首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
F-box蛋白家族在植物抗逆响应中的作用机制   总被引:1,自引:0,他引:1  
SCF复合体泛素连接酶E3介导的泛素化蛋白降解是翻译后水平上对生命进程进行调控的一个重要方式。它的关键组分F-box蛋白负责识别被降解的靶底物蛋白。植物F-box基因家族成员众多,极具多样性。F-box蛋白N端常含F-box基序,C端常为蛋白互作保守结构域,该结构具多样性,可识别不同底物,是F-box蛋白分类的依据。研究表明,F-box蛋白参与调控植物的许多生命进程,包括抗逆反应。本文就近年来F-box蛋白在植物抗逆反应中的作用机制进行总结。F-box蛋白大多以SCF复合体泛素连接酶E3介导的泛素化蛋白降解目标蛋白的方式调控抗逆反应,也有不依赖形成SCF复合体的方式行使功能,不少F-box蛋白参与了植物激素信号传导,通过调控转录因子活性而改变下游基因的表达,由此影响了植物的抗逆反应。基因表达谱的生物信息学预测表明,大多数F-box基因参与了植物抗逆反应,目前只有其中一小部分已报道了其抗逆调节功能。在此综述了这些F-box蛋白在植物抗逆胁迫中的研究进展。在干旱和盐碱胁迫反应中,F-box基因常通过影响植物激素脱落酸、乙烯等植物激素信号传导而调控抗逆。由于干旱和盐碱胁迫具协同性,不少F-box基因同时参与抗旱和抗盐碱胁迫,但调节方式有所不同,一些F-box基因对抗干旱和盐碱的反应具协同性,从总体上调控植物的渗透胁迫和离子毒害反应;而另一些F-box基因对干旱和盐胁迫反应的调节作用相反,它们可能在植物抗逆的精细调节中起作用。在低温胁迫反应中,F-box蛋白可调节植物抗低温的CBF信号途径。在生物胁迫反应中,F-box基因常通过影响植物激素茉莉酸和水杨酸途径来调控抗病,病原菌也以攻击植物SCF复合体使植物致病。此外,植物激素信号途径之间相互作用,共同影响抗逆反应。  相似文献   

2.
环境胁迫对植物的生长发育造成重大影响,因此,提高植物的抗逆性是农业面临的重要问题。自然界中存在多种抗逆基因,如抗盐基因、抗旱基因、抗寒基因等。利用植物基因工程和分子生物学技术提高植物对逆境的适应性及其抗逆分子机制的研究已成为当今热点。WRKY转录因子是一类参与多种胁迫反应的诱导型转录因子,本文综述了WRKY转录因子家族的结构特点、WRKY转录因子在非生物胁迫(高温、低温、干旱、盐)、外源物质(激素及O3)处理及生物胁迫下的表达模式。各种胁迫下的表达谱均呈现不同特点,这些差异表达可能与它们所行使的不同生物学功能有关。  相似文献   

3.
植物非生物逆境相关锌指蛋白基因的研究进展   总被引:3,自引:0,他引:3  
向建华  李灵之  陈信波 《核农学报》2012,26(4):666-672,716
植物能够适应多种逆境主要是通过改变其基因表达和代谢途径来实现的,因此研究这些基因表达和功能对提高植物耐逆性具有重要意义。锌指蛋白是一类具有手指状结构域的转录因子,这种结构域由锌离子与多个半胱氨酸和(或)组氨酸组成,锌离子在稳定其结构和发挥调控功能方面具有关键作用。植物锌指蛋白在植物耐逆性方面具有重要作用。本文综述了近几年来从拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、小麦(Triticum aestivum)、番茄(Solanum lycopersicum)等植物中克隆的与非生物逆境相关锌指蛋白基因的研究成果,重点阐述了其基因表达部位、受逆境诱导情况及转基因植株的耐逆性等。目前的研究结果表明锌指蛋白能够调控耐逆相关基因的表达,在植物逆境代谢中发挥重要作用,因此可以利用锌指蛋白基因进行作物耐逆性的遗传改良,提高作物的耐逆能力。  相似文献   

