首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为实现黄花成熟度的快速、高精度识别,针对其相似特征识别精确度低以及相互遮挡检测困难的问题,提出一种基于YOLOv8-ABW的黄花成熟度检测方法。该研究在特征提取网络中加入结合注意力机制的尺度特征交互机制(attention based intra-scale feature interaction, AIFI),更好地提取黄花特征信息,提高检测的精确度。在特征融合网络中,进一步采用加权的双向特征金字塔特征融合网络(bidirectional feature pyramid network, Bi FPN),实现更高层次的跨通道特征融合,有效减少通道中的特征冗余。此外使用WIoUv3作为损失函数,聚焦普通质量的锚框,提高模型的定位性能。试验结果表明:YOLOv8-ABW模型检测精确度为82.32%,召回率为83.71%,平均精度均值mAP@0.5和mAP@0.5:0.95分别为88.44%和74.84%,调和均值提升至0.86,实时检测速度为214.5帧/s。与YOLOv8相比,YOLOv8-ABW的精确度提高1.41个百分点,召回率提高0.75个百分点,mAP@0.5和mAP@0.5:0.95分别提升1.54个百分点和1.42个百分点。对比RT-DETR、YOLOv3、YOLOv5、YOLOv7模型,YOLOv8-ABW参数量最少,仅为3.65×106,且模型浮点运算量比YOLOv7少96.3 G。体现出YOLOv8-ABW 模型能够在黄花成熟度检测中平衡检测精确度和检测速度,综合性能最佳,为黄花智能化实时采摘研究提供技术支持。  相似文献   

2.
疏果期苹果目标检测是实现疏果机械化、自动化需要解决的关键问题。为实现疏果期苹果目标准确检测,该研究以YOLOv7为基础网络,融合窗口多头自注意力机制(Swin Transformer Block),设计了一种适用于近景色小目标检测的深度学习网络。首先在YOLOv7模型的小目标检测层中添加Swin Transformer Block,保留更多小尺度目标特征信息,将预测框与真实框方向之间的差异考虑到模型训练中,提高模型检测精度,将YOLOv7中的损失函数CIoU替换为SIoU。最后利用Grad-CAM方法产生目标检测热力图,进行有效特征可视化,理解模型关注区域。经测试,该文模型的检测均值平均精度为95.2%,检测准确率为92.7%,召回率为91.0%,模型所占内存为81 MB,与原始模型相比,均值平均精度、准确率、召回率分别提高了2.3、0.9、1.3个百分点。该文模型对疏果期苹果具有更好的检测效果和鲁棒性,可为苹果幼果生长监测、机械疏果等研究提供技术支持。  相似文献   

3.
群猪检测是现代化猪场智慧管理的关键环节。针对群猪计数过程中,小目标或被遮挡的猪只个体易漏检的问题,该研究提出了基于多尺度融合注意力机制的群猪检测方法。首先基于YOLOv7模型构建了群猪目标检测网络YOLOpig,该网络设计了融合注意力机制的小目标尺度检测网络结构,并基于残差思想优化了最大池化卷积模块,实现了对被遮挡与小目标猪只个体的准确检测;其次结合GradCAM算法进行猪只检测信息的特征可视化,验证群猪检测试验特征提取的有效性。最后使用目标跟踪算法StrongSORT实现猪只个体的准确跟踪,为猪只的检测任务提供身份信息。研究以育肥阶段的长白猪为测试对象,基于不同视角采集的视频数据集进行测试,验证了YOLOpig网络结合StongSORT算法的准确性和实时性。试验结果表明,该研究提出的YOLOpig模型精确率、召回率及平均精度分别为90.4%、85.5%和92.4%,相较于基础YOLOv7模型平均精度提高了5.1个百分点,检测速度提升7.14%,比YOLOv5、YOLOv7tiny和YOLOv8n 3种模型的平均精度分别提高了12.1、16.8和5.7个百分点,该文模型可以实现群猪的有...  相似文献   

