首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Second-generation Pinus radiata D. Don trees, propagated from cuttings of 4-year-old trees previously grown at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressure (Ca) were grown under the same conditions in open-top chambers for a further year. As cuttings of the original trees, these second-generation trees were physiologically the same age as the first-generation trees with the only difference between the two being size. This allowed us to test the effects of tree size independently of age or duration of exposure. Total non-structural carbohydrate concentration, area-based nitrogen concentration, leaf mass per unit area and chlorophyll concentration measured in three foliage age cohorts were unaffected by either age or Ca. There were no signs of photosynthetic down-regulation in trees grown at elevated Ca. When measured at the growth Ca, photosynthetic rate in young needles during summer, autumn and spring was 34, 43 and 38% higher, respectively, in trees grown at elevated Ca than in trees grown at ambient Ca. In older needles, the corresponding photosythetic rate increases were 26, 47 and 49%. Water-use efficiency, determined by stable carbon isotope analysis, was 49% higher in foliage in the elevated Ca treatment than in foliage in the ambient Ca treatment. This increase was entirely due to photosynthetic enhancement, because stomatal conductance did not differ between treatments. We conclude that down-regulation of photosynthesis at elevated Ca is related to tree size rather than tree age or duration of exposure, and that enhanced photosynthetic rates can be maintained while sink strength is high enough to use the excess photosynthates.elevated CO2, needle age, photosynthetic down-regulation, photosynthetic enhancement, sink strength, water-use efficiency.  相似文献   

2.
Effects of elevated CO2 concentration ([CO2]) on carbon assimilation and needle biochemistry of fertilized and unfertilized 25-30-year-old Scots pine (Pinus sylvestris L.) trees were studied in a branch bag experiment set up in a naturally regenerated stand. In each tree, one branch was enclosed in a bag supplied with ambient [CO2] (360 micromol mol(-1)), a second branch was enclosed in a bag supplied with elevated [CO2] (680 micromol(-1)) and a control branch was left unbagged. The CO2 treatments were applied from April 15 to September 15, starting in 1993 for unfertilized trees and in 1994 for fertilized trees, which were treated with N in June 1994. Net photosynthesis, amount and activity of Rubisco, N, starch, C:N ratio and SLA of needles were measured during the growing season of 1995. Light-saturated net photosynthetic rates of 1-year-old and current-year shoots measured at ambient [CO2] were not affected by growth [CO2] or N fertilization. Elevated [CO2] reduced the amount and activity of Rubisco, and the relative proportion of Rubisco to soluble proteins and N in needles of unfertilized trees. Elevated [CO2] also reduced the chlorophyll concentration (fresh weight basis) of needles of unfertilized trees. Soluble protein concentration of needles was not affected by growth [CO2]. Elevated [CO2] decreased the Rubisco:chlorophyll ratio in unfertilized and fertilized trees. Starch concentration was significantly increased at elevated [CO2] only in 1-year-old needles of fertilized trees. Elevated [CO2] reduced needle N concentration on a dry weight or structural basis (dry weight minus starch) in unfertilized trees, resulting in an increase in needle C:N ratio. Fertilization had no effect on soluble protein, chlorophyll, Rubisco or N concentration of needles. The decrease in the relative proportions of Rubisco and N concentration in needles of unfertilized trees at elevated [CO2] indicates reallocation of N resources away from Rubisco to nonphotosynthetic processes in other plant parts. Acclimation occurred in a single branch exposed to high [CO2], despite the large sink of the tree. The responses of 1-year-old and current-year needles to elevation of growth [CO2] were similar.  相似文献   

