首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of structure on degradation of five halogenated phenols (XPs) by UV/H2O2 process was investigated. The combined influence of type or number of substituents and UV/H2O2 process parameters (pH and [H2O2]) on the degradation kinetics of 2-fluorophenol (2-FP), 2-chlorophenol (2-CP), 2-bromophenol (2-BP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) was studied using modified miscellaneous 33 full factorial design and response surface modeling (RSM). Studied XPs obey first-order degradation kinetics within the investigated range of process parameters. Determined degradation rate constants (k obs) were correlated with process and structural parameters by the quadratic polynomial models. Analysis of variance (ANOVA) demonstrated RSM models’ accuracy and showed that, in addition to pH and [H2O2], model terms related with the pollutant structure are highly influential. k obs of mono-XPs follow the decreasing order 2-FP, 2-CP, and 2-BP, while CPs follow the decreasing order 2-CP, 2,4-DCP, and 2,4,6-TCP. Biodegradability (biochemical oxygen demand (BOD)5/chemical oxygen demand (COD)) and toxicity (TU) were evaluated prior to the treatment and at the reference time intervals. The observed differences are correlated with the structural characteristics of studied XPs.  相似文献   

2.
This study examined a comparative degradation of various chlorinated phenolic compounds including phenol, 4-chlorophenol (4-CP), 2,6-dichlorophenol (2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP) using 28, 580, and 1,000 kHz ultrasonic reactors. The concentration of hydrogen peroxide was also determined in order to investigate the efficacy of different sonochemical reactors for hydroxyl radical production. Clearly, it was observed that the 580 kHz sonochemical reactor had maximum efficacy for hydroxyl radical production. The degradation of all the compounds followed the order; 580 kHz (91?C93%) > 1,000 kHz (84?C86%) > 28 kHz (17?C34%) with an initial concentration of 2.5 mg L?1 at a reaction time of 40 min with ultrasonic power of 200 ± 3 W and aqueous temperature of 20 ± 1°C in each experiment. Overall, the degradation of those phenolic compounds followed the order, PCP > 2,3,4,6-TeCP > 2,4,6-TCP > 2,6-DCP > 4-CP > phenol at various frequencies in the presence/absence of a radical scavenger (tert-butyl alcohol). It was revealed that the correlations between the compound degradation rates and the physicochemical parameters, R 2 = 0.99 for octanol?Cwater partition coefficient, R 2 = 0.95 for water solubility, R 2 = 0.94 for vapor pressure, and R 2 = 0.88 for Henry??s law constant, excluding PCP, were very good in the entire range of each parameter.  相似文献   

3.
采用固相微萃取(SPME)与气-质联用方法,测定分析了3种养殖模式水体中氯酚化合物(CPs)的污染特征。结果表明,19种CPs类化合物在一般四大家鱼养殖水体(A)、猪-鱼综合养殖模式水体(B)以及鸭-鱼综合养殖模式水体(C)表层水中的分布特征相似。总CPs及10种CPs化合物在不同养殖方式水体中浓度由高到低的顺序为A〉B〉C。表层水中残留浓度比较高的一氯酚、二氯酚、三氯酚和四氯酚分别是3-CP和4-CP、2,4-DCP、2,4,6-TCP、2,3,4,6-TCP。回归分析表明,铁、锰总含量与总CPs和PCP含量存在显著负相关。  相似文献   

4.
Experiments were carried out to study the transformation of 14C-ring-labeled 2,4-D and the two related chlorophenols 4-chlorophenol (4-CP) and 2,4-dichlorophenol (4-DCP) during straw composting under controlled laboratory conditions. Incubation under sterile and nonsterile conditions was done to evaluate the relative importance of the biotic and abiotic processes. Pre-composted straw was treated with the three chemicals. The availability of the different chemicals was monitored during incubations as well as their degradation. Under nonsterile conditions, the mineralization of both chlorophenols reached 20% of the applied compounds, whereas it was 52% for 2,4-D. Transitory water-soluble metabolites of 2,4-D and chlorophenols were formed but they disappeared rapidly. After 21 days, 21% of the 2,4-D and 38% of the 2,4-DCP was stabilized as nonextractable (bound) residues under nonsterile conditions. Bound residues of both chemicals were negligible under sterile conditions. Availability of chemicals as estimated by water extraction decreased during incubation proportionally to mineralization and to the formation of bound residues. The increase in immobilization of the chemical residues was stronger under nonsterile conditions than under sterile conditions. Under nonsterile conditions 71% of the 4-CP was recovered as bound residues, whereas under sterile conditions 30% of the applied 4-CP formed bound residues after formaldehyde addition and only 8% with autoclaved straw. Global microbial activity decreased in the presence of the chlorophenols probably due to their toxic effect. These data indicate that the biological activity associated with straw transformation during composting stimulates the depletion of 2,4-D and chlorophenols by mineralization and by formation of bound residues. Received: 6 September 1996  相似文献   

