values of visual indicators. The spatial distribution of the landscape typologies presented a clustered pattern, allowing a regionalization of the landscape characters. The analysis of the visiting users’ provenance revealed that visual scale, naturalness and ephemera attract mainly foreign users, while imageability, complexity and historicity attract mostly domestic and local users.

Conclusions

The combination of crowdsourced images with visual indicators allows a systematic analysis of landscape scenic beauty properties. In all, by understanding how specific landscape characters contributes to aesthetic service provision we provide a tool for facilitating the visualization and interpretation of complex landscape characters.
  相似文献   

10.

Context

Regime shifts are well known for driving penetrating ecological change, yet we do not recognise the consequences of these shifts much beyond species diversity and productivity. Sound represents a multidimensional space that carries decision-making information needed for some dispersing species to locate resources and evaluate their quantity and quality.

Objectives

Here we assessed the effect of regime shifts on marine soundscapes, which we propose has the potential function of strengthening the positive or negative feedbacks that mediate ecosystem shifts.

Methods

We tested whether biologically relevant cues are altered by regime shifts in kelp forests and seagrass systems and how specific such shifted soundscapes are to the type of driver; i.e. local pollution (eutrophication) vs. global change (ocean acidification).

Results

Here, we not only provide the first evidence for regime-shifted soundscapes, but also reveal that the modified cues of shifted ecosystems are similar regardless of spatial scale and type of environmental driver. Importantly, biological sounds can act as functional cues for orientation by dispersing larvae, and observed shifts in soundscape loudness may alter this function.

Conclusions

These results open the question as to whether shifted soundscapes provide a functional role in mediating the positive or negative feedbacks that govern the arrival of species associated with driving change or stasis in ecosystem state.
  相似文献   

11.

Context

Landscape and habitat filters are major drivers of biodiversity of small habitat islands by influencing dispersal and extinction events in plant metapopulations.

Objectives

We assessed the effects of landscape and habitat filters on the species richness, abundance and trait composition of grassland specialist and generalist plants in small habitat islands. We studied traits related to functional spatial connectivity (dispersal ability by wind and animals) and temporal connectivity (clonality and seed bank persistence) using model selection.

Methods

We sampled herbaceous plants, landscape (local and regional isolation) and habitat filters (inclination, woody encroachment and disturbance) in 82 grassland islands in Hungary.

Results

Isolation decreased the abundance of good disperser specialist plants due to the lack of directional vectors transferring seeds between suitable habitat patches. Clonality was an effective strategy, but persistent seed bank did not support the survival of specialist plants in isolated habitats. Generalist plants were unaffected by landscape filters due to their wide habitat breadth and high propagule availability. Clonal specialist plants could cope with increasing woody encroachment due to their high resistance against environmental changes; however, they could not cope with intensive disturbance. Steep slopes providing environmental heterogeneity had an overall positive effect on species richness.

Conclusions

Specialist plants were influenced by the interplay of landscape filters influencing their abundance and habitat filters affecting species richness. Landscape filtering by isolation influenced the abundance of specialist plants by regulating seed dispersal. Habitat filters sorted species that could establish and persist at a site by influencing microsite availability and quality.
  相似文献   

12.

Context

Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees.

Objectives

Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations.

Methods

Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7, 23.5 and 28.8% of agricultural land converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape.

Results

Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale.

Conclusions

Strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.
  相似文献   

13.

Context

Although small isolated habitat patches may not be able to maintain a minimum viable population, small patches that are structurally isolated may be functionally connected if individuals can cross the gaps between them, in which case, their areas could be added to form a larger habitat patch, eventually surpassing the size threshold for holding a viable population.

Objectives

We studied whether models based on the size and isolation of habitat patches could be used to predict the distribution of the Chestnut-throated Huet-Huet (Pteroptochos castaneus) in fragmented landscapes of the coastal range of the Maule region, central Chile.