4.
DREB转录因子研究进展   总被引:5,自引:1,他引:4  
摘要:生物和非生物胁迫,严重影响植物的生长发育,是阻碍农、林业进一步发展的主要因素。逆境胁迫信号通过多个转录因子调控与逆境相关的基因的表达,其中DREB转录因子是最为重要的转录因子之一。本文综述了近年DREB转录因子研究进展。DREB转录因子的研究进展为理解植物抗逆的分子机制及利用DREB转录因子提高植物的抗逆性提供了理论基础和技术途径。  相似文献   

5.
玉米乙烯应答元件结合蛋白基因启动子克隆与功能验证   总被引:1,自引:1,他引:0  
为了给玉米转基因研究提供更多的非生物逆境诱导启动子,寻找只在逆境胁迫条件下适当驱动外源抗逆基因的表达,在生物信息学分析的基础上,克隆与水稻DREB1B转录因子基因同源的玉米乙烯应答元件结合蛋白基因sb CBF6的启动子psb CBF6,在非生物逆境应答元件分析和实时定量PCR验证其非生物逆境胁迫响应特性后,用以构建驱动报告基因GUS的表达载体,并使用基因枪法转化玉米愈伤组织,通过愈伤组织的GUS荧光值与荧光素酶发光值的比值,评价psb CBF6启动子在非生物逆境胁迫及激素诱导条件下的驱动活性。结果表明,sb CBF6基因在各种非生物逆境胁迫下差异表达。psb CBF6启动子长1 479 bp,存在多种与非生物逆境胁迫应答相关的调控元件,可在非生物胁迫条件下驱动外源抗逆基因在转基因植物中诱导表达。试验结果为研究抗逆转基因玉米提了供参考。  相似文献   

6.
干旱、高盐及低温胁迫下植物生理及转录因子的应答调控   总被引:2,自引:1,他引:1  
干旱、高盐及低温等非生物胁迫是限制植物生长发育的主要环境因子。这些环境胁迫因子通常导致植物体内生理代谢改变,并参与非生物胁迫调控转录因子的差异表达。植物抵御上述非生物逆境的能力与转录因子调控逆境相关功能基因的表达密不可分。近年来,发掘植物非生物胁迫相关转录因子的功能及揭示转录因子介导植物非生物胁迫响应的调控机制,已成为植物营养分子生物学关注的热点之一。因此,了解植物非生物胁迫下的生理应答及转录因子参与的调控机制,对建立植物适应性改良途径具有重要科学意义。本文从干旱、高盐和低温三方面阐述了非生物胁迫下植物生理生化的适应性变化,概述了MYB、bZIP、AP2/EREBP、WRKY和NAC五类与植物抗逆相关的转录因子的结构与功能特征,着重论述了转录因子介导植物抵御非生物胁迫的分子调控机制。植物遭遇非生物胁迫时,通常表现为生长速率、叶面积和叶片数量下降,蒸腾及光合速率降低。同时,植物体内活性氧逐渐累积,使细胞膜脂过氧化程度加剧,造成细胞损伤。为适应不利环境,在生理上植物表现为体内抗氧化酶活性增强,渗透调节物数量增多;在分子水平上,植物对非生物胁迫适应性的增强,通常与转录因子识别抗逆基因启动子特异性元件及调控逆境防御基因的转录有关。本文对于深入阐明干旱、高盐及低温胁迫下植物生理生化应答与转录因子的分子调控机制提供了全新的科学启示。  相似文献   

7.
WRKY是植物中特有的锌指型转录因子,其广泛参与植物对生物及非生物胁迫的响应过程.本研究从小麦(Triticum aestivum L.)中分离出一个新的WRKY转录因子基因TaWRKY51,其全长cDNA序列长度为1295 bp,其中开放阅读框(ORF)为942 bp,编码一个由313个氨基酸组成的多肽.用半定量RT-PCR进行表达谱分析,结果显示,TaWRKY51基因在分蘖节、叶和根系中的表达水平较高,并且受干旱胁迫诱导上调表达.在拟南芥(Arabidopsis thaliana)中过量表达TaWRKY51基因导致转基因株系侧根数目明显增多,并且对ABA、干旱和盐等胁迫处理的敏感性增加,表明该基因可能在植物响应非生物逆境胁迫信号传导过程中起负调控作用.本研究有助于揭示TaWRKY51基因调控植物侧根发育及响应非生物逆境胁迫的分子机制.  相似文献   