5.
Chlorophenols are potentially harmful pollutants that are found in numerous natural and agricultural systems. Plants are a sink for xenobiotics, which occur either intentionally or not, as they are unable to eliminate them although they generally metabolize them into less toxic compounds. The metabolic fate of [ (14)C] 4-chlorophenol (4-CP), [ (14)C] 2,4-dichlorophenol (2,4-DCP), and [ (14)C] 2,4,5-trichlorophenol (2,4,5-TCP) was investigated in lettuce, spinach, and radish to locate putative toxic metabolites that could become bioavailable to food chains. Radish plants were grown on sand for four weeks before roots were dipped in a solution of radiolabeled chlorophenol. The leaves of six-week old lettuce and spinach were treated. Three weeks after treatments, metabolites from edible plant parts were extracted and analyzed by high performance liquid chromatography (HPLC) and characterized by mass spectrometry (MS), and nuclear magnetic resonance spectroscopy (NMR). Characterization of compounds highlighted the presence of complex glycosides. Upon hydrolysis in the digestive tract of animals or humans, these conjugates could return to the toxic parent compound, and this should be kept in mind for registration studies.  相似文献   

6.
Biodegradation of pentachlorophenol (PCP) in soil by autochthonous microflora and in soil bioaugmented by the bacterial strain Comamonas testosteroni CCM 7530 was studied. Subsequent addition of lignite, an abundant source of humic acids, has also been investigated as possible sorbent for PCP immobilization. Biodegradation of PCP and number of colony-forming units were determined in the three types of soil, haplic chernozem, haplic fluvisol, and haplic arenosol, freshly spiked with PCP and amended with tested sorbent. The enhancing effect of sorbent addition and bioaugmentation on PCP biodegradation depended mainly on the soil type and the initial PCP concentration. Microbial activity resulted in biotransformation of PCP into certain potentially toxic substances, probably lower chlorinated phenols that are more soluble than PCP, and therefore more toxic toward present biota. Therefore, it was necessary to monitor soil ecotoxicity during biodegradation. Addition of lignite resulted in a significant improvement of PCP biodegradation and led to a considerable decrease of soil toxicity especially in bioaugmented soils. The method could potentially serve as a promising technique in remediation technology for reducing high initial PCP content in contaminated soils.  相似文献   

7.
A simple spectrophotometric method was developed to quantify chlorophenol (CP) concentrations after reaction with potassium permanganate and quenching with sodium sulfite. Other quenching agents (peroxide, sodium thiosulfate and hydroxylamine hydrochloride) were found to create absorbance in the spectral range required for CP quantification. Analysis at pH 12 gave greater absorption and sensitivity for the method compared with pH 5.6. The calibration curves of the proposed methods were linear in the concentration ranges 0.0061–0.61 and 0.0078–0.78 mM with detection limit of 0.0006 and 0.0008 mM for dichlorophenols and monochlorophenols, respectively. The oxidation kinetics of five chlorophenols in aqueous solution with excess potassium permanganate were evaluated using the analytical method. The pseudo-first-order reaction rates were found to be relatively rapid 1.42 × 10−3 to 0.024 s−1 and followed the sequence 2-chlorophenol (2-CP) > 2,6-dichlorophenol (2,6-DCP) > 4-chlorophenol (4-CP) > 2,4-dichlorophenol (2, 4-DCP) > 3-chlorophenol (3-CP). The apparent second-order rate constant was calculated from the measured pseudo-first-order rate constant with respect to CP with initial KMnO4 concentration (1.5 mM) and follows the same sequence of pseudo-first-order rate constant. This shows that chlorine atoms in the structure of chlorophenol had a significant influence on the oxidation of chlorophenols by potassium permanganate. Permanganate can be used for the treatment of chlorophenol-contaminated soil and groundwater.  相似文献   

