首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
Levels of reproductively-related steroids were determined in captive male sand tiger sharks, Carcharias taurus, maintained at two institutions: SeaWorld Adventure Park Orlando and the National Aquarium in Baltimore. Sexual conflicts were absent at the former, but were documented at the latter. Serum titers of 17β-estradiol, progesterone, testosterone, and 5α-dihydrotestosterone were determined via radioimmunoassay in adult male sharks from 1988 to 2000. Sampling overlap between the two institutions occurred for 3 months of the year, but steroid concentrations were compared only for April due to the occurrence of sexual conflicts in the sharks at the National Aquarium in Baltimore in that month. For April, testosterone and dihydrotestosterone were significantly higher in the SeaWorld males, and progesterone was significantly higher in the National Aquarium in Baltimore males, while estradiol was not significantly different. Steroid levels were also determined from serial samples taken monthly over 17 months from three male sharks and one female shark at the National Aquarium in Baltimore in 2001–2002 and were compared with corresponding observed sexual conflicts. The steroid levels obtained showed distinct annual hormonal cycles in the male sharks and corroborated a biennial cycle for the single serially-sampled female shark. Furthermore, the steroid levels for individual males correlated with sexual conflicts as well as their position within the male dominance hierarchy. As this species is depleted in some regions globally, insight into the steroid profile of mature sand tiger sharks is important for a greater understanding of the relationship between their reproductive physiology and behavior, and may aid in captive management and reproduction. L. E. L. Rasmussen—Deceased.  相似文献   

2.
Turbot Scophthalmus maximus exhibits sexually dimorphic growth, with females growing faster and reaching larger adult sizes than males. Thus, development of techniques for preferentially producing females is necessary to optimize production of these species. In this paper, gynogenetic diploids of turbot were induced by activating egg development with ultraviolet (UV)-irradiated left-eyed flounder Paralichthys olivaceus sperm combined with cold shock to prevent extrusion of the second polar body. The results of UV irradiation experiments showed that survival, motility, and duration of activity of P. olivaceus sperm generally decreased with increase in UV dose. The typical Hertwig’s effect was observed after fertilized turbot eggs with UV-irradiated P. olivaceus sperm and the optimal UV dose for gynogenetic haploid production was 36,000 erg mm−2. At 15°C, appropriate timing of cold shock for retention of the second polar body in turbot eggs was at 6 min after fertilization. Results of different combinations of two shock temperatures (1 or 3°C) and four shock durations (15, 25, 35 or 45 min) at 6 min after fertilization demonstrated that shock of 25 min at 1°C gave the highest production of diploid gynogens (39.58% relative to its diploid control). The results of this study reveal that the use of UV-irradiated P. olivaceus sperm for activation of turbot eggs and cold shock for polar body retention is an effective method to produce gynogenetic offspring.  相似文献   

3.
The blue mussel Mytilus edulis is a commercially important species whose fishery and culture generally relies on natural spat collection. Hatchery-production could provide an alternative source of seed, enabling reliable expansion of the industry. Mussel spawning and larval rearing trials were carried out to optimise elements of hatchery production. Culturing fertilised eggs at low density (20–200 eggs cm−2) rather than high density (400–720 eggs cm−2) significantly improved the quality of first veliger larvae and differences in this improvement were evident between the eggs from different females (maternal effects). Veliger larval growth at 17 or 21°C was significantly faster than growth at 14°C. Feeding veliger larvae an identical total ration either daily or at 2–3 day intervals did not significantly affect their growth. Different microalgal diets (1: Isochrysis sp. (clone T-ISO), 2: Chaetoceros calcitrans forma pumilus, 3: C. muelleri, 4: mixed Isochrysis sp. (clone T-ISO) and C. calcitrans f. pumilus, and 5: mixed Isochrysis sp. (clone T-ISO) and C. muelleri) were tested on veliger larval growth and mixed diets outperformed single-species diets.  相似文献   

