首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
OBJECTIVE: To determine sedative and cardiorespiratory effects of romifidine alone and romifidine in combination with butorphanol and effects of preemptive atropine administration in cats sedated with romifidine-butorphanol. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given saline (0.9% NaCl) solution followed by romifidine alone (100 microg/kg [45.4 microg/lb], i.m.), saline solution followed by a combination of romifidine (40 microg/kg [18.1 microg/lb], i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or atropine (0.04 mg/kg [0.02 mg/lb], s.c.) followed by romifidine (40 microg/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were determined before and after drug administration. Time to recumbency, duration of recumbency, time to recover from sedation, and subjective evaluation of sedation, muscle relaxation, and analgesia were assessed. RESULTS: Bradycardia developed in all cats that received saline solution and romifidine-butorphanol or romifidine alone. Preemptive administration of atropine prevented bradycardia for 50 minutes in cats given romifidine-butorphanol. Oxyhemoglobin saturation was significantly decreased 10 minutes after romifidine-butorphanol administration in atropine-treated cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that administration of romifidine alone or romifidine-butorphanol causes a significant decrease in heart rate and that preemptive administration of atropine in cats sedated with romifidine-butorphanol effectively prevents bradycardia for 50 minutes.  相似文献   

2.
The aim of this study was to compare the effects of caudal epidural bupivacaine alone (BP), bupivacaine plus morphine (BPMP), and bupivacaine plus ketamine (BPKE) for perineal analgesia in horses. Each of the six saddle horses received a caudal epidural catheter and underwent 3 treatments: BP, 0.25% (0.04 mg/kg) bupivacaine hydrochloride without epinephrine; BPMP, 0.02 mg/kg of bupivacaine combined with 0.1 mg/kg of morphine-preservative free; and BPKE, 0.02 mg/kg of bupivacaine combined with 0.5 mg/kg of ketamine. The order of treatments was randomized. The cardiovascular system, respiratory rate, quality of analgesia, sedation, and motor blockade were assessed before drug administration (baseline), at 5, 10, 15, and 30 minutes, and every 30 minutes thereafter until loss of analgesia. The median time to onset of analgesia was 5 minutes after BP treatment, faster than after BPKE or BPMP treatments, which were 10 minutes and 15 minutes, respectively (P < .05). The BPMP treatment produced analgesia (315 minutes) for a longer duration than BP treatment (210 minutes) or BPKE treatment (240 minutes), in the regions of the tail, perineum, and upper hind limb in horses. All treatments presented mild sedation or motor blockade. There were minimal effects on the cardiovascular system and respiratory rate. BPMP may be preferable to a high dose of BP or BPKE. Caudal epidural BPMP can be an appropriate choice for regional perineal analgesia in horses.  相似文献   

3.
ObjectiveTo determine constant rate infusion (CRI) protocols for romifidine (R) and romifidine combined with butorphanol (RB) resulting in constant sedation and romifidine plasma concentrations.Study designBlinded randomized crossover study.AnimalsTen adult research horses.MethodsPart I: After determining normal height of head above ground (HHAG = 100%), loading doses of romifidine (80 μg kg?1) with butorphanol (RB: 18 μg kg?1) or saline (R) were given intravenously (IV). Immediately afterwards, a butorphanol (RB: 25 μg kg?1 hour?1) or saline (R) CRI was administered for 2 hours. The HHAG was used as marker of sedation depth. Sedation was maintained for 2 hours by additional romifidine (20 μg kg?1) whenever HHAG > 50%. The dose rate of romifidine (μg kg?1 hour?1) required to maintain sedation was calculated for both treatments. Part II: After loading doses, the romifidine CRIs derived from part I were administered in parallel to butorphanol (RB) or saline (R). Sedation and ataxia were evaluated periodically. Romifidine plasma concentrations were measured by HPLC-MS-MS at 0, 5, 10, 15, 30, 45, 60, 90, 105, and 120 minutes. Data were analyzed using paired t-test, Fisher's exact test, Wilcoxon signed rank test, and two-way anova for repeated measures (p < 0.05).ResultsThere was no significant difference in romifidine requirements (R: 30; RB: 29 μg kg?1 hour?1). CRI protocols leading to constant sedation were developed. Time to first additional romifidine bolus was significantly longer in RB (mean ± SD, R: 38.5 ± 13.6; RB: 50.5 ± 11.7 minutes). Constant plasma concentrations of romifidine were achieved during the second hour of CRI. Ataxia was greater when butorphanol was added.ConclusionRomifidine bolus, followed by CRI, provided constant sedation assessed by HHAG. Butorphanol was ineffective in reducing romifidine requirements in unstimulated horses, but prolonged the sedation caused by the initial romifidine bolus.Clinical relevanceBoth protocols need to be tested under clinical conditions.  相似文献   