4.
芽眼精准检测是实现马铃薯种薯智能化切块的前提,但由于种薯芽眼区域所占面积小、可提取特征少以及种薯表面背景复杂等问题极易导致芽眼检测精度不高。为实现种薯芽眼精准检测,该研究提出一种基于改进YOLOv7的马铃薯种薯芽眼检测模型。首先在Backbone部分增加Contextual Transformer自注意力机制,通过赋予芽眼区域与背景区域不同权值大小,提升网络对芽眼的关注度并剔除冗余的背景信息;其次在Head部分利用InceptionNeXt模块替换原ELAN-H模块,减少因网络深度增加而造成芽眼高维特征信息的丢失,更好地进行多尺度融合提升芽眼的检测效果;最后更改边界框损失函数为NWD,降低损失值,加快网络模型的收敛速度。经试验,改进后的YOLOv7网络模型平均准确率均值达到95.40%,较原始模型提高4.2个百分点。与同类目标检测模型Faster-RCNN(ResNet50)、Faster-RCNN(VGG)、SSD、YOLOv3、YOLOv4、YOLOv5n、YOLOX相比,其检测精度分别高出34.09、26.32、27.25、22.88、35.92、17.23和15.70个百分点。...  相似文献   

5.
实现繁育期精准个体检测是提高集约养殖环境下肉鸽繁育效率和精准管控效果的有效手段,其中小目标鸽蛋及粘连乳鸽的精准检测是关键。该研究提出了一种基于改进RetinaNet的目标检测模型,以RetinaNet网络为基础框架,将ResNet50特征提取网络与特征金字塔网络(Feature Pyramid Networks,FPN)结合,增加特征金字塔网络中特征检测尺度,提升对图像中遮挡鸽蛋与粘连乳鸽的检测精度;在分类和回归子网络前引入卷积注意力模块(Convolutional Block Attention Module,CBAM),提升对小目标检测的精度。试验结果表明,该研究提出的模型对于笼养肉鸽个体检测的平均精度均值(mean Average Precision,mAP)达到80.89%,相比SSD、YOLOv3、YOLOv4、YOLOv5s、YOLOv5m和原始RetinaNet模型提高了18.66、29.15、19.92、21.69、18.99与15.45个百分点;对成鸽、乳鸽与鸽蛋检测的平均精度(Average Precision,AP)分别为95.88%,79.51%和67.29%,相对原始RetinaNet模型提高了2.16、21.74和22.48个百分点,在保证成鸽精准检测的基础上,显著提升了对复杂环境下存在局部遮挡的小目标鸽蛋以及粘连乳鸽的检测精度,为实现集约化养殖环境下肉鸽繁育周期个体检测和精准管控提供有效支持。  相似文献   

6.
畜牧业自动化管理面临的一个关键挑战是如何准确地检测大规模放牧养殖牲畜的种群,确定其数量和实时更新群体信息。牲畜规模化、自动化检测受环境场地等因素影响,当前目标检测算法经常出现漏检、误检等情况。该研究基于YOLOV5s目标检测网络设计了一种牲畜检测算法LDHorNet(livestock detect hor net),参考HorNet的递归门控卷积设计了HorNB模块对网络模型进行改进,以提高检测算法的空间交互能力和检测精度。然后在网络结构中嵌入CBAM(convolutional block attention module)注意力机制,以提高小目标的检测精度和注意力权重,并利用Repulsion 损失函数提高目标检测网络的召回率和预测精度。试验结果表明,所提出的LDHorNet算法的精准率、召回率分别为95.24%、88.87%,平均精准率均值mAP_0.5、mAP_0.5:0.95分别为94.11%、77.01%,比YOLOv5s、YOLOv8s、YOLOv7-Tiny精准率分别提高了2.83、2.93和9.79个百分点,召回率分别提高了6.66和4.95、13.42个百分点,平均精准率均值mAP_0.5:0.95分别提高12.46、5.26和20.97个百分点。该算法对于小目标和遮挡场景下的牲畜检测效果优于原算法与对比算法,表现出良好的鲁棒性,具有广泛的应用前景。  相似文献   

7.
李韬  任玲  胡斌  王双  赵明  张玉泉  杨苗 《农业工程学报》2023,39(23):174-184
为了提高番茄穴盘苗分级检测精度,该研究提出了改进YOLOv5s目标检测模型,并通过迁移学习对番茄穴盘病苗识别精度进行优化。采用轻量级网络EfficientNetv2的Backbone部分作为特征提取网络,保留YOLOv5s中的SPPF空间金字塔池化模块,压缩模型参数数量以减少计算量;更改模型Neck部分原始上采样模块为CARAFE轻量级上采样模块,在引入很少参数量的情况下提高模型精度;同时将PANet替换为BiFPN,引入特征权重信息,增强不同尺度特征融合能力;引入有效多尺度注意力机制(efficient multi-scale attention,EMA),提高对番茄苗的关注,减少背景干扰;替换CIoU损失函数为SIoU损失函数,考虑真实框与预测框之间的方向匹配,提高模型收敛效果。试验结果表明,改进的YOLOv5s目标检测模型经过迁移学习训练后,平均精度均值达到95.6%,较迁移学习前提高了0.7个百分点;与原YOLOv5s模型相比,改进YOLOv5s模型平均精度均值提升2.6个百分点;改进YOLOv5s模型的参数量、计算量和权重大小分别为原YOLOv5s模型的53.1%、20.0%...  相似文献   