8.
The metabolic fate of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in leaves of transgenic 2,4-D-tolerant cotton (Gossypium hirsutum), which is obtained by transfer of the tfdA gene from the bacterium Alcaligenes eutrophus. The tdfA gene codes for a dioxygenase catalyzing the degradation of 2,4-D to 2, 4-dichlorophenol (2,4-DCP). [phenyl-(14)C]-2,4-D was administered by petiolar absorption followed by an 18 h water chase or converted to the isopropyl ester and sprayed onto the leaf surface; the leaves were harvested 48 h later. The herbicide was degraded to 2,4-DCP by the bacterial enzyme expressed in the plants. 2,4-DCP was rapidly converted to more polar metabolites and was never found in detectable amounts. Metabolite structures were deduced from enzymatic hydrolysis studies and mass spectrometric analyses. The first metabolite was the glucoside conjugate of 2,4-DCP (2, 4-DCP-beta-O-glucoside). The major terminal metabolites were two more complex glucosides: 2,4-DCP-(6-O-malonyl)glucoside and 2, 4-DCP-(6-O-sulfate)glucoside.  相似文献   

9.
The aerobic and anaerobic degradation of phenol and selected chlorophenols was examined in a clay loam soil containing no added nutrients. A simple, efficient procedure based on the high solubility of these compounds in 95% ethanol was developed for extracting phenol and chlorophenol residues from soil. Analysis of soil extracts with UV spectrophotometry showed that phenol,o-chlorophenol,p-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4,6-trichlorophenol were rapidly degraded, whilem-chlorophenol, 3,4-dichlorophenol, 2,4,5-trichlorophenol and pentachlorophenol were degraded very slowly by microorganisms in aerobically-incubated soil at 23°C. Both 3,4,5-trichlorophenol and 2,3,4,5-tetra chlorophenol appeared to be more resistant to degradation by aerobic soil microorganisms at 23°C. None of the compounds examined were degraded by microorganisms in anaerobically-incubated soil at 23°C. Direct microscopic observation revealed that phenol and selected chlorophenols stimulated aerobic and to a lesser extent, anaerobic microbial growth in soil, and aerobic soil bacteria were responsible for the degradation of 2,4-dichlorophenol in aerobically-incubated soil at 23°C. Phenol,o-chlorophenol,m-chlorophenol,p-chlorophenol and 2,4-dichlorophenol underwent rapid non-biological degradation in sterile silica sand. Non-biological decomposition contributed, perhaps substantially, to the removal of some chlorophenols from sterile aerobically-incubated soil and both sterile and non-sterile anaerobically-incubated soil.  相似文献   

10.
Hydrophobic modified vermiculite mixed with soil was investigated in biodegradation experiments of naphthalene and anthracene. The experiments had been carried out on mixtures of soil and vermiculite at a proportion of 2%, 10%, and 15% and also in the absence of clay used for control. Biodegradation of the pollutants was followed by the decline of naphthalene and anthracene concentration, measured by CG. Compound mineralization was also proved by the evolution of CO2. The results showed that in the mixture with a higher proportion of vermiculite biodegradation is enhanced compared to that performed in the absence of vermiculite. In general, when vermiculite proportions are increased, the rate of degradation increases, which may account for the bioavailability of compounds. Bioavailability is an important factor for the degradation of compounds with low solubility. Comparison of biodegradation rates shows that naphthalene is degraded faster than anthracene. The chemical structure could be responsible for this observation. However, although we did not identify the microorganism that was in the soil, we can conclude that vermiculite could be an alternative for the bioavailability of such compounds. Vermiculite in the modified form could also be very useful as a barrier to retain organic pollutants in accidental spills.  相似文献   

11.
The effect of temperatures of −2.5 to +20 °C on the biodegradation of concentrations 0.2-50 μg cm−3 of pentachlorophenol (PCP), phenanthrene, pyrene and 2,4,5-trichlorophenol (TCP) was studied in soils sampled from an agricultural field and a relatively pristine forest in Helsinki, Finland. At the temperatures simulating seasonal variation of boreal soil temperatures [Heikinheimo, M., Fougstedt, B., 1992. Statistic of Soil Temperature in Finland. Meteorological Publications 22. Finnish Meteorological Institute, Helsinki, Finland], the response of mineralization of PCP, phenanthrene and 2,4,5-TCP was the most effective in the rhizosphere fraction of the forest humus soil at the substrate concentrations of ?5 μg cm−3. In the control incubation, performed at constant temperature of +20 °C, the mineralization yields of the model pollutants were highest in the agricultural soil with the highest applied substrate concentration (50 μg cm−3). The results suggest that the high level of pollutant mineralization at +20 °C resulted from the apparent adaptation of the soil microbial community to the high substrate concentration. No such adaptation occurred when the soils were incubated at temperatures simulating the actual boreal soil temperatures. The present results stress the role of adjusting the incubation conditions to environmentally relevant values, when assessing biodegradation of anthropogenic organic compound in boreal soils.  相似文献   