4.
The sedative effects of a new alpha 2-adrenoceptor agonist, romifidine, were compared with those of xylazine and detomidine. Five horses were treated with two doses of romifidine (40 micrograms/kg body weight and 80 micrograms/kg body weight), two doses of detomidine (10 micrograms/kg body weight and 20 micrograms/kg body weight) and one dose of xylazine (1 mg/kg body weight) given by intravenous injection using a Latin-square design. The dose of 80 micrograms/kg romifidine appeared equipotent to 1 mg/kg xylazine and 20 micrograms/kg detomidine, although at these doses both xylazine and detomidine had a shorter action. Detomidine 20 micrograms/kg and xylazine both produced greater lowering of the head and a greater degree of ataxia than romifidine at either dose. Romifidine produced sedation similar to that of the other drug regimes. The effect upon imposed stimuli was similar.  相似文献   

5.
Comparison of the effects of xylazine and romifidine administered perioperatively on the recovery of anesthetized horses. The present study was designed to compare recoveries from anesthesia following the use of romifidine or xylazine in horses. In a prospective blind randomized clinical trial, 28 horses, undergoing elective arthroscopy, were randomly allocated into 2 groups. The intravenous anesthesia protocol used in the xylazine group was: butorphanol [0.02 mg/kg body weight (BW)] and xylazine (0.5 to 0.7 mg/kg BW) for premedication, diazepam (0.1 mg/kg BW) and ketamine (2.2 mg/kg BW) for induction, isoflurane in oxygen for maintenance and xylazine (0.1 mg/kg BW) in recovery. The xylazine was replaced with romifidine 0.05 to 0.08 mg/kg BW (premedication) and 0.01 mg/kg BW (recovery) in the romifidine group. The quality of recovery was evaluated with a modified scoring system and the duration recorded. Wilcoxon Ranked Sum test (P < 0.05) was used for statistical analysis. The recovery quality scores and the durations of recovery were not statistically different between the 2 groups. In this study, romifidine and xylazine were equal in their effects on recovery qualities.(Translated by the authors).  相似文献   

6.
Romifidine is an alpha‐2 adrenergic agonist used for sedation and analgesia in horses. As it is a prohibited substance, its purported use at low doses in performance horses necessitates further study. The primary goal of the study reported here was to describe the serum concentrations and pharmacokinetics of romifidine following low‐dose administration immediately prior to exercise, utilizing a highly sensitive liquid chromatography–tandem mass spectrometry assay that is currently employed in many drug testing laboratories. An additional objective was to describe changes in heart rate and rhythm following intravenous administration of romifidine followed by exercise. Eight adult Quarter Horses received a single intravenous dose of 5 mg (0.01 mg/kg) romifidine followed by 1 h of exercise. Blood samples were collected and drug concentrations measured at time 0 and at various times up to 72 h. Mean ± SD systemic clearance, steady‐state volume of distribution and terminal elimination half‐life were 34.1 ± 6.06 mL/min/kg and 4.89 ± 1.31 L/kg and 3.09 ± 1.18 h, respectively. Romifidine serum concentrations fell below the LOQ (0.01 ng/mL) and the LOD (0.005 ng/mL) by 24 h postadministration. Heart rate and rhythm appeared unaffected when a low dose of romifidine was administered immediately prior to exercise.  相似文献   