8.
基于改进RetinaNet的果园复杂环境下苹果检测   总被引:1,自引:1,他引:0  
为了快速准确地检测重叠、遮挡等果园复杂环境下的苹果果实目标,该研究提出一种基于改进RetinaNet的苹果检测网络。首先,该网络在传统RetinaNet的骨干网络ResNet50中嵌入Res2Net模块,提高网络对苹果基础特征的提取能力;其次,采用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)对不同尺度的特征进行加权融合,提升对小目标和遮挡目标的召回率;最后,采用基于焦损失(Focal Loss)和高效交并比损失(Efficient Intersection over Union Loss,EIoU Loss)的联合损失函数对网络进行优化,提高网络的检测准确率。试验结果表明,改进的网络在测试集上对叶片遮挡、枝干/电线遮挡、果实遮挡和无遮挡的苹果检测精度分别为94.02%、86.74%、89.42%和94.84%,平均精度均值(meanAveragePrecision,mAP)达到91.26%,较传统RetinaNet提升了5.02个百分点,检测一张苹果图像耗时42.72 ms。与Faster-RCNN和YOLOv4等主...  相似文献   

9.
目标检测与分割是实现黄花菜智能化采摘的关键技术,原始目标检测算法容易出现漏检、误检等问题,无法满足自然环境下生长的黄花菜采摘要求。该研究提出一种基于改进YOLOv7-seg的黄花菜目标检测与实例分割识别算法模型(YOLO-Daylily)。通过在YOLOv7-seg骨干网络(backbone)中引入CBAM(convolutional block attention module)注意力机制模块,降低背景等干扰因素的影响;在ELAN(efficient layer aggregation networks)模块中采用PConv(partial convolution)替换原有的3×3卷积层,减少冗余计算和内存访问,提升对目标黄花菜特征提取的能力。颈部网络(neck)采用坐标卷积(CoordConv)替换PA-FPN(path aggregation-feature pyramid networks)中1×1卷积层,增强模型对位置的感知,提高掩膜(mask)鲁棒性。在改进的PA-FPN结构中采用残差连接方法将浅层特征图几何信息与深层特征图语义信息特征相结合,提高模型对目标黄花菜的检测分割性能。消融试验表明:改进后的算法检测准确率、召回率和平均精度分别达到92%、86.5%、93%,相比YOLOv7-seg基线算法分别提升2.5、2.3、2.7个百分点;分割准确率、召回率和平均精度分别达到92%、86.7%、93.5%,比基线算法分别提升0.2、3.5、3个百分点。与Mask R-CNN、SOLOv2、YOLOV5-seg、YOLOv5x-seg算法相比,平均精度分别提升8.4、12.7、4.8、5.4个百分点。改进后的模型减少了漏检、误检等情况,对目标定位更加精准,为后续黄花菜智能化采摘实际应用提供理论支持。  相似文献   

10.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0  
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   

11.
针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在检测任务中泛化性弱和收敛速度慢的问题,使用Inner-CIoU损失函数加速边界框回归,提高模型检测性能。最后,在自建数据集上进行模型试验对比,试验结果表明,YOLOv8-MEIN模型交并比阈值为0.5的平均精度均值mAP0.5值为96.9%,召回率为91.7%,交并比阈值为0.5~0.95的平均精度均值mAP0.5~0.95值为85.8%,模型大小为5.8MB,参数量为2.87M。与原模型YOLOv8n相比,mAP0.5值、召回率、mAP0.5~0.95值分别提高了0.4、1.0、0.6个百分点,模型大小和参数量相比于原模型分别降低了3.3%和4.3%,为柑橘的自动化采摘提供技术参考。  相似文献   

12.
为了快速精准地识别复杂果园环境下的葡萄目标,该研究基于YOLOv5s提出一种改进的葡萄检测模型(MRWYOLOv5s)。首先,为了减少模型参数量,采用轻量型网络MobileNetv3作为特征提取网络,并在MobileNetv3的bneck结构中嵌入坐标注意力模块(coordinate attention,CA)以加强网络的特征提取能力;其次,在颈部网络中引入RepVGG Block,融合多分支特征提升模型的检测精度,并利用RepVGG Block的结构重参数化进一步加快模型的推理速度;最后,采用基于动态非单调聚焦机制的损失(wise intersection over union loss,WIoU Loss)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的MRW-YOLOv5s模型参数量仅为7.56 M,在测试集上的平均精度均值(mean average precision,mAP)达到97.74%,相较于原YOLOv5s模型提升了2.32个百分点,平均每幅图片的检测时间为10.03 ms,比原YOLOv5s模型减少了6.13 ms。与主流的目标检测模型S...  相似文献   