8.
干旱应答元件结合蛋白(DREB)转录因子调控植物抗逆相关功能基因的表达,对提高植物抗逆境胁迫具有重要作用.本研究采用盆栽法在小麦(Tritium aestivum)拔节至抽穗期进行不同水分胁迫条件下,分析了野生型和转基因小麦回交株系转录因子基因W16的表达特点,并对其抗旱性的生理生化指标进行了测定.半定量RT-PCR结果表明:野生型在无干旱胁迫时,W16有微弱表达,随胁迫增强,表达上调,当表达量达到峰值后(12 h),随胁迫的加剧,表达量迅速下降,呈现“上升-峰值-下降”特点,而整个干旱胁迫过程中转基因植株W16在Ubiquitin启动子作用下表达恒定且表达水平较高;抗旱性生理生化机制分析表明:不同水分胁迫条件下,转基因株系的叶绿素含量、脯氨酸含量、可溶性蛋白含量、水分利用效率的变化均高于受体对照,尤其在重度干旱(SD)胁迫下的差异更显著.产量结果显示,在各水分条件下转基因株系产量都高于受体对照,其抗旱指数属于较强抗旱等级.研究结果说明了转基因小麦回交株系中W16的超表达,改良了转基因小麦抗旱性的生理生化特性,提高了转基因小麦的抗旱性能.为抗旱转基因小麦品种选育提供理论和方法参考.  相似文献   

9.
韩妙华  滕瑞敏  李辉  刘昊  林士佳  庄静 《核农学报》2020,34(12):2647-2657
干旱应答元件结合蛋白(DREB)类转录因子在植物逆境信号转导途径中具有重要的调控作用。为了解AP2/ERF转录因子在茶树逆境胁迫的分子调控机理,本研究从茶树龙井43叶片的cDNA中克隆得到一个编码CsDREB-A2转录因子的基因;对CsDREB-A2基因及其编码蛋白序列特征进行分析,并利用实时荧光定量PCR法检测该基因在茶树不同非生物胁迫处理下的表达水平。结果表明,CsDREB-A2基因开放阅读框为1 056 bp,编码351个氨基酸,其编码氨基酸序列具有AP2保守结构域,包含典型的YRG元件和WLG基序。AP2结构域第14、第19位氨基酸分别为缬氨酸和谷氨酸。拟南芥AP2/ERF家族转录因子的进化分析表明,该转录因子属于DREB亚族的A2组。CsDREB-A2相对分子质量为39 080 Da,理论等电点为5.32,属于亲水性蛋白,主要由α-螺旋和随机卷曲组成,无序化特征明显且存在一个LM无序区域;可能定位于细胞核,不存在信号肽和跨膜结构,属于非分泌蛋白。CsDREB-A2基因在高温(38℃)和干旱(200 g·L-1 PEG)胁迫下均能快速诱导表达,并显著高于对照,分别在处理4、2 h达到最大值,为对照的20.70和42.90倍,植物在渗透胁迫下,可能通过ABA信号途径调节该基因对干旱的耐受性。高盐(200 mmol·L-1 NaCl)胁迫下CsDREB-A2基因的表达受抑制,推测其可能存在负调控结构域降低该基因在盐胁迫下的表达量。本试验结果为研究DREB类转录因子在茶树抗逆胁迫的分子调控机制提供了一定的理论参考。  相似文献   