7.
OBJECTIVE: To study pulmonary gas exchange and cardiovascular responses to sedation achieved with romifidine and butorphanol (RB) alone, or combined with acepromazine, and during subsequent tiletamine-zolazepam anaesthesia in horses. ANIMALS: Six (four males and two females) healthy Standardbred trotters aged 3-12 years; mass 423-520 kg. STUDY DESIGN: Randomized, cross-over, experimental study. MATERIALS AND METHODS: Horses were anaesthetized on two occasions (with a minimum interval of 1 week) with intravenous (IV) tiletamine-zolazepam (Z; 1.4 mg kg(-1)) after pre-anaesthetic medication with IV romifidine (R; 0.1 mg kg(-1)) and butorphanol (B; 25 microg kg(-1) IV). At the first trial, horses were randomly allocated to receive (protocol ARBZ) or not to receive (protocol RBZ) acepromazine (A; 35 microg kg(-1)) intramuscularly (IM) 35 minutes before induction of anaesthesia. Each horse was placed in left lateral recumbency and, after tracheal intubation, allowed to breathe room air spontaneously. Respiratory and haemodynamic variables and ventilation-perfusion (; multiple inert gas elimination technique) ratios were determined in the conscious horse, after sedation and during anaesthesia. One- and two-way repeated-measures anova were used to identify within- and between-technique differences, respectively. RESULTS: During sedation with RB, arterial oxygen tension (PaO(2)) decreased compared to baseline and increased mismatch was evident; there was no O(2) diffusion limitation or increase in intrapulmonary shunt fraction identified. With ARB, PaO(2) and remained unaffected. During anaesthesia, intrapulmonary shunt occurred to the same extent in both protocols, and mismatching increased. This was less in the ARBZ group. Arterial O(2) tension decreased in both protocols, but was lower at 25 and 35 minutes of anaesthesia in RBZ than in ARBZ. During sedation, heart rate (HR) and cardiac output (Qt) were lower while arterial-mixed venous oxygen content differences and haemoglobin concentrations were higher in RBZ compared with ARBZ. Total systemic vascular resistance, mean systemic, and mean pulmonary arterial pressures were higher during anaesthesia with RBZ compared to ARBZ. CONCLUSIONS AND CLINICAL RELEVANCE: Acepromazine added to RB generally improved haemodynamic variables and arterial oxygenation during sedation and anaesthesia. Arterial oxygenation was impaired as a result of increased shunt and mismatch during anaesthesia, although acepromazine treatment reduced disturbances and falls in PaO(2) to some extent. Haemodynamic variables were closer to baseline during sedation and anaesthesia when horses received acepromazine. Acepromazine may confer advantages in healthy normovolaemic horses.  相似文献   

8.
The purpose of this study was to assess the cardiorespiratory and behavioral responses to the combination of medetomidine and tramadol (M-T) or butorphanol (M-B) in standing laparoscopic ovariectomy in horses. One ovary was removed under M-T and the contralateral ovary was removed under M-B with at least 4 weeks between operations at random. Horses were sedated using intravenous medetomidine (5 µg/kg) followed by tramadol (1 mg/kg) or butorphanol (10 µg/kg) after 5 min. Sedation was maintained through the repeated injection of medetomidine (1 µg/kg) and tramadol (0.4 mg/kg) or medetomidine (1 µg/kg) and butorphanol (4 µg/kg) every 15 min. Cardiorespiratory function and behavioral responses, including, sedation, ataxia, and analgesia, were assessed during the surgery. There were no significant differences in cardiorespiratory values and sedation and analgesia scores between M-T and M-B. Ataxia scores were significantly lower in M-T than in M-B. This result suggests that M-T could maintain smooth and stable standing surgery with minimal cardiorespiratory changes in horses.  相似文献   

9.
The aim of this investigation was to determine and evaluate the sedative, analgesic, clinicophysiological and haematological effects of intravenous (i.v.) injection of detomidine, detomidine‐butorphanol, romifidine and romifidine‐butorphanol. Six standing donkeys were used. Each donkey received 4 i.v. treatments and the order of treatment was randomised with a one‐week interval between each treatment. We found that i.v. injection of a combination of detomidine‐butorphanol or romifidine‐butorphanol produced potent neuroleptanalgesic effects thus providing better, safe and effective sedation with complete analgesia in standing donkeys compared with injection of detomidine or romifidine alone. The changes and reduction in pulse rate were within acceptable limits. The changes in clinicophysiological, haematological and biochemical values were mild and transient in these clinically healthy donkeys.  相似文献   