Methods

We selected seven 10,000-ha landscapes (8.4–70.7% forest cover). For each habitat patch we made 18 predictions of the presence of the species based on the combination of two thresholds: three critical patch sizes for maintaining a viable population (62.5, 125 and 250 ha) and six critical isolation distances between patches (0, 10, 50, 100, 150 and 200 m). We used playbacks in 59 sampling points to estimate the species’ presence/absence. We used logistic regressions to test whether the output of the patch-matrix models could explain part of the variation in the presence of Pteroptochos castaneus.

Results

The best predictions for the presence of P. castaneus were obtained with the most conservative scenarios (125–250 ha to 0–10 m), including a positive effect of the understory cover and a lack of effect of the forest type (native or exotic).

Conclusions

Our findings suggest that the long term persistence of P. castaneus may depend on the existence of large and/or very connected forest tracts.
  相似文献   

14.

Context

Recent research suggests that novel geodiversity data on landforms, hydrology and surface materials can improve biodiversity models at the landscape scale by quantifying abiotic variability more effectively than commonly used measures of spatial heterogeneity. However, few studies consider whether these variables can account for, and improve our understanding of, species’ distributions.

Objectives

Assess the role of geodiversity components as macro-scale controls of plant species’ distributions in a montane landscape.

Methods

We used an innovative approach to quantifying a landscape, creating an ecologically meaningful geodiversity dataset that accounted for hydrology, morphometry (landforms derived from geomorphometric techniques), and soil parent material (data from expert sources). We compared models with geodiversity to those just using topographic metrics (e.g. slope and elevation) and climate data. Species distribution models (SDMs) were produced for ‘rare’ (N?=?76) and ‘common’ (N?=?505) plant species at 1 km2 resolution for the Cairngorms National Park, Scotland.

Results

The addition of automatically produced landform geodiversity data and hydrological features to a basic SDM (climate, elevation, and slope) resulted in a significant improvement in model fit across all common species’ distribution models. Adding further geodiversity data on surface materials resulted in a less consistent statistical improvement, but added considerable conceptual value to many individual rare and common SDMs.

Conclusions

The geodiversity data used here helped us capture the abiotic environment’s heterogeneity and allowed for explicit links between the geophysical landscape and species’ ecology. It is encouraging that relatively simple and easily produced geodiversity data have the potential to improve SDMs. Our findings have important implications for applied conservation and support the need to consider geodiversity in management.
  相似文献   

15.

Context

Land-use/land-cover (LU/LC) dynamics is one of the main drivers of global environmental change. In the last years, aerial and satellite imagery have been increasingly used to monitor the spatial extent of changes in LU/LC, deriving relevant biophysical parameters (i.e. primary productivity, climate and habitat structure) that have clear implications in determining spatial and temporal patterns of biodiversity, landscape composition and ecosystem services.

Objectives

An innovative hierarchical modelling framework was developed in order to address the influence of nested attributes of LU/LC on community-based ecological indicators.

Methods

Founded in the principles of the spatially explicit stochastic dynamic methodology (StDM), the proposed methodological advances are supported by the added value of integrating bottom-up interactions between multi-scaled drivers.

Results

The dynamics of biophysical multi-attributes of fine-scale subsystem properties are incorporated to inform dynamic patterns at upper hierarchical levels. Since the most relevant trends associated with LU/LC changes are explicitly modelled within the StDM framework, the ecological indicators’ response can be predicted under different social-economic scenarios and site-specific management actions. A demonstrative application is described to illustrate the framework methodological steps, supporting the theoretic principles previously presented.

Conclusions

We outline the proposed multi-model framework as a promising tool to integrate relevant biophysical information to support ecosystem management and decision-making.
  相似文献   

16.

Context

Although animal movement behaviors are influenced by spatial heterogeneity, such behaviors can also generate spatial heterogeneity via interactions with the emergent spatial structure and other individuals (i.e., the social landscape).

Objective

Elucidate the behavioral and ecological mechanisms of pattern formation in a homogeneous resource landscape.

Methods

We analyzed the movement pathways and space-use patterns of the lesser grain borer (Rhyzopertha dominica) within homogeneous resource landscapes (wheat kernels). Experimental trials consisted of individual beetles foraging alone or paired with a member of the same or different sex.

