首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate rapid climatic changes at mid-southern latitudes, we have developed centennial-scale paleoceanographic records from the southwest Pacific that enable detailed comparison with Antarctic ice core records. These records suggest close coupling of mid-southern latitudes with Antarctic climate during deglacial and interglacial periods. Glacial sections display higher variability than is seen in Antarctic ice cores, which implies climatic decoupling between mid- and high southern latitudes due to enhanced circum-Antarctic circulation. Structural and temporal similarity with the Greenland ice core record is evident in glacial sections and suggests a degree of interhemispheric synchroneity not predicted from bipolar ice core correlations.  相似文献   

2.
The response of the Greenland ice sheet to global warming is a source of concern notably because of its potential contribution to changes in the sea level. We demonstrated the natural vulnerability of the ice sheet by using pollen records from marine sediment off southwest Greenland that indicate important changes of the vegetation in Greenland over the past million years. The vegetation that developed over southern Greenland during the last interglacial period is consistent with model experiments, suggesting a reduced volume of the Greenland ice sheet. Abundant spruce pollen indicates that boreal coniferous forest developed some 400,000 years ago during the "warm" interval of marine isotope stage 11, providing a time frame for the development and decline of boreal ecosystems over a nearly ice-free Greenland.  相似文献   

3.
Bond GC  Lotti R 《Science (New York, N.Y.)》1995,267(5200):1005-1010
High-resolution studies of North Atlantic deep sea cores demonstrate that prominent increases in iceberg calving recurred at intervals of 2000 to 3000 years, much more frequently than the 7000-to 10,000-year pacing of massive ice discharges associated with Heinrich events. The calving cycles correlate with warm-cold oscillations, called Dansgaard-Oeschger events, in Greenland ice cores. Each cycle records synchronous discharges of ice from different sources, and the cycles are decoupled from sea-surface temperatures. These findings point to a mechanism operating within the atmosphere that caused rapid oscillations in air temperatures above Greenland and in calving from more than one ice sheet.  相似文献   

4.
Central Greenland ice cores provide evidence of abrupt changes in climate over the past 100,000 years. Many of these changes have also been identified in sedimentary and geochemical signatures in deep-sea sediment cores from the North Atlantic, confirming the link between millennial-scale climate variability and ocean thermohaline circulation. It is shown here that two of the most prominent North Atlantic events-the rapid warming that marks the end of the last glacial period and the Bolling/Allerod-Younger Dryas oscillation-are also recorded in an ice core from Taylor Dome, in the western Ross Sea sector of Antarctica. This result contrasts with evidence from ice cores in other regions of Antarctica, which show an asynchronous response between the Northern and Southern Hemispheres.  相似文献   

5.
800,000 years of abrupt climate variability   总被引:1,自引:0,他引:1  
We constructed an 800,000-year synthetic record of Greenland climate variability based on the thermal bipolar seesaw model. Our Greenland analog reproduces much of the variability seen in the Greenland ice cores over the past 100,000 years. The synthetic record shows strong similarity with the absolutely dated speleothem record from China, allowing us to place ice core records within an absolute timeframe for the past 400,000 years. Hence, it provides both a stratigraphic reference and a conceptual basis for assessing the long-term evolution of millennial-scale variability and its potential role in climate change at longer time scales. Indeed, we provide evidence for a ubiquitous association between bipolar seesaw oscillations and glacial terminations throughout the Middle to Late Pleistocene.  相似文献   

6.
A new greenland deep ice core   总被引:1,自引:0,他引:1  
The polar ice sheets are rich sources of information on past atmospheric conditions, including paleoclimates. A new deep ice core has been drilled in south Greenland. Comparison of the oxygen isotopic profile with that from camp Century and with a deep-sea foraminifera record indicates that the new core reaches back to about 90,000 years before present in a continuous sequence. The details in the Wisconsin part of the ice core records seem to be climatically, significant, and the general trends reveal all of the relevant Emiliani stages recorded in deep-sea cores. The redated Camp Century record suggests a dramatic termination of the Eem/Sangamon interglacial.  相似文献   