10.
The behavioural and sedative effects of intravenous (iv) romifidine (40 and 80 μg/kg bodyweight [bwt]) alone or in combination with iv butorphanol (50 μg/kg bwt) were investigated in four ponies and one Thoroughbred horse. Apparent sedation, as judged by the lowering of the head, and by the response to imposed touch, visual and sound stimuli was assessed. The combination with butorphanol reduced the animals' response to imposed stimuli when compared with the effect of the same dose of romifidine alone. Following the administration of romifidine/butorphanol combinations muzzle tremor was noted and some animals attempted to walk forward. In a separate series, the cardiopulmonary effects of iv romifidine (80 μg/kg bwt) alone, or in combination with butorphanol (50 μg/kg bwt) were investigated. Romifidine and the romifidine/butorphanol combination caused similar cardiovascular changes, these being bradycardia with heart block, and hypertension followed by hypotension. Romifidine caused a transient decrease in arterial oxygen tensions and arterial carbon dioxide tensions had increased significantly by the end of the 90 min recording period. Romifidine/butorphanol combinations produced significantly higher arterial carbon dioxide tensions during the first 15 mins after drug administration than did romifidine alone. Butorphanol at 50 μg/kg bwt iv reduced the response to imposed stimuli in horses sedated with romifidine. The combination produced no cardiovascular changes beyond those induced by romifidine alone, but did increase the degree of respiratory depression.  相似文献   

11.
ObjectiveTo compare xylazine and romifidine constant rate infusion (CRI) protocols regarding degree of sedation, and effects on postural instability (PI), ataxia during motion (A) and reaction to different stimuli.Study designBlinded randomized experimental cross-over study.AnimalsTen adult horses.MethodsDegree of sedation was assessed by head height above ground (HHAG). Effects on PI, A and reaction to visual, tactile and acoustic stimulation were assessed by numerical rating scale (NRS) and by visual analogue scale (VAS). After baseline measurements, horses were sedated by intravenous loading doses of xylazine (1 mg kg?1) or romifidine (80 μg kg?1) administered over 3 minutes, immediately followed by a CRI of xylazine (0.69 mg kg?1 hour?1) or romifidine (30 μg kg?1 hour?1) which was administered for 120 minutes. Degree of sedation, PI, A and reaction to the different stimuli were measured at different time points before, during and for one hour after discontinuing drug administration. Data were analysed using two-way repeated measures anova, a Generalized Linear Model and a Wilcoxon Signed Rank Test (p < 0.05).ResultsSignificant changes over time were seen for all variables. With xylazine HHAG was significantly lower 10 minutes after the loading dose, and higher at 150 and 180 minutes (i.e. after CRI cessation) compared to romifidine. Reaction to acoustic stimulation was significantly more pronounced with xylazine. Reaction to visual stimulation was greater with xylazine at 145 and 175 minutes. PI was consistently but not significantly greater with xylazine during the first 30 minutes. Reaction to touch and A did not differ between treatments. Compared to romifidine, horses were more responsive to metallic noise with xylazine.ConclusionsTime to maximal sedation and to recovery were longer with romifidine than with xylazine.Clinical relevanceWith romifidine sufficient time should be allowed for complete sedation before manipulation.  相似文献   