Results

We identified two sources of pattern formation: (1) beetles were attracted to areas where they or another beetle had previously fed, leading to increased patchiness via positive reinforcement; and (2) the presence of conspecifics affected whether and at what scales patchiness occurred. Solitary males had lower rates of movement and less tortuous pathways than solitary females, but both sexes generated fine-scale patchiness in the resource distribution. Patchy resource landscapes were also generated by male–female pairs, but not by same-sex pairings. Paired females in particular exhibited significantly greater daily net displacements and more random space use than solitary females.

Conclusions

Pattern formation is a complex process, even in a relatively simple, homogeneous resource landscape. In particular, patterns created by individuals when foraging alone versus in pairs underscores how social interactions can fundamentally alter the resultant pattern of heterogeneity that emerges in resource landscapes.
  相似文献   

17.

Context

Many nearshore species are distributed in habitat patches connected only through larval dispersal. Genetic research has shown some spatial structure of such metapopulations and modeling studies have shed light onto possible patterns of connectivity and barriers. However, little is known about human impact on their spatial structure and patterns of connectivity.

Objectives

We examine the effects of fishing on the spatial and temporal dynamics of metapopulations of sedentary marine species (red sea urchin and red abalone) interconnected by larval dispersal.

Methods

We constructed a metapopulation model to simulate abalone and sea urchin metapopulations experiencing increasing levels of fishing mortality. We performed the modularity analysis on the yearly larval connectivity matrices produced by these simulations, and analyzed the changes of modularity and the formation of modules over time as indicators of spatial structure.

Results

The analysis revealed a strong modular spatial structure for abalone and a weak spatial signature for sea urchin. In abalone, under exploitation, modularity takes step-wise drops on the path to extinction, and modules breakdown into smaller fragments followed by module and later metapopulation collapse. In contrast, sea urchin showed high modularity variation, indicating high- and low-mixing years, but an abrupt collapse of the metapopulation under strong exploitation.

Conclusions

The results identify a disruption in larval connectivity and a pattern of collapse in highly modular nearshore metapopulations. These results highlight the ability of modularity to detect spatial structure in marine metapopulations, which varies among species, and to show early changes in the spatial structure of exploited metapopulations.
  相似文献   

18.

Context

Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure.

Objectives

We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales.

Methods

We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models.

Results

Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes.

Conclusions

Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.
  相似文献   

19.

Context

In agricultural landscapes, riparian forests are used as a management tool to protect stream ecosystems from agricultural activities. However, the ability of managers to target stream protection actions is limited by incomplete knowledge of scale-specific effects of agriculture in riparian corridor and catchment areas.

Objectives

We evaluated scale-specific effects of agricultural cover in riparian corridor and catchment areas on stream benthic macroinvertebrate (BMI) communities to develop cover targets for agricultural landscapes.

Methods

Sixty-eight streams assigned to three experimental treatments (Forested Riparian, Agricultural Riparian, Agricultural Catchment) were sampled for BMIs. Ordination and segmented regression were used to assess impacts of agriculture on BMI communities and detect thresholds for BMI community metrics.

Results

BMI communities were not associated with catchment agricultural cover where the riparian corridor was forested, but were associated with variation in catchment agriculture where riparian forests had been converted to agriculture. Trait-based metrics showed threshold responses at greater than 70% agricultural cover in the catchment. Increasing agriculture in the riparian corridor was associated with less diverse and more tolerant BMI communities. Eight metrics exhibited threshold responses ranging from 45 to 75% agriculture in the riparian corridor.

Conclusions

Riparian forest effectively buffered streams from agricultural activity even where catchment agriculture exceeds 80%. We recommend managers prioritize protection of forested riparian corridors and that restore riparian corridors where agricultural cover is near identified thresholds be a secondary priority. Adoption of catchment management actions should be effective where the riparian corridor has been converted to agriculture.
  相似文献   

20.

Context

In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes.

Objectives

To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon.

Methods

We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type.

Results

We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types.

Conclusions

Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号