3.
Few studies have examined the effects of elevated CO2 concentration ([CO2]) on the physiology of intact forest canopies, despite the need to understand how leaf-level responses can be aggregated to assess effects on whole-canopy functioning. We examined the long-term effects of elevated [CO2] (ambient + 200 ppm CO2) on two age classes of needles in the upper and lower canopy of Pinus taeda L. during the second through sixth year of exposure to elevated [CO2] in free-air (free-air CO2 enrichment (FACE)) in North Carolina, USA. Strong photosynthetic enhancement in response to elevated [CO2] (e.g., +60% across age classes and canopy locations) was observed across the years. This stimulation was 33% greater for current-year needles than for 1-year-old needles in the fifth and sixth years of treatment. Although photosynthetic stimulation in response to elevated [CO2] was maintained through the sixth year of exposure, we found evidence of concurrent down-regulation of Rubisco and electron transport capacity in the upper-canopy sunlit leaves. The lower canopy showed no evidence of down-regulation. The upper canopy down-regulated carboxylation capacity (Vcmax) and electron transport capacity (Jmax) by about 17-20% in 1-year-old needles; however, this response was significant across sampling years only for Jmax in 1-year-old needles (P < 0.02). A reduction in leaf photosynthetic capacity in aging conifer needles at the canopy top could have important consequences for canopy carbon balance and global carbon sinks because 1-year-old sunlit needles contribute a major proportion of the annual carbon balance of these conifers. Our finding of a significant interaction between canopy position and CO2 treatment on the biochemical capacity for CO2 assimilation suggests that it is important to take canopy position and needle aging into account because morphologically and physiologically distinct leaves could respond differently to elevated [CO2].  相似文献   

4.
To study the effects of elevated CO(2) on gas exchange, nonstructural carbohydrate and nutrient concentrations in current-year foliage of 30-year-old Norway spruce (Picea abies (L.) Karst.) trees, branches were enclosed in ventilated, transparent plastic bags and flushed with ambient air (mean 370 &mgr;mol CO(2) mol(-1); control) or ambient air + 340 &mgr;mol CO(2) mol(-1) (elevated CO(2)) during two growing seasons. One branch bag was installed on each of 24 selected trees from control and fertilized plots. To reduce the effect of variation among trees, results from each treated branch were compared with those from a control branch on the same whorl of the same tree. Elevated CO(2) increased rates of light-saturated photosynthesis on average by 55% when measured at the treatment CO(2) concentration. The increase was larger in shoots with high needle nitrogen concentrations than in shoots with low needle nitrogen concentrations. However, shoots grown in elevated CO(2) showed a decrease in photosynthetic capacity compared with shoots grown in ambient CO(2). When measured at the internal CO(2) concentration of 200 &mgr;mol CO(2) mol(-1), photosynthetic rates of branches in the elevated CO(2) treatments were reduced by 8 to 32%. The elevated CO(2) treatment caused a 9 to 20% reduction in carboxylation efficiency and an 18% increase in respiration rates. In response to elevated CO(2), starch, fructose and glucose concentrations in the needles increased on average 33%, whereas concentrations of potassium, nitrogen, phosphorus, magnesium and boron decreased. Needle nitrogen concentrations explained 50-60% of the variation in photosynthesis and CO(2) acclimation was greater at low nitrogen concentrations than at high nitrogen concentrations. We conclude that the enhanced photosynthetic rates found in shoots exposed to elevated CO(2) increased carbohydrate concentrations, which may have a negative feedback on the photosynthetic apparatus and stimulate cyanide-resistant respiration. We also infer that the decrease in nutrient concentrations of needles exposed to elevated CO(2) was the result of retranslocation of nutrients to other parts of the branch or tree.  相似文献   

5.
Naturally regenerated 20-25-year-old Scots pine (Pinus sylvestris L.) trees were grown in open-top chambers in the presence of an elevated temperature or CO(2) concentration, or both. The elevated temperature treatment was administered year-round for 3 years. The CO(2) treatment was applied between April 15 and September 15 for 2 years. The photosynthetic responses of 1- and 2-year-old needles to varying photon flux densities (0-1500 micro mol m(-2) s(-1)) and CO(2) concentrations (350, 700 and 1400 micro mol mol(-1)) during measurement were determined. The CO(2) treatment alone increased maximum photosynthetic rate and light-use efficiency, but decreased dark respiration rate, light compensation and light saturation regardless of needle age. In contrast, the temperature treatment decreased maximum photosynthetic rate and photosynthetic efficiency, but increased dark respiration rate, light compensation and light saturation. The aging of needles affected the photosynthetic performance of the shoots; values of all parameters except photosynthetic efficiency were less in 2- than in 1-year-old needles. The CO(2) treatment decreased and the temperature treatment enhanced the reduction in maximum photosynthesis due to needle aging.  相似文献   