12.
OBJECTIVE: The aim of this study was to compare two different alpha2 agonist-opioid combinations in ponies undergoing field castration. STUDY DESIGN: Prospective double-blind randomized clinical trial. ANIMAL POPULATION: Fifty-four ponies undergoing field castration. MATERIALS AND METHODS: The ponies were randomly allocated to receive one of three different pre-anaesthetic medications [intravenous (IV) romifidine 100 microg kg(-1) and butorphanol 50 micro kg(-1); romifidine 100 microg kg(-1) and morphine 0.1 mg kg(-1) IV, or romifidine 100 microg kg(-1) and saline IV] before induction of anaesthesia with ketamine 2.2 mg kg(-1) IV. Further doses of romifidine (25 microg kg(-1)) and ketamine (0.5 mg kg(-1)) were given when required to maintain anaesthesia. Quality of sedation, induction of anaesthesia, maintenance of anaesthesia, recovery, and surgical condition were assessed using a visual analogue scale scoring system and compared. The effects of the different drug combinations on heart and respiratory rate were evaluated and the recovery time was recorded. RESULTS: Anaesthesia was considered adequate for surgery in all ponies. No anaesthetic complications were observed. Quality of sedation was significantly better in the butorphanol group compared with the control group (p = 0.0428). Overall quality of anaesthesia was better in the butorphanol group compared with morphine (p = 0.0157) and control (p < 0.05) groups. Quality of induction of anaesthesia and recovery were not significantly different between groups, nor were the surgical conditions, recovery time and the number of repeated anaesthetic doses required during the procedure. Muscle twitches were observed in both the control and morphine groups. Maintenance of anaesthesia was judged to be smoother in the butorphanol group compared with the morphine and control groups (p = 0.006). Heart rate decreased significantly (p < 0.01) in all groups after administration of sedatives but did not differ significantly between groups at any time point. CONCLUSION: The combination of butorphanol and romifidine was found to provide better sedation compared with the other drug combinations. CLINICAL RELEVANCE: The combination of butorphanol and romifidine provided better sedation, but morphine was found to be a suitable alternative to butorphanol. Use of morphine and butorphanol in combination with alpha2 agonists should be further investigated to assess their analgesic effects.  相似文献   

13.
ObjectiveTo compare the clinical usefulness of constant rate infusion (CRI) protocols of romifidine with or without butorphanol for sedation of horses.Study designProspective ‘blinded’ controlled trial using block randomization.AnimalsForty healthy Freiberger stallions.MethodsThe horses received either intravenous (IV) romifidine (loading dose: 80 μg kg?1; infusion: 30 μg kg?1 hour?1) (treatment R, n = 20) or romifidine combined with butorphanol (romifidine loading: 80 μg kg?1; infusion: 29 μg kg?1 hour?1, and butorphanol loading: 18 μg kg?1; infusion: 25 μg kg?1 hour?1) (treatment RB, n = 20). Twenty-one horses underwent dentistry and ophthalmic procedures, while 19 horses underwent only ophthalmologic procedure and buccal examination. During the procedure, physiologic parameters and occurrence of head/muzzle shaking or twitching and forward movement were recorded. Whenever sedation was insufficient, additional romifidine (20 μg kg?1) was administered IV. Recovery time was evaluated by assessing head height above ground. At the end of the procedure, overall quality of sedation for the procedure was scored by the dentist and anaesthetist using a visual analogue scale. Statistical analyses used two-way anova or linear mixed models as relevant.ResultsSedation quality scores as assessed by the anaesthetist were R: median 7.55, range: 4.9–9.0 cm, RB: 8.8, 4.7–10.0 cm, and by the dentist R: 6.6, 3.0–8.2 cm, RB: 7.9, 6.6–8.8 cm. Horses receiving RB showed clinically more effective sedation as demonstrated by fewer poor scores and a tendency to reduced additional drug requirements. More horses showed forward movement and head shaking in treatment RB than treatment R. Three horses (two RB, one R) had symptoms of colic following sedation.Conclusions and clinical relevanceThe described protocols provide effective sedation under clinical conditions but for dentistry procedures, the addition of butorphanol is advantageous.  相似文献   

14.
This study reveals the different effectiveness of xylazine in mules compared with horses. Fourteen adult mules (mean body weight ± standard deviation, 466 ± 89 kg) and six adult Haflinger horses (483 ± 39 kg) chosen from a single livestock operation in Germany received 0.6 mg of the α2-agonist xylazine administered intravenously per kilogram of body weight. Principal pharmacokinetic and pharmacodynamic parameters were determined while the animals received a routine dental treatment. To objectively assess the depth of sedation, a variety of behavioral and clinical parameters were assessed and transferred to a scaled score system. Compared with the Haflinger horses, the depth of sedation in mules differed significantly between 10 and 45 minutes after xylazine administration. In the mule, sedation was good during the first 10 minutes, moderate at 15 minutes, and insufficient at 30 minutes. In the horse, sedation was excellent during the first 15 minutes, moderate at 30 minutes, and insufficient at 45 minutes. Moreover, significant (P < .05) subspecies differences in the pharmacokinetics of xylazine were detected between the mules and the horses. Data analysis followed the two-compartment model, which had a correlation with the measured data of R² = .99. Values for t1/2β (half-life during elimination), mean residence time, mean residence time(0-tz) (residence time on last measuring time point above limit of quantification), k21 (velocity constant for distribution from peripheral to central compartment), β (velocity constant during elimination), and B (relative y-intercept) varied significantly between the two subspecies.  相似文献   