12.
有机氯农药六六六曾被广泛用于卫生防疫和对抗农业病虫害,但由于其毒性和持久性引发了一系列环境问题。鉴于微生物降解方法在农药污染场地的修复中具有重要作用,采用摇瓶培养法研究了在α-、β-、γ-和δ-六六六(HCH)异构体混合体系中,农药浓度、共代谢底物和接种量对Sphingobium indicum B90A降解4种HCH异构体的影响。研究结果表明:S.indicum B90A对α-和β-HCH的利用较好,其次是γ-和δ-HCH。在10mg·L-1混合HCH的无机盐培养液中,30℃下反应72h,S.indicumB90A对α-、β-、γ-和δ-HCH的降解率分别为99%、86%、53%和33%。随着HCH浓度的增加,S.indicum B90A对4种HCH异构体降解率均逐渐降低。在共代谢底物的研究中,添加葡萄糖或酵母粉均能明显地提高S.indicumB90A对HCH的降解能力,在10mg·L-1混合无机盐培养液中,添加100mg·L-1葡萄糖或添加50mg·L-1酵母粉,30℃下反应84h,S.indicum B90A对α-、β-、γ-和δ-HCH的降解率均接近100%。S.indicum B90A对HCH的降解率随着菌体接种量的增加而相应提高,适宜接菌量为5%。  相似文献   

13.
Humic acids and clays are important soil components that influence the sorption and desorption of organic contaminants; however, it is unclear how humic acids influence the sorption of organic contaminants onto clays and their subsequent desorption. Sorption and desorption of 2,4,6-trichlorophenol (2,4,6-TCP) by and from humic acid-modified K(+)- and Ca(2+)-montmorillonite and -illite were compared with unmodified clays using batch equilibration methods. Commercial humic acid and the humic acid extracted from forest soil were employed in this experiment. The adsorbed amount of 2,4,6-TCP by commercial humic acid was almost twice as large as that adsorbed by the extracted soil humic acid. More 2,4,6-TCP was sorbed onto K(+)- and Ca(2+)-illite than onto K(+)- and Ca(2+)-montmorillonite. K(+) clays were more effective in adsorbing 2,4,6-TCP than Ca(2+) clays. Sorption of 2,4,6-TCP on humic acid-modified Ca(2+)- and K(+)-montmorillonite and -illite increased as compared with unmodified clays. The sorption nonlinearity of 2,4,6-TCP on humic acid-modified Ca(2+)- and K(+)-illite increased remarkably as compared with the unmodified clays. The sorption nonlinearity of 2,4,6-TCP on humic acid-modified Ca(2+)- and K(+)-montmorillonite increased slightly in contrast to unmodified montmorillonites. By comparing sorption and desorption results, we observed hysteresis for all sorbents including humic acids, clays, and humic acid-modified clays. Sorption nonlinearity and hysteresis were dependent on the structure of humic acids. Higher aromaticity of humic acids resulted in greater sorption nonlinearity and desorption hysteresis. In addition, sorption capacity (K(f)') was positively correlated with the humic acid content of the sorbents. These results show that modification of humic acids on clays can not only increase the adsorption ability of clays but also affect the sorption nonlinearity of 2,4,6-TCP, and the desorption hysteresis was probably due to the structural characteristics of humic acids.  相似文献   

14.
Single- and bi-solute sorption and desorption of 2,4-dichlorophenol (2,4-DCP) and 2,4,5-trichlorophenol (2,4,5-TCP) in montmorillonite modified with hexadecyltrimethylammonium (HDTMA) were investigated using multi-step sorption and desorption procedure. Effect of pH on the multi-step sorption and desorption was investigated. As expected by the magnitude of octanol-water partition coefficient, K ow , both sorption and desorption affinity of 2,4,5-TCP was higher than that of 2,4-DCP at pH 4.85 and 9.15. For both chlorophenols, the protonated speciation (at pH 4.85) exhibited a higher affinity in both sorption and desorption than the predominant deprotonated speciation (about 95% and 99% of 2,4-dichlorophenolate and 2,4,5-trichlophenolate anions at pH 9.15, respectively). Desorption of chlorinated phenols was strongly dependent on the current pH regardless of their speciation in the previous sorption stage. Freundlich model was used to analyze the single-solute sorption and desorption data. No appreciable desorption-resistant (or non-desorbing) fraction was observed in organoclays after several multi-step desorptions. This indicates that sorption of phenols in organoclay mainly occurs via partitioning into the core of the pseudo-organic medium, thereby causing desorption nearly reversible. In bisolute competitive systems, sorption (or desorption) affinity of both chlorophenols was reduced compared to that in its single-solute system due to the competition between the solutes. The ideal adsorbed solution theory (IAST) coupled to the single-solute Freundlich model successfully predicted bisolute multi-step competitive sorption and desorption equilibria.  相似文献   