10.
外源硅对植物抗盐性影响的研究进展   总被引:5,自引:0,他引:5  
盐胁迫是世界范围内影响作物产量和品质的主要非生物胁迫之一,如何提高作物的抗盐性已经引起全世界的关注。硅 (Si) 是地壳中含量仅次于氧的第二大丰富元素。在pH值低于9的介质中,硅通常以单硅酸[Si(OH)4]的形式被高等植物吸收。尽管目前硅仍然未被认为是植物生长的必需元素,但是作为植物生长的“有益元素”,硅可以缓解各种生物胁迫和非生物胁迫对植物生长发育的抑制。大量的研究表明硅可参与调控植物抗盐的生理生化代谢过程,并与一些信号物质,如乙烯、水杨酸和多胺等存在互作。主要进展如下:1) 植物对硅的吸收存在主动、被动和拒绝吸收三种,硅转运蛋白在硅的吸收和转运中起到非常重要的作用,但是关于该蛋白的编码基因在更多物种中的克隆和功能研究有待于进一步开展。2) 硅可以调节盐胁迫下植物体内的离子平衡,降低植物根系对盐离子的吸收和向地上部的转运,并使盐离子更均匀的分布在根系中;改善盐胁迫下根系对钙、钾、氮等营养元素的吸收,缓解盐胁迫造成的营养失调。近期一些研究表明多胺可能参与硅对根系盐离子吸收的调控。3) 硅可以通过调节水通道蛋白的表达和渗透调节物质的积累提高根系对水分的吸收和向地上部的转运,改善植株的水分状况。4) 硅可通过调节抗氧化酶活性,降低活性氧的产生和积累,同时可以缓解盐胁迫对光合器官和光合色素造成的损伤,保证盐胁迫下植物光合作用的正常进行。5) 植物耐盐的分子机制非常复杂,涉及大量基因的表达和调控以及信号转导过程,包括蛋白质组学和转录组学在内的组学研究策略为从分子水平揭示硅缓解胁迫的机理提供了有力的技术手段。转录组和蛋白质组学的研究表明硅可以通过调控转录因子、激素等相关基因的表达及蛋白的翻译和修饰来调控植物对盐胁迫的快速响应,提高植物的抗盐能力。6) 硅吸收突变体的应用有助于我们更好的了解硅在调控植物生理生化代谢中所发挥的作用。  相似文献   

11.
营养匮乏和伴生杂草是水稻种植过程中的常见影响因素。本研究应用抑制消减杂交(SSH)技术,分别研究低氮、稗草条件下,非化感水稻品种"Lemont"的上调表达基因。结果显示,低氮条件下,"Lemont"水稻中参与生长调控的生长素响应蛋白,参与抗逆防御的类NBS-LRR蛋白、过氧化氢酶、金属硫因蛋白,以及参与蛋白质代谢相关蛋白的编码基因上调表达。稗草共培下,编码NADH脱氢酶、细胞色素氧化酶、ATP依赖性RNA解旋酶等与植物生长相关的基因,与抗逆防御相关的几丁质酶和糖基水解酶基因,以及与信号转导相关的锌指蛋白及组氨酸激酶基因增强表达。研究结果表明,非化感水稻"Lemont"能够通过调节抗逆以及生长调节相关基因的表达,从而响应不同的胁迫。  相似文献   

12.
从青  倪晓祥  程龙军 《核农学报》2021,35(3):567-575
桉树是我国南方重要用材树种,但其栽培种对低温、干旱和高盐等非生物逆境抗性弱,限制了其栽培范围的扩大和栽培效益的提高。EgrNAC1(Eucgr.I00058)是巨桉中受低温、干旱和高盐诱导表达的NAC类转录因子。为进一步研究EgrNAC1的功能,通过异源转化拟南芥,获得了超表达EgrNAC1的转基因纯合株系,并对其进行低温(-6℃)、干旱、高盐(NaCl 300 mmol·L-1 )和脱落酸(0.5 μmol·L-1)处理,分析转基因株系对非生物逆境的响应。结果表明,超表达EgrNAC1能提高拟南芥植株对低温的抗性。-6℃处理12 h,恢复5 d后,转基因株系EgrNAC1-OE1和EgrNAC1-OE8的存活率分别达到88.9%和81.5%,而野生型仅有29.6%。低温处理下,转基因株系中3个低温信号传导(CBF)途径相关的基因,AtCBF1、AtCBF2和AtRD29A的表达量相对于野生型显著上调;超表达EgrNAC1提高了转基因植株对干旱和高盐的敏感程度。同时,转基因植株相对于野生型表现出对ABA敏感性的下降。综上,EgrNAC1在巨桉低温响应中可能作为一个正向调控因子,通过参与调控CBF途径中低温响应相关基因的表达,提高植物在低温逆境下的适应性。但在干旱和高盐逆境下,EgrNAC1可能发挥负调控作用,且这种作用可能与ABA的影响有关。本研究结果为深入了解桉树EgrNAC1的功能以及开展桉树抗逆分子辅助育种提供了一定的理论参考。  相似文献   