4.
Teleost fish have developed their own specific adaptive mechanism, both behavioral and physiological, to maintain homeostasis in response to unfavorable temperatures. Therefore, this study was aimed at assessing the critical thermal maxima (CTMax), critical thermal minima (CTMin), and oxygen consumption rate of Anabas testudineus (17.03 ± 1.2 g) after acclimating to three preset temperatures (25, 30, and 35°C) for 30 days. The CTMax and CTMin were 40.15, 41.40, 41.88°C and 12.43, 13.06, 13.94°C, respectively, and were significantly different (P < 0.05). The thermal tolerance polygon for the specified temperatures was 278.30°C2. The oxygen consumption rate (117.03, 125.70, 198.48 mg O2 kg−1 h−1, respectively) increased significantly (P < 0.05) with increasing acclimation temperatures. The overall results indicate that the thermal tolerance and oxygen consumption of A. testudineus are dependent on acclimation.  相似文献   

5.
In this study, the energy budget of the Manila clam, Ruditapes philippinarum, was evaluated after one-week acclimation periods at 5, 10, 15, 20, and 25°C. Small clams (151 ± 12 mg DW) and large clams (353 ± 16 mg DW) were fed with the microalgae, Isochrysis galbana. Filtration rate, ingestion rate, assimilation efficiency, oxygen-consumption rate, and ammonia excretion rate were measured. Both filtration rate and ingestion rate of small and large clams were found to be related to temperature. The highest Q 10 values were measured in the range 15–20°C for both small and large clams. Assimilation efficiency of both small and large clams was not significantly influenced by temperature, although the maximum mean values were detected at 20°C. Oxygen consumption rate and ammonia excretion rate of small and large clams were found to be related directly to temperature over the entire range, with a maximum being detected at 25°C. The highest Q 10 value was estimated in the range 10–15°C with regard to oxygen consumption rate, and in the range of 15–20°C with regard to ammonia excretion rate. Scope for growth (SFG) was positive at all temperatures, achieving a maximum value at 20°C in both small and large clams, primarily as a consequence of the enhanced ingestion rate which offset the concomitant elevation in the metabolic rate. In this study we have estimated the thermal optimum for this species at 20°C.  相似文献   

6.
Hyriopsis (Hyriopsis) bialatus has been cultured during the mussel life cycle from glochidia to the adult stage with a low total survival of 6% up to 130-day-old juveniles. The main digestive enzymes (amylase and proteinases) were not detectable in one-day-old juveniles, and increased during development. The stomach, including digestive glands, was the major digestive organ for both carbohydrate and protein. The optimum conditions for amylase activity were 40°C and pH 7; for acidic proteinases they were 60°C and pH 5. Two main alkaline proteinases were found in the intestine, with optimum conditions of 30°C and pH 8 and 60°C and pH 8. To improve mussel survival by finding suitable phytoplankton species and age as food for juveniles and adults, an in-vitro digestibility test was performed on ten algal species three and seven days old using amylase and proteinases in crude enzyme extracts from different mussel life stages. Among the phytoplankton selected, the three most efficiently digested by juveniles were seven-day-old Chlorella sp.2, seven-day-old Chlorococcum sp. and seven-day-old Kirchneriella incurvata, in the ratio 1:1:3 for 30-day-old juveniles and 3:1:1 for 130-day-old juveniles. For the adult mussel, three-day-old Chlorella sp.2, seven-day-old Coccomyxa sp., and seven-day-old Monoraphidium sp., in the ratio 3:1:1, were the most digestible phytoplankton. Levels of in-vitro digestibility were related to the quality (not the concentrations) of carbohydrate and protein in the phytoplankton mixtures, and protein digestibility seemed to be the key factor determining food quality for the mussel.  相似文献   

7.
Fundulus heteroclitus and F. grandis are resident salt marsh fishes that overlap in distribution over a narrow range in northeastern Florida. The objective of the present study was to examine whether the limits of the species’ ranges could be explained by differences in thermal tolerance. Two populations of each species were collected and then spawned in the laboratory, and 9-day-old larvae were used for critical thermal maxima trials. Mean LOE temperatures of larvae ranged from 43.04 to 43.65°C and showed little difference between species. Therefore, differences in high temperatures experienced cannot account for the differences of the distributions of the two species. Condition-specific competition may play a greater role in determining the observed range of the two species.  相似文献   