15.
Analgesic effects of butorphanol in horses: dose-response studies   总被引:2,自引:0,他引:2  
The analgesic effects of butorphanol (0.05, 0.1, 0.2, and 0.4 mg/kg), pentazocine (2.2 mg/kg), and butorphanol vehicle (0.04 ml/kg) were observed in 6 horses. These horses were instrumented to measure response objectively to painful superficial and visceral stimuli. The tested drugs were given IV according to a Latin square design. After preinjection base-line measurements were made, the analgesic effects were observed at 15 and 30 minutes and then at 30-minute intervals until postinjection minute 240. Analgesic effects of butorphanol were dose-related, with durations between 15 and 90 minutes. Duration of analgesia after pentazocine (2.2 mg/kg) was given was between 15 and 30 minutes. When compared with pentazocine, the 0.4 mg/kg dose of butorphanol provided a more intense and longer period of analgesia. A butorphanol dose of 0.2 mg/kg IV appears optimal. On a dose-body weight basis, the potency of butorphanol was 10 to 17 times that of pentazocine. Behavioral side effects were noted with both agents and were dose-related.  相似文献   

16.
Romifidine (STH 2130-Cl or Sedivet) is an 2-agonistic imino-imidazol sedative for intravenous use in horses recently developed by Boehringer Ingelheim, Vetmedica GmbH. An exploratory study was done in nine warm-blood horses, randomly divided into three groups, which received different dosages of romifidine (0.04, 0.08 and 0.12 mg/kg of body weight (BWT) intravenously (i.v.)) with at least one week's interval between tests.Romifidine induced a marked bradycardia accompanied by second degree atrioventricular (AV) block and some sinus blocks at all tested dosages. A placebo (NaCl 0.9% i.v.) given 5 min before and after romifidine did not affect the cardiac disturbances induced by romifidine.A low dose of atropine sulphate (0.005 mg/kg of BWT i.v.) given 5 min before romidifine counteracted the bradycardia and caused a normal to increased heart rhythm at all romifidine dosages. A higher dose of atropine sulphate (0.01 mg/kg of BWT i.v.) administered 5 min before sedation induced a tachycardia (average 70 beats/min) at all romifidine dosages and completely prevented the bradycardia and the heart blocks. The positive chronotrope effects of atropine sulphate were attenuated by increasing doses of romifidine.The effects of atropine sulphate (low or high doses) given 5 min after romifidine only appeared after 5 min. Both dosages counteracted the bradycardia and suppressed the heart blocks.No atropine-dependent side effects were observed in non-fasted horses. The degree of the romifidine induced sedation was not affected by the use of atropine sulphate given before or after romifidine.  相似文献   

17.
Effect of romifidine and romifidine-butorphanol for sedation in dogs   总被引:1,自引:0,他引:1  
The sedative and physiological effects of intravenous romifidine at 120 μg/kg were compared with intravenous romifidine (120 μg/kg) followed immediately by intravenous butorphanol (01 mg/kg) in 18 clinically normal adult beagles in a blinded randomised change-over study. Following the injection of romifidine alone the dogs became recumbent and there was an increase in a subjective score awarded to the degree of sedation. Heart rate and respiratory rate decreased and minor bradyarrhythmias were noted. The romifidine-butorphanol combination produced a significant decrease in the time to the onset of sedation and increase in the sedative effect and duration of action compared with romifidine alone. With the exception of a further decrease in heart rate and respiratory rate, there were no additional side effects following the use of the romifidine-butorphanol combination. The marked sedative effect associated with this combination would appear to be useful in the clinical situation where an increased degree of sedation is required.  相似文献   