13.
为实现自然环境下的板栗果实目标快速识别,该研究以湖北省种植板栗为研究对象,提出了一种基于改进YOLOv8模型的栗果识别方法YOLOv8-PBi。首先,将部分卷积(partial convolution,PConv)引入C2f模块中,缩减卷积过程中的浮点数和计算量;其次,引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),增强多尺度特征融合性能,最后,更改边界框损失函数为动态非单调聚焦机制WIoU(wise intersection over union,WIoU),提高模型收敛速度,进一步提升模型检测性能。试验结果表明,改进YOLOv8-PBi模型准确率、召回率和平均精度分别为89.4%、74.9%、84.2%;相比原始基础网络YOLOv8s,模型权重减小46.22%,准确率、召回率和平均精度分别提升1.3、1.5、1.8个百分点。部署模型至边缘嵌入式设备上,经过TensorRT加速后,检测帧率达到43 帧/s。该方法可为板栗智能化收获过程中的栗果识别提供技术基础。  相似文献   

14.
在香菇栽培中,需要评估其生长发育状态,以便调控栽培环境和采取适当的栽培措施。针对香菇生育期子实体外观特征变化不显著,机器自动采收时部分成熟期香菇子实体易误检和漏检的问题,该研究提出了一种基于改进YOLOv5的香菇子实体生育期识别方法。首先替换YOLOv5模型中上采样模块,采用一种包含上采样预测模块和特征重组模块的轻量级上采样模块;其次在YOLOv5l模型中添加小目标检测层,增加模型对香菇子实体生育期特征信息的提取,提高模型区分香菇生育期和识别小香菇的能力。试验结果表明,改进的 YOLOv5l 模型具有较好的检测能力,平均帧率为 45.25 帧/s,平均精确度均值为92.70%,与SSD、Faster-RCNN、Mushroom-YOLO和YOLOv5相比平均精确度均值分别提升22.6、28.38、6.8和2.5个百分点。该研究方法能够满足对香菇子实体不同生育期识别的精度与速度要求,为香菇子实体生育期识别提供了一种方法参考。  相似文献   

15.
为实现花椒簇的快速准确检测,该研究提出了一种基于改进YOLOv5s的花椒簇检测模型。首先,使用MBConv(MobileNetV3 block convolution,MBConv)模块和基于ReLU的轻量级自注意力机制优化了EfficientViT网络,用其代替YOLOv5s的主干,减少模型的参数量、增强模型对重要特征的表达能力。其次,在模型的训练过程中采用了OTA(optimal transport assignment)标签分配策略,优化训练中的标签分配结果。最后,使用WIoU损失函数对原损失函数CIoU进行替换,提高锚框的质量。试验结果表明,改进YOLOv5s模型的平均准确度均值(mean average precision,mAP)为97.3%、参数量为5.9 M、检测速度为131.6帧/s。相较于YOLOv5s模型,mAP提升1.9个百分点、参数量降低15.7%、检测速度提高14.5%。结果表明,该研究提出的改进YOLOv5s模型准确度高、参数量低、检测速度快,可实现对花椒簇的有效检测。  相似文献   

16.
针对目前在水下复杂环境中池塘养殖河蟹与饵料的检测算法存在检测精度低、速度慢等问题,该研究提出了基于改进YOLOv5s(you only look once version 5 small)的河蟹与饵料检测方法。首先,采用轻量化卷积Ghost替换普通卷积,同时利用GhostBottleneck结构替换原主干网络中的残差结构快速提取网络特征,减少模型计算量,满足安卓端的应用要求。其次,为了弥补因网络参数量减少造成网络检测精度稍有降低的问题,借鉴BiFPN(bidirectional feature pyramid network)的思想改进原始YOLOv5s的双向融合骨干网络,以较低的计算成本提高网络对小目标的检测精度。此外,为了帮助网络进一步更好地识别目标,加入了CA(coordinate attention)注意力机制,使得图像中感兴趣的区域能够更准确地被捕获。试验结果表明:该研究改进模型平均精度均值为96.9%,计算量为8.5GFLOPs,与当前主流的单阶段有锚框目标检测算法SSD(single shot multibox detector)和YOLOv3相比,具有更高的检测精度以及更少的计算量。相比于原始YOLOv5s模型,本文改进模型平均精度均值提高了2.2个百分点,计算量和模型内存都降低了40%以上。最后,将改进前后的模型部署到安卓设备上测试。测试结果表明:改进后模型的平均检测速度为148ms/帧,相较于原始模型检测速度提高了20.9%,并且保持了较好的检测效果,平衡了安卓设备对模型检测精度以及速度的性能需求,能够为河蟹养殖投饵量的精准确定提供参考。  相似文献   