6.
Foliar light-saturated net assimilation rates (A) generally decrease with increasing tree height (H) and tree age (Y), but it is unclear whether the decline in A is attributable to size- and age-related modifications in foliage morphology (needle dry mass per unit projected area; M(A)), nitrogen concentration, stomatal conductance to water vapor (G), or biochemical foliage potentials for photosynthesis (maximum carboxylase activity of Rubisco; V(cmax)). I studied the influences of H and Y on foliage structure and function in a data set consisting of 114 published studies reporting observations on more than 200 specimens of various height and age of Picea abies (L.) Karst. and Pinus sylvestris L. In this data set, foliar nitrogen concentrations were independent of H and Y, but net assimilation rates per unit needle dry mass (A(M)) decreased strongly with increasing H and Y. Although M(A) scaled positively with H and Y, net assimilation rates per unit area (A(A) = M(A) x A(M)) were strongly and negatively related to H, indicating that the structural adjustment of needles did not compensate for the decline in mass-based needle photosynthetic rates. A relevant determinant of tree height- and age-dependent modifications of A was the decrease in G. This led to lower needle intercellular CO2 concentrations and thereby to lower efficiency with which the biochemical photosynthetic apparatus functioned. However, V(cmax) per unit needle dry mass and area strongly decreased with increasing H, indicating that foliar photosynthetic potentials were lower in larger trees at a common intercellular CO2 concentration. Given the constancy of foliar nitrogen concentrations, but the large decline in apparent V(cmax) with tree size and age, I hypothesize that the decline in Vcmax results from increasing diffusive resistances between the needle intercellular air space and carboxylation sites in chloroplasts. Increased diffusive limitations may be the inevitable consequence of morphological adaptation (changes in M(A) and needle density) to greater water stress in needles of larger trees. Foliage structural and physiological variables were nonlinearly related to H and Y, possibly because of hyperbolic decreases in shoot hydraulic conductances with increasing tree height and age. Although H and Y were correlated, foliar characteristics were generally more strongly related to H than to Y, suggesting that increases in height rather than age are responsible for declines in foliar net assimilation capacities.  相似文献   

7.
Five-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open-top chambers at ambient and elevated (ambient + 400 &mgr;mol mol(-1)) CO(2) concentrations. Net photosynthesis (A), specific leaf area (SLA) and concentrations of nitrogen (N), carbon (C), soluble sugars, starch and chlorophyll were measured in current-year and 1-year-old needles during the second year of CO(2) enrichment. The elevated CO(2) treatment stimulated photosynthetic rates when measured at the growth CO(2) concentration, but decreased photosynthetic capacity compared with the ambient CO(2) treatment. Acclimation to elevated CO(2) involved decreases in carboxylation efficiency and RuBP regeneration capacity. Compared with the ambient CO(2) treatment, elevated CO(2) reduced light-saturated photosynthesis (when measured at 350 &mgr;mol mol(-1) in both treatments) by 18 and 23% (averaged over the growing season) in current-year and 1-year-old needles, respectively. We observed significant interactive effects of CO(2) treatment, needle age and time during the growing season on photosynthesis. Large seasonal variations in photosynthetic parameters were attributed to changes in needle chemistry, needle structure and feedbacks governed by whole-plant growth dynamics. Down-regulation of photosynthesis was probably a result of reduced N concentration on an area basis, although a downward shift in the relationship between photosynthetic parameters and N was also observed.  相似文献   