13.
王冕  张朝昕  陈娜  陈明娜  禹山林  迟晓元 《核农学报》2019,33(12):2328-2337
为挖掘花生抗逆相关基因,本研究以花生品种花育20号为试验材料,根据cDNA文库中已知的促丝裂原活化蛋白激酶激酶(MKK)基因EST序列设计引物,通过RACE-PCR克隆得到AhMKK4基因。结果表明,AhMKK4基因序列全长1 434 bp,含有3'非编码区151 bp,5'非编码区317 bp,开放阅读框全长966 bp,编码一条含有322个氨基酸的蛋白序列。预测其分子量为36.74 kDa,属于MAPKK基因家族D组成员。亚细胞定位显示AhMKK4基因定位于细胞质和细胞核中。RT-qPCR分析发现,AhMKK4基因在根中表达量高于其他组织,说明该基因具有组织表达特异性;AhMKK4基因受JA和IAA诱导时表达量上调,受SA和ABA诱导时表达量下调,说明该基因可能参与到JA和IAA介导的信号转导途径;AhMKK4在盐胁迫下表达量上调,说明该基因可能参与花生对盐胁迫的适应性调控。本研究结果为花生抗逆育种研究提供了新的基因资源。  相似文献   

14.
盐分胁迫是制约农业生产和植被构建的关键环境因素之一。为提高植物耐盐能力、降低盐碱地的开发利用难度,前人开展了大量关于外源物缓解植物盐分胁迫的研究。依据搜集到的122篇有关植物耐盐机理和外源物作用的文献,目前报道的缓解植物盐胁迫的外源物有50种。依据作用机理将其分为7类,分别是调节离子平衡及pH、诱导合成渗透调节物质、诱导抗氧化酶、激素调节、诱导基因表达及信号转导、改善光化学系统、微生物调控机制。本文对外源物缓解植物盐分胁迫的7类作用机理的研究进展分别进行总结和分析,并提出了今后需重点跟进的研究方向。  相似文献   

15.
锌指蛋白是转录因子的一种,对真核生物的生长发育及逆境胁迫的耐受能力都有着重要关系,而植物C2H2型锌指蛋白是研究较多、较为明确的一种锌指蛋白,该蛋白大部分锌指结构具有一段高度保守的氨基酸序列QALGGH,这是植物中独有的特征,且据报道该C2H2型锌指蛋白与逆境胁迫是相关的。本文主要综述了植物C2H2型锌指蛋白的分类、结构和功能,植物C2H2型锌指蛋白与DNA、RNA和蛋白质的相互作用,以及概述了与盐胁迫、低温胁迫、干旱胁迫、氧胁迫和光胁迫等逆境胁迫相关的植物C2H2型锌指蛋白,最后还对其进一步的深入研究进行了展望,这就为日后利用基因工程技术改良作物品质、提高作物的抗逆性提供了有利条件。  相似文献   