15.
海藻酸钠固定化细菌对毒死蜱的降解特性   总被引:2,自引:0,他引:2  
毒死蜱的生产和使用日趋广泛,由其造成的环境污染和危害不容忽视。微生物是影响有机磷农药在环境中降解的最主要因素,也被认为是降解有机磷农药最可靠而高效的途径。固定化技术是提高微生物降解农药效率的有效方法之一。本研究以海藻酸钠为载体,采用注射器滴定法将蜡状芽孢杆菌(Bacillus cer-eus)HY-1用海藻酸钠溶胶包埋,研究了反应时间、固定化菌接入量、pH和毒死蜱初始浓度对毒死蜱降解的影响以及固定化菌的重复使用效果。结果表明:海藻酸钠固定化菌能够高效降解基础培养基中的毒死蜱,制备固定化小球海藻酸钠溶胶的最适浓度为2.5%(w/v),小球的平均粒径为3 mm。在培养时间为60 h时,固定化菌对100 mg·L-1毒死蜱的降解率达到最大。固定化小球接入量为160 g·L-1时,对100 mg·L-1毒死蜱的降解率最高。固定化菌对毒死蜱的降解有着较宽泛的pH适应范围,碱性环境更有利于其对毒死蜱的有效降解。当毒死蜱初始浓度为80 mg·L-1和100 mg·L-1时,固定化菌对毒死蜱的降解率较高,达90%左右。固定化菌可重复利用降解毒死蜱,当利用4次后,固定化小球虽已发生崩解,但对100 mg·L-1毒死蜱的降解率仍高达47%。因此,海藻酸钠固定化蜡状芽孢杆菌对水体中毒死蜱的降解率较高,环境适应性较强,固定化菌可在毒死蜱污染的净化去毒方面发挥重要作用。  相似文献   

16.
Water treatment for wastewater containing phenols and their chlorinated variations has attracted important research efforts. Phenol??s high toxicity makes them a good model to test possible water treatment based on biological and/or chemical methods. High concentrations of phenols may be treated by pure biological schemes. However, chlorinated phenols are very toxic for many microorganisms. Therefore, mixed treatment trains can be proposed to solve the treatment of this class of organics. In this study, the ozonation was used as pretreatment to decompose chlorinated phenols. Besides, this study describes how the microbial consortiums were adapted to handle ozonation by-products. The biodegradation of different phenol concentrations from 50 to 1,500?mg/L was evaluated using preadapted microbial consortia in batch and in a trickling packed-bed reactor (TPBR). Under batch conditions, phenol was efficiently removed up to 500?mg/L. For every phenol concentration evaluated, higher degradation rates were obtained in TPBR. The chlorophenols were found to be poorly degraded by the pure biological treatment, 4-CPh was not degraded during the biological process and 2,4-DCPh was only 40?% degraded after 250?h of culture. By combining the chemical (as pretreatment) and the biological processes, 85?% of 4-CPh was removed, while the degradation of the 2,4-DCPh was enhanced from 40 to 87?%. The predominant bacteria found in the preadapted cultures were Xanthomonas sp., Ancylobacter sp., and Rhodopseudomonas. Total treatment period was reduced from several weeks to some days. This information reflects the benefits offered by the mixed water treatment train proposed in this paper.  相似文献   