8.
Niinemets U 《Tree physiology》1997,17(11):723-732
Leaf retention time increases with decreasing irradiance, providing an effective way of amortizing the costs of foliage construction over time. To elucidate the physiological mechanisms underlying this dependence, I studied needle life span, morphology, and concentrations of carbon, nitrogen and nonstructural carbohydrates along a gradient of relative irradiance in understory trees of Picea abies (L.) Karst. Maximum needle life span was greater in shaded trees than in sun-exposed trees. However, irrespective of irradiance, needles with maximum longevity were situated in the middle rather than the bottom of the canopy, suggesting that needle life span is determined by the irradiance to which needles are exposed during their primary growth. Morphology and chemistry of current-year needles were adapted to prevailing light conditions. Current-year needles exposed to high irradiances had greater packing of foliar biomass per unit area than shaded needles, whereas shaded needles maximized foliar area to capture more light. Nitrogen concentrations were higher in shaded needles than in sun-exposed needles. This nitrogen distribution pattern was related to the high nitrogen cost of light interception and was assumed to improve light absorptance per needle mass of shaded needles. In contrast, in both 1- and 2-year-old needles, morphology was independent of prevailing light conditions; however, needle nitrogen concentrations were adjusted toward more effective light interception in 2-year-old foliage but not in 1-year-old foliage, indicating that acclimation of sun-adapted needles to shading takes more than one year. At the same time, needle aging was accompanied by accumulation of nonstructural carbohydrates (NSC), and increasing concentrations of needle carbon, suggesting a shift in the balance between photosynthesis and photosynthate export. The accumulation of NSC and carbon resulted in a dilution of the concentrations of other needle chemicals and explained the decline in needle nitrogen concentrations with increasing age. Thus, although morphological inadequacy to low light availabilities may partly be compensated for by modifications in needle chemistry, age-related changes in needle stoichiometric composition progressively lessen the potential for acclimation to low irradiance. A conceptual model, advanced to explain how environmental factors and age-related changes in the activities of needle xylem and phloem transport affect needle longevity, predicted that adaptation of needle morphology to irradiance during the primary growth period largely determines the fate of needles during subsequent tree growth and development.  相似文献   

9.
A Weibull function was used to model the vertical distribution of leaf area of individual trees in a 25-year-old Chamaecyparis obtusa (Siebold & Zucc.) Endl. plantation. The parameter representing the shape of the leaf distribution was independent of tree size. A scale parameter tended to decrease with tree size suggesting a critical minimum height for retention of foliage by trees. On the basis of leaf distribution, the photosynthetic production of individual trees was estimated from the canopy photosynthetic production, which was determined from a model of canopy photosynthesis. The data indicated that the photosynthesis of a tree was proportional to the corresponding tree weight to the power of 1.84. Furthermore, the photosynthetic production varied as the 3/2nd power of total leaf area of the tree. Thus, it was concluded that the photosynthetic production per unit of leaf area, that is, the mean photosynthetic activity of a tree, is proportional to the stem girth at clear length, or the square root of the leaf area of the tree.  相似文献   

10.
To investigate whether long-term elevated carbon dioxide concentration ([CO(2)]) causes declines in photosynthetic enhancement and leaf nitrogen (N) owing to limited soil fertility, we measured photosynthesis, carboxylation capacity and area-based leaf nitrogen concentration (N(a)) in Pinus taeda L. growing in a long-term free-air CO(2) enrichment (FACE) facility at an N-limited site. We also determined how maximum rates of carboxylation (V(cmax)) and electron transport (J(max)) varied with N(a) under elevated [CO(2)]. In trees exposed to elevated [CO(2)] for 5 to 9 years, the slope of the relationship between leaf photosynthetic capacity (A(net-Ca)) and N(a) was significantly reduced by 37% in 1-year-old needles, whereas it was unaffected in current-year needles. The slope of the relationships of both V(cmax) and J(max) with N(a) decreased in 1-year-old needles after up to 9 years of growth in elevated [CO(2)], which was accompanied by a 15% reduction in N allocation to the carboxylating enzyme. Nitrogen fertilization (110 kg N ha(-1)) in the ninth year of exposure to elevated [CO(2)] restored the slopes of the relationships of V(cmax) and J(max) with N(a) to those of control trees (i.e., in ambient [CO(2)]). The J(max):V(cmax) ratio was unaffected by either [CO(2)] or N fertilization. Changes in the apparent allocation of N to photosynthetic components may be an important adjustment in pines exposed to elevated [CO(2)] on low-fertility sites. We conclude that fundamental relationships between photosynthesis or its component processes with N(a) may be altered in aging pine needles after more than 5 years of exposure to elevated atmospheric [CO(2)].  相似文献   