8.
Histamine is the main causative agent of scombroid poisoning. However, unlike scombroid fish, histamine poisoning due to consumption of flying fish has never been reported. In this study, the white muscle of flying fish had high levels of free histidine at approximately 423.9 mg/100 g, and was inoculated with Staphylococcus xylosus Q2 isolated from dried flying fish at 5.0 log CFU/g and stored at ?20 to 35°C to investigate histamine-related quality. The histamine contents quickly increased to higher than 50 mg/100 g in samples stored at 25 and 35°C within 12 h as well as stored at 15°C within 48 h. However, bacterial growth and histamine formation were controlled by cold storage of the samples at 4°C or below. Once the frozen flying fish samples stored at ?20°C for 2 months were thawed and stored at 25°C after 24 h, histamine started to accumulate rapidly (>50 mg/100 g of fish). Therefore, flying fish muscle was a good substrate for histamine formation by bacterial histidine decarboxylation at elevated temperatures (>15°C) when it is contaminated with S. xylosus. In conclusion, since the improperly contaminated flying fish muscle with S. xylosus could lead to production of hazardous levels of histamine over time when stored at temperatures >15°C, the flying fish should be stored below 4 °C or below to control proliferation of S. xylosus, and TVBN and histamine production.  相似文献   

9.
Mortality of the short-neck clam Ruditapes philippinarum exposed to the toxic dinoflagellate Heterocapsa circularisquama was studied under controlled conditions to clarify the mechanisms of recurrent mass deaths of clams occurring in western Japanese coastal areas. One-week mortality tests, involving three water temperatures, six H. circularisquama concentrations, and two clam body sizes, showed a significant increase in mortality with increasing temperature, H. circularisquama concentration, exposure duration, and body size (ANOVA, P < 0.01). Clam death was observed at concentrations as low as 50 cells/ml and temperatures as low as 15°C. Prior to death, clams showed an extreme retraction of their mantle edge and siphon, along with recurrent vomiting behavior before initiating a closure reaction followed by paralysis then death. Gills of paralyzed clams showed an important uptake of dye, implying gill damage. This study is the first laboratory evidence of bivalve mortality induced by H. circularisquama at low concentrations and low temperature, and the first report of differential effects according to the body size of bivalves.  相似文献   

10.
Respiratory parameters of grass carp were studied during dissolved oxygen (DO) changes from normal DO to hypoxia, then return to normal DO at 15, 25, and 30 °C acclimation, respectively. The results showed that with increases of acclimation temperature at normoxia the respiratory frequency (fR), oxygen consumption rate (VO2), respiratory stroke volume (VS.R), gill ventilation (VG), and VG/VO2 of grass carp increased significantly, but the oxygen extraction efficiency (EO2) of fish decreased significantly (P < 0.05). With declines of DO levels, the fR, VS.R, VG, and VG/VO2 of fish increased significantly at different acclimation temperatures (P < 0.05). A slight increase was found in VO2, and the EO2 of fish remained almost constant above DO levels of 3.09, 2.91, and 2.54 mg l?1 at 15, 25, and 30 °C, while the VO2 and EO2 began to decrease significantly with further reductions in DO levels (P < 0.05). After 0.5 h of recovery to normoxia from hypoxia at three acclimation, the fR, VS.R, VG, and VG/VO2 of the fish decreased sharply; meanwhile, the VO2 and EO2 increased sharply (P < 0.05). The respiratory parameters of fish gradually approached initial values with prolonged recovery time to normoxia, and reached their initial values in 2.5 h at 25 and 30 °C acclimation. The critical oxygen concentrations (Cc) of fish for VO2 were 2.42 mg l?1 at 15 °C, 2.02 mg l?1 at 25 °C, and 1.84 mg l?1 at 30 °C, respectively. The results suggest that grass carp are highly adapted to varied DO and short-term hypoxia environments.  相似文献   