17.
Feng  Zeng  Kunyan  Cui  Jiamo  Fu  Guoying  Sheng  Huifang  Yang 《Water, air, and soil pollution》2002,140(1-4):297-305
Di(2-ethylhexyl)phthalate (DEHP), one of high-molecular weightphthalate esters (PAEs), is used in the manufacturing of polyvinylchloride (PVC) resins, polyvinyl acetate, cellulosics,and polyurethanes, and contributes to environmental pollution. In this article, the characteristics of DEHP biodegradation by aneffective degradation bacterium, Pseudomonasfluorescens FS1 that isolated from the activated sludge at a petrochemicalfactory, was capable of using phthalate esters as the sole carbonand energy source, were investigated. Experimental results showedthat the biodegradation of DEHP by P. fluorescens FS1 could be described by the first-order reaction model, whichcould be expressed as: lnC = –0.0688t + A, and the half-life ofDEHP biodegradation was 10.07 d when the initial concentrations of DEHP were less than 50 mg L-1. The inhibition effects ofDEHP as a substrate had become predominant above the concentration of 50 mg L-1. The PAEs-degrading enzyme of P. fluorescens FS1, mainly located in the soluble part andthe particle of cytoplasm, was an intracellular enzyme. The metabolites of DEHP degradation by P. fluorescens FS1, which monoester, phthalic acid, benzonic acid, phenol, wereextracted using dichloromethane at different time intervals and identified by the GC-MS. The tentative pathway proposed for degradation of DEHP by P. fluorescens FS1 under aerobic condition is monoester in the beginning, further enzymatic degradation of the monoester produces phthalic acid, benzonic acid, phenol and finally CO2 and H2O.  相似文献   

18.
Analytical methods for the determination of trifloxystrobin and four of its metabolites were developed in a leaching study conducted in Hawaii. To duplicate plots at each of five locations representing various agricultural areas in Hawaii, trifloxystrobin was applied at label rates and allowed to leach under normal rain and irrigation conditions. Soil samples were collected at weekly to monthly intervals and the residual concentrations of trifloxystrobin and metabolites measured. A quantitative analytical method for their determination in various soil samples was developed using accelerated solvent extraction (ASE), coupled with liquid chromatography-tandem mass spectrometry. Extraction solvent with various ratios of methanol to water, addition of EDTANa2 to the extract solvent, and ASE cell temperature were adjusted to improve recovery. Deuterated (E, E)-trifloxystrobin was chosen as the internal standard of the analytical method. The limit of quantitation was 2.5 ppb in the soil for trifloxystrobin and its metabolites. Laboratory aerobic degradation studies with the soils from the five sites were also conducted to measure the same compounds.  相似文献   

19.
Various interactions occurring between organic chemicals and soil constituents participate in the determination of the fate of these pollutants, including their biodegradability. These relations need to be characterized in order to design and successfully implement a bioremediation application. In the present study, biodegradation of spiked and aged crude oil contamination in two dissimilar soils was related to their composition. GC-FID analysis of bulk soil samples as well as sand- and <63 μm fractions showed considerable differences in contaminant distribution and degradation behavior within these fractions. Whereas a freshly spiked silty soil showed reasonable degradation (51%), degradation was not significant after ageing. By contrast, a sandy soil was degraded by 25% (recently contaminated) and 19% (aged). Biodegradation occurred in the fine fraction only, with a comparably high content of organic carbon whereas hydrocarbon concentration remained constant in the sand fraction. This was correlated with sorption to the fine fraction where hydrocarbon concentrations were higher by over an order of magnitude compared to the sand fraction. Soil composition, biology and chemistry exert a pronounced influence on microbial degradation in respect to (i) contaminant availability and (ii) the structure and density of the microbial community.  相似文献   

20.
The bioactive anthocyanins present in tart cherries, Prunus cerasus L. (Rosaceae) cv. Balaton, are cyanidin 3-glucosylrutinoside (1), cyanidin 3-rutinoside (2), and cyanidin 3-glucoside (3). Cyanidin (4) is the major anthocyanidin in tart cherries. In our continued evaluation of the in vivo and in vitro efficacy of these anthocyanins to prevent inflammation and colon cancer, we have added these compounds to McCoy's 5A medium in an effort to identify their degradation products during in vitro cell culture studies. This resulted in the isolation and characterization of protocatechuic acid (5), the predominant degradation product. In addition, 2,4-dihydroxybenzoic acid (6) and 2,4,6-trihydroxybenzoic acid (7) were identified as degradation products. However, these degradation products were not quantified. Compounds 5-7 were also identified as degradation products when anthocyanins were subjected to varying pH and thermal conditions. In cyclooxygenase (COX)-I and -II enzyme inhibitory assays, compounds 5-7 did not show significant activities when compared to the NSAIDs Naproxen, Celebrex, and Vioxx, or Ibuprofen, at 50 microM concentrations. However, at a test concentration of 50 microM, the antioxidant activity of protocatechuic acid (5) was comparable to those of the commercial antioxidants tert-butylhydroquinone (TBHQ), butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA), and superior to that of vitamin E at 10 microM concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号