11.
We examined the effect of supplemental UV-B radiation (290-320 nm) on photosynthetic characteristics of different aged needles of 3-year-old, field-grown loblolly pine (Pinus taeda L.). Needles in four age classes were examined: I, most recently fully expanded, year 3; II, first flush, year 3; III, final flush, year 2; and IV, oldest needles still present, year 2. Enhanced UV-B radiation caused a statistically significant decrease (6%) in the ratio of variable to maximum fluorescence (F(v)/F(m)) following dark adaptation only in needles from the youngest age class, suggesting transient damage to photosynthesis. However, no effects of enhanced UV-B radiation on other instantaneous measures of photosynthesis, including maximum photosynthesis, apparent quantum yield and dark respiration, were seen for needles of any age. Foliar nitrogen concentration was unaffected by UV-B treatment. However, the (13)C/(12)C carbon isotope ratios (delta(13)C-a time integrated measure of photosynthetic function) of needles in age classes II and IV were 3% (P < 0.01) and 2% (P < 0.05) more negative, respectively, in treated plants than in control plants. Exposure to enhanced UV-B radiation caused a 20% decrease in total biomass and a 4% (P < 0.05), 25% (P < 0.01), and 9% (P < 0.01) decrease in needle length of needles in age classes I, II, and IV, respectively. The observed decreases in delta(13)C, and F(v)/F(m) of the needles in the youngest needle age class suggest subtle damage to photosynthesis, although overall growth reductions were probably a result of decreased total leaf surface rather than decreased photosynthetic capacity. Needles of age class IV had lower light- and CO(2)-saturated maximum photosynthetic rates (39%), lower dark respiration (34%), lower light saturation points (37%), lower foliar nitrogen concentration (28%), and lower delta(13)C (14%) values than needles of age class I. Apparent quantum yield and F(v)/F(m) did not change with needle age. The observed changes in photosynthesis and foliage chemical composition with needle age are consistent with previous studies of coniferous trees and may represent adaptations of older needles to shaded conditions within the canopy.  相似文献   

12.
Within-leaf variations in cell size, mitochondrial numbers and dark respiration rates were compared in the most recently expanded tip, the mid-section and base of needles of Pinus radiata D. Don trees grown for 4 years in open-top chambers at ambient (36 Pa) or elevated (65 Pa) carbon dioxide partial pressure (p(CO2)a). Mitochondrial numbers and respiratory activity varied along the length of the needle, with the highest number of mitochondria per unit cytoplasm and the highest rate of respiration per unit leaf area at the base of the needle. Regardless of the location of the cells (tip, middle or basal sections), needles collected from trees grown in elevated p(CO2)a had nearly twice the number of mitochondria per unit cytoplasm as those grown in ambient p(CO2)a. This stimulation of mitochondrial density by growth at elevated p(CO2)a was greater at the tip of the needle (2.7 times more mitochondria than in needles grown in ambient CO2) than at the base of the needle (1.7 times). The mean size of individual mitochondria was unaffected either by growth at elevated p(CO2)a or by position along the needle. Tree growth at elevated p(CO2)a had a variable effect on respiration per unit leaf area, significantly increasing respiration in the tip of the needles (+25%) and decreasing respiration at the mid-section and base of the needles (-14% and -25%, respectively). Although a simple relationship between respiration per unit leaf area and mitochondrial number per unit cytoplasm was found within each CO2 treatment, the variable effect of growth at elevated p(CO2)a on respiration along the length of the needles indicates that a more complex relationship must determine the association between structure and function in these needles.  相似文献   