11.
Three trypsin isoforms A, B and C were purified to homogeneity from the viscera of sardinelle (Sardinella aurita). Purification was achieved by ammonium sulfate precipitation (20–70% (w/v)), Sephadex G-100 gel filtration and Mono Q-Sepharose anion-exchange chromatography. The molecular weights of these purified enzymes were estimated to be 28.8 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Based on the native PAGE and casein-zymography, each purified trypsin appeared as a single band. Trypsins A and C exhibited the maximal activity at 55°C, while trypsin B at 50°C. All isoforms showed the same optimal pH (pH 9.0) using Nα-benzoyl-dl-arginine-p-nitroanilide (BAPNA) as a substrate. The three trypsins were stable at temperatures below 40°C and over a broad pH range (7.0–11.0). The activities of the three isoforms were strongly inhibited by soybean trypsin inhibitor and phenylmethylsulfonyl fluoride, a serine protease inhibitor, and partially inhibited by ethylenediaminetetraacetic acid, a metalloenzyme inhibitor. Kinetic constants of trypsins A, B and C for BAPNA were evaluated at 25°C and pH 9.0. The values of K m and k cat were 0.125, 0.083 and 0.10 mM, and 2.24, 1.21 and 5.76 s−1, respectively. The N-terminal sequences of the first 10 amino acids were “I V G G Y E C Q K Y” for trypsin A and “I V G G Y E A Q S Y” for trypsins B and C. These sequences showed highly homology to other fish trypsins.  相似文献   

12.
Chinese sturgeon (Acipenser sinensis) is a critically endangered species. A flume-type respirometer, with video, was used to conduct two consecutive stepped velocity tests at 10, 15, 20, and 25 °C. Extent of recovery was measured after the 60-min recovery period between trials, and the recovery ratio for critical swimming speed (U crit) averaged 91.88% across temperatures. Temperature (T) effects were determined by comparing U crit, oxygen consumption rate (MO 2), and tail beat frequency (TBF) for each temperature. Results from the two trials were compared to determine the effect of exercise. The U crit occurring at 15 °C in both trials was significantly higher than that at 10 and 25 °C (p < 0.05). The U crit was plotted as a function of T and curve-fitting allowed calculation of the optimal swimming temperature 3.28 BL/s at 15.96 °C (trial 1) and 2.98 BL/s at 15.85 °C (trial 2). In trial 1, MO 2 increased rapidly with U, but then declined sharply as swimming speed approached U crit. In trial 2, MO 2 increased more slowly, but continuously, to U crit. TBF was directly proportional to U and the slope (dTBF/dU) for trial 2 was significantly lower than that for trial 1. The inverse slope (tail beats per body length, TB/BL) is a measure of swimming efficiency and the significant difference in slopes implies that the exercise training provided by trial 1 led to a significant increase in swimming efficiency in trial 2.  相似文献   

13.
Effect of temperature on the development of eggs of round herring Etrumeus teres was experimentally examined to construct a temperature-dependent egg development model. Mature fish were collected in the field and their eggs were artificially fertilized onboard. The eggs were incubated at nine temperatures set between 14.0 and 25.0°C. All eggs at the lowest three temperatures, 14.0°C, 15.0°C, and 16.0°C, ceased development and died at various stages before hatching. Durations required to hatching after fertilization ranged from 38.0 h at 25.0°C to 90.0 h at 17.5°C. The temperature-dependent egg development model, i.e., egg age in hours (y i,t ) at the ith stage and temperature t (°C), was expressed as: y i,t  = 4.604 × exp(−0.100 × t −0.129 × i) × i 2.593. From the application of the model to early-stage eggs collected in the field, it is concluded that round herring starts spawning immediately after sunset and almost completes spawning by midnight. The temperature-dependent egg development model and the daily pattern of spawning presented in this study are essential tools for developing the daily egg production method to estimate the spawning stock biomass.  相似文献   