16.
扩展蛋白在植物生长发育和应对环境变化等过程中发挥重要作用。为了解大蒜扩展蛋白基因的序列特征及其在渗透胁迫下的功能,利用逆转录PCR(RT-PCR)方法从大蒜中克隆得到AsEXPA8基因,采用NCBI、ExPASy、SignalP 5.0和STRING等网站以及DNAMAN和MEGA 5.1软件对其序列进行分析,并采用实时荧光定量PCR技术对AsEXPA8基因在盐胁迫和模拟干旱胁迫下的表达特征进行研究。序列分析结果表明,AsEXPA8含有1个774 bp的开放阅读框,编码257个氨基酸。AsEXPA8蛋白有1个组氨酸-苯丙氨酸-天冬氨酸(His-Phe-Asp,HFD)基序,N端和C端分别含有8个保守的半胱氨酸残基和4个保守的色氨酸残基,具有信号肽和跨膜结构域,参与了生长素和赤霉素等激素调控细胞壁重构的过程。AsEXPA8在大蒜不同组织中均能表达,在叶片中表达相对较高。干旱胁迫和盐胁迫在不同组织内均诱导了AsEXPA8的表达。结果表明,AsEXPA8基因可能参与了大蒜植株抵御盐胁迫和干旱胁迫的过程。本研究结果为揭示AsEXPA8基因在大蒜应对渗透胁迫过程中的功能提供了理论依据。  相似文献   

17.
植物磷转运子 PHT1 家族研究进展   总被引:5,自引:3,他引:2  
【目的】磷是植物生长发育所必需的大量营养元素。植物 PHT1 磷转运蛋白家族在植物磷吸收、运转及再利用等过程中发挥了重要作用。迄今已在多种高等植物中相继分离出大量 PHT1 家族基因。本文综述了国内外关于植物 PHT1 家族的主要研究进展,详细阐述了植物 PHT1 家族的表达模式、功能及可能的调控途径。 主要进展植物 PHT1 家族属于 MFS (major facilitator superfamily) 超家族,不同物种 PHT1 家族蛋白的结构非常保守,通常具有 12 个亲脂跨膜结构域,形成“6 螺旋–亲水大环–6 螺旋”式的结构镶嵌于质膜当中。同时,该家族具有 H2PO4–/nH+ 共运子、糖转运子和 MFS 通用转运子等特征结构域和一段保守的氨基酸特征序列 GGDYPLSATIMSE。一般情况,植物 PHT1 家族基因吸收转运 1 个无机磷需要 2~4 个质子协同进入质膜,并伴随膜电位的变化。植物 PHT1 家族的磷转运特性差异较大,其动力学参数 Km 值差别较大。高等植物 PHT1 家族成员众多。在拟南芥、水稻、大豆、茄科植物及其他物种中的研究发现,PHT1 家族各成员间的时空表达模式存在差异,多数成员受低磷信号调控且主要在根部表达,少部分成员在除根以外的其他器官中表达,并行使相应的磷转运功能。已有研究表明,植物 PHT1 家族基因的转录水平受到多因素的调控,例如外界环境中的无机磷浓度,转录因子如 MYB 家族、WRKY 家族以及 ZAT6 等基因能与 PHT1 家族基因启动子区的特殊调控元件如 MYCS 元件、P1BS 元件及 W-box 元件等结合,调控基因的转录。此外,部分 PHT1 家族基因的转录水平受丛枝菌根真菌 (arbuscular mycorrhizal fungi,AMF) 的调控。除了转录水平的调控,关于植物 PHT1 家族转录后水平的调控途径同样取得了较大进展。PHF1 基因、含 SPX 结构域的蛋白家族、MicroRNA、蛋白磷酸化与去磷酸化、染色质修饰及其他等一系列调控途径均参与到 PHT1 家族基因的转录后调控及信号转导。植物激素如生长素、乙烯和细胞分裂素等也参与这一调控过程。 建议与展望植物对磷吸收利用的分子调控机理及信号转导途径十分复杂,因此,培育磷高效利用基因型作物任重而道远。关于植物 PHT1 家族基因的研究已从模式植物向作物及其他高等植物中扩展,然而对该家族蛋白的生化及结构生物学等研究还待进一步深入。同时,对于一些基因组较复杂的多倍体物种如甘蓝型油菜、小麦、大麦及棉花等,仍有待开展进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号