13.
We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 micromol mol-1) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle and lower crown during the 2 years of exposure. Fertilization and elevated [CO2] increased branch leaf area by 38 and 13%, respectively, and the combined effects were additive. Fertilization and elevated [CO2] differentially altered needle lengths, number of fascicles and flush length such that flush density (leaf area/flush length) increased with improved nutrition but decreased in response to elevated [CO2]. These results suggest that changes in nitrogen availability and atmospheric [CO2] may alter canopy structure, resulting in greater foliage retention and deeper crowns in loblolly pine forests. Fertilization increased foliar nitrogen concentration (N(M)), but had no consistent effect on foliar leaf mass (W(A)) or light-saturated net photosynthesis (A(sat)). However, the correlation between A(sat) and leaf nitrogen per unit area (N(A) = W(A)N(M)) ranged from strong to weak depending on the time of year, possibly reflecting seasonal shifts in the form and pools of leaf nitrogen. Elevated [CO2] had no effect on W(A), N(M) or N(A), but increased A(sat) on average by 82%. Elevated [CO2] also increased photosynthetic quantum efficiency and lowered the light compensation point, but had no effect on the photosynthetic response to intercellular [CO2], hence there was no acclimation to elevated [CO2]. Daily photosynthetic photon flux density at the upper, middle and lower canopy position was 60, 54 and 33%, respectively, of full sun incident to the top of the canopy. Despite the relatively high light penetration, W(A), N(A), A(sat) and R(d) decreased with crown depth. Although growth enhancement in response to elevated [CO2] was dependent on fertilization, [CO2] by fertilization interactions and treatment by canopy position interactions generally had little effect on the physiological parameters measured.  相似文献   

14.
The needles of pine trees are indicative of the overall health of the tree, and their length is affected by many factors. This study describes the effect of high levels of pathogen infection on lengths of both needles and shoots. Dothistroma septosporum is an important foliar pathogen of pines causing necrosis and premature defoliation with successive years of high infection leading to growth reduction and in extreme cases tree death. Corsican pine trees with all foliage infected by D. septosporum had needles of primary, secondary and tertiary shoots reduced by 31.8%, 44.0% and 64.2%, respectively, compared to non‐infected trees. Needle lengths were reduced both in the upper and lower portions of the canopy, with a greater reduction lower in the canopy. Trees with high levels of infection had shorter shoots in the upper canopy with fewer, shorter needles on these shoots compared to trees with low levels of infection. The results demonstrate the substantial negative effect on needle and shoot lengths of trees with high levels of D. septosporum infection, comparable to factors such as water and nutrient availability known to have a strong influence on these parameters. The reductions in length reduce the photosynthetic capacity of the tree and compound the immediate reductions caused by necrosis and premature defoliation. These effects on needle and shoot lengths contribute to the reductions in volume growth of affected trees and, moreover, are longer lasting than the immediate effects of necrosis and premature defoliation.  相似文献   

15.
Rey A  Jarvis PG 《Tree physiology》1998,18(7):441-450
To study the long-term response of photosynthesis to elevated atmospheric CO(2) concentration in silver birch (Betula pendula Roth.), 18 trees were grown in the field in open-top chambers supplied with 350 or 700 &mgr;mol mol(-1) CO(2) for four consecutive growing seasons. Maximum photosynthetic rates, stomatal conductance and CO(2) response curves were measured over the fourth growing season with a portable photosynthesis system. The photosynthesis model developed by Farquhar et al. (1980) was fitted to the CO(2) response curves. Chlorophyll, soluble proteins, total nonstructural carbohydrates, nitrogen and Rubisco activity were determined monthly. Elevated CO(2) concentration stimulated photosynthesis by 33% on average over the fourth growing season. However, comparison of maximum photosynthetic rates at the same CO(2) concentration (350 or 700 &mgr;mol mol(-1)) revealed that the photosynthetic capacity of trees grown in an elevated CO(2) concentration was reduced. Analysis of the response curves showed that acclimation to elevated CO(2) concentration involved decreases in carboxylation efficiency and RuBP regeneration capacity. No clear evidence for a redistribution of nitrogen within the leaf was observed. Down-regulation of photosynthesis increased as the growing season progressed and appeared to be related to the source-sink balance of the trees. Analysis of the main leaf components revealed that the reduction in photosynthetic capacity was accompanied by an accumulation of starch in leaves (100%), which was probably responsible for the reduction in Rubisco activity (27%) and to a lesser extent for reductions in other photosynthetic components: chlorophyll (10%), soluble protein (9%), and N concentrations (12%) expressed on an area basis. Despite a 21% reduction in stomatal conductance in response to the elevated CO(2) treatment, stomatal limitation was significantly less in the elevated, than in the ambient, CO(2) treatment. Thus, after four growing seasons exposed to an elevated CO(2) concentration in the field, the trees maintained increased photosynthetic rates, although their photosynthetic capacity was reduced compared with trees grown in ambient CO(2).  相似文献   