14.
The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40 ± 0.30 g, n = 40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak − MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h−1 kg−1 (25°C) (P < 0.05) and reached a plateau between 25 and 30°C. The post-exercise MO2 in all temperature groups increased immediately to the peak values and then decreased slowly to a steady state that was higher than the pre-exercise MO2. The MO2peak did not significantly differ among the 20, 25 and 30°C groups, though these values were much higher than those of the lower temperature groups (10 and 15°C) (P < 0.05). The duration of EPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (P < 0.05). The magnitude of EPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg−1). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.  相似文献   

15.
The metabolic responses of the juvenile Miichthys miiuy in terms of oxygen consumption and ammonia excretion to changes in temperature (6–25°C) and salinity (16–31 ppt) were investigated. At a constant salinity of 26 ppt, the oxygen consumption rate (OCR) of the fish increased with an increase in temperature and ranged between 133.38 and 594.96 μg O2 h−1 g−1 DW. The effect of temperature on OCR was significant (P < 0.01). Q10 coefficients were 6.80, 1.41, 1.29 and 2.36 at temperatures of 6–10, 10–15, 15–20 and 20–25°C, respectively, suggesting that the juveniles of M. miiuy will be well adapted to the field temperature in the summer, but not in the winter. The ammonium excretion rates (AER) of the fish were also affected significantly by temperature (P < 0.01). The O:N ratio at temperatures of 6, 10, 15 and 20°C ranged from 13.12 to 20.91, which was indicative of a protein-dominated metabolism, whereas the O:N at a temperature of 25°C was 51.37, suggesting that protein-lipids were used as an energy substrate. At a constant temperature of 15°C, the OCRs of the fish ranged between 334.14 (at 31 ppt) and 409.68 (at 16 ppt) μg O2 h−1 g−1 DW. No significant differences were observed in the OCR and AER of the juveniles between salinities of 26 and 31 ppt (P > 0.05). The OCR and AER at 16 ppt were, however, significantly higher than those at 26 and 31 ppt (P < 0.05), indicating salinity lower than 16 ppt is presumably stressful to M. miiuy juveniles.  相似文献   

16.
Photosynthetic activities of seedlings of Zostera marina were successively measured using a gas volumeter for 6 days at seven light (0–400 μmol photons/m2 per s) and 11 water temperature conditions (5–35°C). The seedlings were collected from mature plants (Ise Bay, central Japan), and stored and cultured in incubators accurately controlled at each test temperature. The maximum gross photosynthesis (P maxg) was recorded at an optimal water temperature of 29°C after 0 days. After 6 days, P maxg appeared at 25°C and most plants cultured at 29–30°C bleached and withered after the drastic increase of light compensation point (I c). On the contrary, at 5–28°C, the photosynthetic activities either changed little (5–25°C) or recovered after a temporal reduction (26–28°C); seedlings survived and looked healthy after being cultured for 6 days. The recovery was thought to be an acclimation to tolerate higher water temperature. As a result, the critical upper water temperature for Z. marina seedlings was proposed as 28°C. The temperature was consistent with the previously reported maximum water temperature in habitats around the southern boundary of Z. marina in the northern hemisphere.  相似文献   

17.
To investigate the possible direct effect of a stepwise reduction in temperature with increasing size on growth, feeding parameters and muscle growth patterns of juvenile Atlantic halibut (Hippoglossus hippoglossus L.), 804 juvenile halibut (mean initial weight individuals: 14.2 g ± 0.2 SEM) were reared at constant 9, 12 and 15°C or shifted (T-step, i.e. 15–12°C after 36 days) for 99 days. Despite indications of lower optimal temperature for growth with increasing size, equal end weights were obtained between the constant 12°C, constant 15°C and T-step groups. Best overall growth was observed for the group kept at constant 12°C. The limited effect of the T-step group may relate to the size at movement (too big), the temperatures investigated (close to optimum) and the time and size interval investigated (too narrow). Differences in growth were reflected more by alterations in feed intake (C T and F%) than by differences in feed conversion efficiencies (FCE). Differences were found with respect to the density of muscle cells, whereas no differences were found between the average muscle cell diameters. The mean diameter of muscle cells tended to increase only slightly with increasing fish weight, while the mean density of muscle cells tended to decrease. Using an optimum temperature of 12°C, an indication of a possible increased rate of hyperplasia in relation to higher growth was seen.  相似文献   