7.
Proxies from Greenland ice cores and North Atlantic marine sediment cores document repeated extreme climate swings of a few decades to millennia during the last glacial cycle, including periods of intense ice rafting called Heinrich events (HEs). We have found similar oxygen isotope variations recorded in mixed-layer-and thermocline-dwelling planktonic foraminifera during HEs 0, 1, and 4, suggesting that three foraminiferal taxa calcified their shells at similar temperatures in a homogenized upperwater column. This implies that the surface mixed layer was deeper during HEs. Similar deepening occurred on the northern margin of the ice-rafted-debris belt, implying that these deep mixed layers during HEs were widespread in the region. We suggest that an increase in storminess during HEs intensified the vertical mixing of meltwater from ice rafting in the upper ocean.  相似文献   

8.
Evidence from ice at the bottom of ice cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland ice sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal ice has previously been thought to indicate that the base of the ice sheets had melted and that the evidence for the time of original growth of these ice masses had been destroyed. However, the particles most likely blew onto the ice when the dimensions of the ice caps and ice sheets were much smaller. Ice texture, gas content, and other evidence also suggest that the basal ice at each drill site is superimposed ice, a type of ice typical of the early growth stages of an ice cap or ice sheet. If the present-day ice masses began their growth during the last interglacial, the ice sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic ice sheet, as has been suggested.  相似文献   

9.
The oxygen-18/oxygen-16 ratio of molecular oxygen trapped in ice cores provides a time-stratigraphic marker for transferring the absolute chronology for the Greenland Ice Sheet Project (GISP) II ice core to the Vostok and Byrd ice cores in Antarctica. Comparison of the climate records from these cores suggests that, near the beginning of the last deglaciation, warming in Antarctica began approximately 3000 years before the onset of the warm B?lling period in Greenland. Atmospheric carbon dioxide and methane concentrations began to rise 2000 to 3000 years before the warming began in Greenland and must have contributed to deglaciation and warming of temperate and boreal regions in the Northern Hemisphere.  相似文献   

10.
We present a sea-ice record from northern Greenland covering the past 10,000 years. Multiyear sea ice reached a minimum between ~8500 and 6000 years ago, when the limit of year-round sea ice at the coast of Greenland was located ~1000 kilometers to the north of its present position. The subsequent increase in multiyear sea ice culminated during the past 2500 years and is linked to an increase in ice export from the western Arctic and higher variability of ice-drift routes. When the ice was at its minimum in northern Greenland, it greatly increased at Ellesmere Island to the west. The lack of uniformity in past sea-ice changes, which is probably related to large-scale atmospheric anomalies such as the Arctic Oscillation, is not well reproduced in models. This needs to be further explored, as it is likely to have an impact on predictions of future sea-ice distribution.  相似文献   

11.
Centennial climate variability over the last ice age exhibits clear bipolar behavior. High-resolution analyses of marine sediment cores from the Iberian margin trace a number of associated changes simultaneously. Proxies of sea surface temperature and water mass distribution, as well as relative biomarker content, demonstrate that this typical north-south coupling was pervasive for the cold phases of climate during the past 420,000 years. Cold episodes after relatively warm and largely ice-free periods occurred when the predominance of deep water formation changed from northern to southern sources. These results reinforce the connection between rapid climate changes at Mediterranean latitudes and century-to-millennial variability in northern and southern polar regions.  相似文献   

12.
Recent sea-level contributions of the Antarctic and Greenland ice sheets   总被引:1,自引:0,他引:1  
After a century of polar exploration, the past decade of satellite measurements has painted an altogether new picture of how Earth's ice sheets are changing. As global temperatures have risen, so have rates of snowfall, ice melting, and glacier flow. Although the balance between these opposing processes has varied considerably on a regional scale, data show that Antarctica and Greenland are each losing mass overall. Our best estimate of their combined imbalance is about 125 gigatons per year of ice, enough to raise sea level by 0.35 millimeters per year. This is only a modest contribution to the present rate of sea-level rise of 3.0 millimeters per year. However, much of the loss from Antarctica and Greenland is the result of the flow of ice to the ocean from ice streams and glaciers, which has accelerated over the past decade. In both continents, there are suspected triggers for the accelerated ice discharge-surface and ocean warming, respectively-and, over the course of the 21st century, these processes could rapidly counteract the snowfall gains predicted by present coupled climate models.  相似文献   