16.
We analyzed 14C, 13C and 18O isotope variations over a 50-year period in tree rings of Quercus ilex L. trees growing at a natural CO2 spring in a Mediterranean ecosystem. We compared trees from two sites, one with high and one with low exposure to CO2 from the spring. The spring CO2 is free of 14C. Thus, this carbon can be traced in the wood, and the amount originating from the spring calculated. The amount decreased over time, from about 40% in 1950 to 15% at present for the site near the spring, indicating a potential difficulty in the use of natural CO2 springs for elevated CO2 research. The reason for the decrease may be decreasing emission from the spring or changes in stand structure, e.g., growth of the canopy into regions with lower concentrations. We used the 14C-calculated CO2 concentration in the canopy to determine the 13C discrimination of the plants growing under elevated CO2 by calculating the effective canopy air 13C/12C isotopic composition. The trees near the spring showed a 2.5 per thousand larger 13C discrimination than the more distant trees at the beginning of the investigated period, i.e., for the young trees, but this difference gradually disappeared. Higher discrimination under elevated CO2 indicated reduced photosynthetic capacity or increased stomatal conductance. The latter assumption is unlikely as inferred from the 18O data, which were insensitive to CO2 concentration. In conclusion, we found evidence for a downward adjustment of photosynthesis under elevated CO2 in Q. ilex in this dry, nutrient-poor environment.  相似文献   

17.
We investigated effects of nitrogen (N) fertilizer and canopy position on the allocation of N to Rubisco and chlorophyll as well as the distribution of absorbed light among thermal energy dissipation, photochemistry, net CO2 assimilation and alternative electron sinks such as the Mehler reaction and photorespiration. The relative reduction state of the primary quinone receptor of photosystem II (QA) was used as a surrogate for photosystem II (PSII) vulnerability to photoinactivation. Measurements were made on needles from the lower, mid and upper canopy of 21-year-old Pinus radiata D. Don trees grown with (N+) and without (N0) added N fertilizer. Rubisco was 45 to 60% higher in needles of N+ trees than in needles of N0 trees at all canopy positions. Chlorophyll was approximately 80% higher in lower- and mid-canopy needles of N+ trees than of N0 trees, but only approximately 20% higher in upper-canopy needles. Physiological differences between N+ and N0 trees were found only in the lower- and mid- canopy positions. Needles of N+ trees dissipated up to 30% less light energy as heat than needles of N0 trees and had correspondingly more reduced QA. Net CO2 assimilation and the proportions of electrons used by alternative electron sinks such as the Mehler reaction and photorespiration were unaffected by N treatment regardless of canopy position. We conclude that the application of N fertilizer mainly affected the biochemistry and light-use physiology in lower- and mid-canopy needles by increasing the amount of chlorophyll and hence the amount of light harvested. This, however, did not improve photochemistry or safe dissipation, but increased PSII vulnerability to photoinactivation, an effect with likely significant consequences during sunflecks or sudden gap formation.  相似文献   