18.
The effects of acclimation temperature (15, 20, 25 °C) on routine oxygen consumption and post-exercise maximal oxygen consumption rates (MO2) were measured in juvenile shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818). The routine MO2 of shortnose sturgeon increased significantly from 126.75 mg O2 h?1 kg?1 at 15 °C to 253.13 mg O2 h?1 kg?1 at 25 °C. The temperature coefficient (Q 10) values of the routine metabolic rates ranged between 1.61 and 2.46, with the largest Q 10 values occurring between 15 and 20 °C. The average post-exercise MO2 of all temperature groups increased to a peak value immediately following the exercise, with levels increasing about 2-fold among all temperature groups. The Q 10 values for post-exercise MO2 ranged from 1.21 to 2.12, with the highest difference occurring between 15 and 20 °C. Post-exercise MO2 values of shortnose sturgeon in different temperature groups all decreased exponentially and statistically returned to pre-exercise (resting) levels by 30 min at 15 and 20 °C and by 60 min at 25 °C. The aerobic metabolic scope (post-exercise maximal MO2-routine MO2) increased to a maximum value ~156 mg O2 h?1 kg?1 at intermediate experimental temperatures (i.e., 20 °C) and then decreased as the temperature increased to 25 °C. However, this trend was not significant. The results suggest that juvenile shortnose sturgeon show flexibility in their ability to adapt to various temperature environments and in their responses to exhaustive exercise.  相似文献   

19.
In the present study, we report the isolation and characterization of seabream Sparus aurata pyloric caeca-duodenal lipase. Optimum activity was found at pH 8.5 and salinity of 50 mM NaCl. Lipase activity was sensitive to divalent ions, and extreme pH values (4, 5, and 12), being more stable at alkaline than acid pH. Optimum temperature was found at 50°C, but lipase was stable at temperatures below 40°C. Lipase has a bile salt sodium taurocholate requirement for increased activity. Gradient PAGE electrophoresis revealed the presence of four isoforms with apparent molecular masses of 34, 50, 68, and 84 KDa, respectively. Pyloric-duodenal lipase was able to hydrolyze emulsified alimentary oils. Results confirm the presence of true lipases in Sparus aurata digestive tract.  相似文献   

20.
This study describes the digestible protein (DP) and digestible energy (DE) utilization in juvenile mulloway, and determined the requirements for maintenance. This was achieved by feeding triplicate groups of fish weighing 40 or 129 g held at two temperatures (20 or 26°C), on a commercial diet (21.4 g DP mJ DE−1) at four different ration levels ranging from 0.25% of its initial body weight to apparent satiation over 8 weeks. Weight gain and protein and energy retention increased linearly with increasing feed intake. However, energy retention efficiency (ERE) and protein retention efficiency (PRE) responses were curvilinear with optimal values, depending on fish size, approaching or occurring at satiated feeding levels. Maximum predicted PRE was affected by body size, but not temperature; PRE values were 0.50 and 0.50 for small mulloway, and 0.41 and 0.43 for large mulloway, at 20 and 26°C respectively. ERE demonstrated a similar response, with values of 0.42 and 0.43 for small, and 0.32 and 0.34 for large mulloway at 20 and 26°C respectively. Utilization efficiencies for growth based on linear regression for DP (0.58) and DE (0.60) were independent of fish size and temperature. The partial utilization efficiencies of DE for protein (k p) and lipid (k l) deposition estimated using a factorial multiple regression approach were 0.49 and 0.75 respectively. Maintenance requirements estimated using linear regression were independent of temperature for DP (0.47 g DP kg−0.7 day−1) while maintenance requirements for DE increased with increasing temperature (44.2–49.6 kJ DE kg−0.8 day−1). Relative feed intake was greatest for small mulloway fed to satiation at 26°C and this corresponded to a greater increase in growth. Large mulloway fed to satiation ate significantly more at 26°C, but did not perform better than the corresponding satiated group held at 20°C. Mulloway should be fed to satiation to maximize growth potential if diets contain 21.4 g DP mJ DE−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号