18.
Butorphanol (0.025, 0.05, 0.1, 0.2, 0.4, and 0.8 mg/kg of body weight, and placebo) was given SC to 8 healthy unmedicated dogs to determine its efficacy for visceral analgesia, using a colonic balloon for minimal threshold nociceptor stimulation. Degree of sedation; systolic, diastolic, and mean arterial pressure; and pulse rate were recorded. The highest 3 dosages, 0.2, 0.4, and 0.8 mg/kg, were found to be most effective, with 0.8 mg/kg the only dosage that was significantly different from control responses at the 45-minute interval. Duration of analgesia ranged from 23 to 53 minutes for all 6 dosages and dosing durations were not significantly different from one another. Blood pressures did not change, but pulse rate was significantly decreased by 0.8 mg of butorphanol/kg. We concluded that butorphanol is an effective visceral analgesic of relatively short duration in the dog.  相似文献   

19.
OBJECTIVE: To evaluate the sedative, analgesic, and cardiorespiratory effects of intramascular (IM) romifidine in cats. STUDY DESIGN: Prospective, randomized experimental trial. ANIMALS: Ten healthy adult cats. METHODS: Romifidine (100, 200, and 400 microg kg(-1)) or xylazine (1 mg kg(-1)) was given IM in a cross-over study design. Heart rate (HR), respiratory rate (RR), rectal temperature (RT), hemoglobin saturation, oscillometric arterial pressure, and scores for sedation, muscle relaxation, position, auditory response, and analgesia were determined before and after drug administration. Time to recumbency, duration of recumbency, and time to recover from sedation were determined. Subjective evaluation and cardiorespiratory variables were recorded before and at regular intervals for 60 minutes after drug administration. RESULTS: Bradycardia developed in all cats that were given romifidine or xylazine. No other significant differences in physiologic parameters were observed from baseline values or between treatments. Increasing the dose of romifidine did not result in increased sedation or muscle relaxation. Cats given xylazine showed higher sedation and muscle relaxation scores over time. Analgesia scores were significantly higher after administration of romifidine (400 microg kg(-1)) and xylazine (1 mg kg(-1)) than after romifidine at 100 or 200 microg kg(-1). Duration of lateral recumbency was not significantly different between treatments; however, cats took longer to recover after administration of 400 micro g kg(-1) romifidine. CONCLUSIONS AND CLINICAL RELEVANCE: Bradycardia is the most important adverse effect after IM administration of romifidine at doses ranging from 100 to 400 microg kg(-1) or 1 mg kg(-1) of xylazine in cats. The sedative effects of romifidine at 200 microg kg(-1) are comparable to those of 1 mg kg(-1) of xylazine, although muscle relaxation and analgesia were significantly less with romifidine than with xylazine.  相似文献   

20.
ObjectiveTo evaluate the antinociceptive effect of a bolus of intravenous levomethadone administered to horses during romifidine constant rate infusion (CRI).Study designProspective, randomized, masked, crossover experimental study.AnimalsA group of eight adult Warmblood horses (seven geldings, one mare) aged 6.6 ± 4.4 years, weighing 548 ± 52 kg [mean ± standard deviation (SD)].MethodsLevomethadone 0.1 mg kg–1 or an equivalent volume of saline (control) was administered intravenously to standing horses 60 minutes after starting a romifidine CRI. Blood samples to quantify romifidine and levomethadone plasma concentrations by capillary electrophoresis were collected up to 150 minutes after levomethadone administration. The nociceptive withdrawal reflex threshold (NWRT) was determined continuously using an automated threshold tracking device. Sedation and cardiopulmonary variables were assessed at regular intervals. A pharmacokinetic-pharmacodynamic (PK-PD) model was elaborated. Data are presented as mean ± SD or median (interquartile range, 25%–75%) where appropriate. Differences between groups were considered statistically significant for p < 0.05.ResultsHorses exhibited higher NWRTs after levomethadone administration than after saline (123 ± 9% versus 101 ± 9% relative to baseline, p < 0.05). The PK-PD model identified a contribution of levomethadone to the NWRT increase. Effect size was variable among individuals. No adverse reactions to levomethadone administration were observed. A slight effect of levomethadone on sedation scores was evident for the 60 minutes following its administration.Conclusions and Clinical RelevanceA single injection of levomethadone has the potential to increase the NWRT during romifidine CRI in horses and can be administered in combination with α2-adrencoceptor agonists to enhance antinociception in horses. However, individual variation is marked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号