18.
Effects of phosphorus supply and mycorrhizal status on the response of photosynthetic capacity to elevated CO(2) were investigated in loblolly pine (Pinus taeda L.) seedlings. Seedlings were grown in greenhouses maintained at either 35.5 or 71.0 Pa CO(2) in a full factorial experiment with or without mycorrhizal inoculum (Pisolithus tinctorius (Pers.) Coker & Couch) and with an adequate or a limiting supply of phosphorus. Assimilation versus internal CO(2) partial pressure (C(i)) curves were used to estimate maximum Rubisco activity (V(c,max)), electron transport mediated ribulose 1,5-bisphosphate regeneration capacity (J(max)), phosphate regeneration capacity (PiRC) and daytime respiration rates (R(d)). Nonmycorrhizal seedlings grown with limiting phosphorus had significantly reduced V(c,max) and PiRC compared to seedlings in other treatments. Elevated CO(2) increased photosynthetic capacity in nonmycorrhizal seedlings in the low phosphorus treatment by increasing PiRC, whereas it induced phosphorus limitation in mycorrhizal seedlings in the low phosphorus treatment and did not affect the photosynthetic capacity of seedlings in the high phosphorus treatment. Despite the variety of effects on photosynthetic capacity, seedlings in the elevated CO(2) treatments had higher net assimilation rates than seedlings in the ambient CO(2) treatments. We conclude that phosphorus supply affects photosynthetic capacity during long-term exposure to elevated CO(2) through effects on Rubisco activity and ribulose 1,5-bisphosphate regeneration rates.  相似文献   

19.
Conifers and other trees are constantly adapting to changes in light conditions, water/nutrient supply and temperatures by physiological and morphological modifications of their foliage. However, the relationship between physiological processes and anatomical characteristics of foliage has been little explored in trees. In this study we evaluated needle structure and function in Norway spruce families exposed to different light conditions and transpiration regimes. We compared needle characteristics of sun-exposed and shaded current-year needles in a control plot and a thinned plot with 50% reduction in stand density. Whole-tree transpiration rates remained similar across plots, but increased transpiration of lower branches after thinning implies that sun-exposed needles in the thinned plot were subjected to higher water stress than sun-exposed needles in the control plot. In general, morphological and anatomical needle parameters increased with increasing tree height and light intensity. Needle width, needle cross-section area, needle stele area and needle flatness (the ratio of needle thickness to needle width) differed most between the upper and lower canopy. The parameters that were most sensitive to the altered needle water status of the upper canopy after thinning were needle thickness, needle flatness and percentage of stele area in needle area. These results show that studies comparing needle structure or function between tree species should consider not only tree height and light gradients, but also needle water status. Unaccounted for differences in needle water status may have contributed to the variable relationship between needle structure and irradiance that has been observed among conifers.  相似文献   

20.
We examined effects of a first nitrogen (N) fertilizer application on upper-canopy needle morphology and gas exchange in approximately 20-m-tall loblolly pine (Pinus taeda L.) exposed to elevated carbon dioxide concentration ([CO(2)]) for 9 years. Duke Forest free-air CO(2) enrichment (FACE) plots were split and half of each ring fertilized with 112 kg ha(-1) elemental N applied in two applications in March and April 2005. Measurements of needle length (L), mass per unit area (LMA), N concentration (N(l)) on a mass and an area basis, light-saturated net photosynthesis per unit leaf area (A(a)) and per unit mass (A(m)), and leaf conductance (g(L)) began after the second fertilizer application in existing 1-year-old foliage (F(O)) and later in developing current-year first-flush (F(C1)) and current-year second-flush (F(C2)) foliage. Elevated [CO(2)] increased A(a) by 43 and 52% in F(O) and F(C1) foliage, respectively, but generally had no significant effect on any other parameter. Fertilization had little or no significant effect on L, LMA, A or g(L) in F(O) foliage; although N(l) was significantly higher in fertilized trees by midsummer. In contrast, fertilization resulted in large increases in L, N(l), and A in F(C1) and F(C2) foliage, increasing A(a) by about 20%. These results suggest that, although both needle age classes accumulate N following fertilization, they use it differently-current-year foliage incorporates N into photosynthetic machinery, whereas 1-year-old foliage serves as an N store. There were no significant interaction effects of elevated [CO(2)] and fertilization on A. Elevated [CO(2)] increased the intercept of the A:N(l) relationship but did not significantly affect the slope of the relationship in either foliage age class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号