13.
A high-resolution oxygen-isotope record from a thorium-uranium-dated stalagmite from southern Oman reflects variations in the amount of monsoon precipitation for the periods from 10.3 to 2.7 and 1.4 to 0.4 thousand years before the present (ky B.P.). Between 10.3 and 8 ky B.P., decadal to centennial variations in monsoon precipitation are in phase with temperature fluctuations recorded in Greenland ice cores, indicating that early Holocene monsoon intensity is largely controlled by glacial boundary conditions. After approximately 8 ky B.P., monsoon precipitation decreases gradually in response to changing Northern Hemisphere summer solar insolation, with decadal to multidecadal variations in monsoon precipitation being linked to solar activity.  相似文献   

14.
Climate Change During the Last Deglaciation in Antarctica   总被引:1,自引:0,他引:1  
Greenland ice core records provide clear evidence of rapid changes in climate in a variety of climate indicators. In this work, rapid climate change events in the Northern and Southern hemispheres are compared on the basis of an examination of changes in atmospheric circulation developed from two ice cores. High-resolution glaciochemical series, covering the period 10,000 to 16,000 years ago, from a central Greenland ice core and a new site in east Antarctica display similar variability. These findings suggest that rapid climate change events occur more frequently in Antarctica than previously demonstrated.  相似文献   

15.
Aircraft laser-altimeter surveys over northern Greenland in 1994 and 1999 have been coupled with previously reported data from southern Greenland to analyze the recent mass-balance of the Greenland Ice Sheet. Above 2000 meters elevation, the ice sheet is in balance on average but has some regions of local thickening or thinning. Thinning predominates at lower elevations, with rates exceeding 1 meter per year close to the coast. Interpolation of our results between flight lines indicates a net loss of about 51 cubic kilometers of ice per year from the entire ice sheet, sufficient to raise sea level by 0.13 millimeter per year-approximately 7% of the observed rise.  相似文献   

16.
High-resolution, continuous multivariate chemical records from a central Greenland ice core provide a sensitive measure of climate change and chemical composition of the atmosphere over the last 41,000 years. These chemical series reveal a record of change in the relative size and intensity of the circulation system that transported air masses to Greenland [defined here as the polar circulation index (PCI)] and in the extent of ocean ice cover. Massive iceberg discharge events previously defined from the marine record are correlated with notable expansions of ocean ice cover and increases in PCI. During stadials without discharge events, ocean ice cover appears to reach some common maximum level. The massive aerosol loadings and dramatic variations in ocean ice cover documented in ice cores should be included in climate modeling.  相似文献   

17.
A correlation of time with depth has been evaluated for the Camp Century, Greenland, 1390 meter deep ice core. Oxygen isotopes in approximately 1600 samples throughout the core have been analyzed. Long-term variations in the isotopic composition of the ice reflect the climatic changes during the past nearly 100,000 years. Climatic oscillations with periods of 120, 940, and 13,000 years are observed.  相似文献   

18.
The microparticle concentrations in three deep ice cores reveal a substantial increase in the concentration of insoluble particles in the global atmosphere during the latter part of the last major glaciation. The ratio of the average particle concentration in the late glacial strata to that in the Holocene strata is 6/1 for the core from Dome C, Antarctica, 3/1 for the core from Byrd Station, Antarctica, and 12/1 for the core from Camp Century, Greenland. Whether this temporal correlation between increased atmospheric particle load and the lower surface temperatures is directly causal is unknown; however, the variations in these two parameters must be satisfactorily resolved in any successful hypothesis that addresses the causes of climatic change.  相似文献   

19.
A precise relative chronology for Greenland and West Antarctic paleotemperature is extended to 90,000 years ago, based on correlation of atmospheric methane records from the Greenland Ice Sheet Project 2 and Byrd ice cores. Over this period, the onset of seven major millennial-scale warmings in Antarctica preceded the onset of Greenland warmings by 1500 to 3000 years. In general, Antarctic temperatures increased gradually while Greenland temperatures were decreasing or constant, and the termination of Antarctic warming was apparently coincident with the onset of rapid warming in Greenland. This pattern provides further evidence for the operation of a "bipolar see-saw" in air temperatures and an oceanic teleconnection between the hemispheres on millennial time scales.  相似文献   

20.
Dust concentrations in ice of the last glacial maximum (LGM) are high in ice cores from Greenland and Antarctica. The magnitude of the enhancements can be explained if the strength of the hydrologic cycle during the LGM was about half of that at present. This notion is consistent with a large decrease (5 degrees Celsius) in ocean temperature during the LGM, as recently deduced from measurements of strontium and calcium in corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号