17.
采用改进YOLOv4-tiny的复杂环境下番茄实时识别   总被引:7,自引:7,他引:0  
实时识别番茄的成熟度是番茄自主采摘车的关键功能。现有目标识别算法速度慢、对遮挡番茄和小番茄识别准确率低。因此,该研究提出一种基于改进YOLOv4-tiny模型的番茄成熟度识别方法。在头部网络(Head network)部分增加一个76×76的检测头(y3)来提高小番茄的识别准确率。为了提高被遮挡番茄的识别准确率,将卷积注意力模块(Convolution Block Attention Module,CBAM)集成到YOLOv4-tiny模型的骨干网络(Backbone network)部分。在深层卷积中使用Mish激活函数替代ReLU激活函数以保证提取特征的准确性。使用密集连接的卷积网络(Densely Connected Convolution Networks, DCCN)来加强全局特征融合,并建立红风铃番茄成熟度识别的数据集。试验结果表明,与YOLOv3、YOLOv4、YOLOv4-tiny、YOLOv5m和YOLOv5l模型相比,改进YOLOv4-tiny-X模型的平均精度均值(mean Average Precision, mAP)分别提高了30.9、0.2、0.7、5.4和4.9个百分点,在Nvidia GTX 2060 GPU 上达到111帧/s的速度,平均精度均值达到97.9%。不同模型的实时测试可视化结果表明,改进模型能够有效解决遮挡和小番茄识别准确率低的问题,可为番茄采摘车研制提供参考。  相似文献   

18.
针对现有目标检测模型对自然环境下茶叶病害识别易受复杂背景干扰、早期病斑难以检测等问题,该研究提出了YOLOv5-CBM茶叶病害识别模型。YOLOv5-CBM以YOLOv5s模型为基础,在主干特征提取阶段,将一个带有Transformer的C3模块和一个CA(coordinate attention)注意力机制融入特征提取网络中,实现对病害特征的提取。其次,利用加权双向特征金字塔(BiFPN)作为网络的Neck,通过自适应调节每个尺度特征的权重,使网络在获得不同尺寸特征时更好地将其融合,提高识别的准确率。最后,在检测端新增一个小目标检测头,解决了茶叶病害初期病斑较小容易出现漏检的问题。在包含有3种常见茶叶病害的数据集上进行试验,结果表明,YOLOv5-CBM对自然环境下的初期病斑检测效果有明显提高,与原始YOLOv5s模型相比,对早期茶饼病和早期茶轮斑病识别的平均精度分别提高了1.9和0.9个百分点,对不同病害检测的平均精度均值达到了97.3%,检测速度为8ms/幅,均优于其他目标检测算法。该模型具有较高的识别准确率与较强的鲁棒性,可为茶叶病害的智能诊断提供参考。  相似文献   

19.
现有的目标检测算法检测茶叶嫩芽的精度较低,为提高茶叶嫩芽的检测精度,该研究提出一种基于改进YOLOv5s网络模型的茶叶嫩芽检测算法。该算法将骨干特征提取网络中的空间金字塔池化结构(spatial pyramid pooling-fast,SPPF)替换为空洞空间卷积池化金字塔结构(atrous spatial pyramid pooling,ASPP),增强模型对不同分辨率下目标的识别能力;针对茶叶嫩芽的小目标特征,在颈部网络中引入可加权重的双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),提高特征融合的效率,同时在颈部网络中的每个集中综合卷积模块(concentrated-comprehensive convolution block,C3)后添加卷积注意力模块(convolutional block attention module,CBAM)来提高模型关注小目标特征的能力。试验结果表明,改进后获得的Tea-YOLOv5s比原模型的准确率(precision,P)、召回率(recall,R)和平均精度值(mean average precision,mAP)分别高出4.4、0.5和4个百分点,且模型鲁棒性强,在多个场景下茶叶嫩芽的检测中具有更高的置信度分数。改进后的模型可为茶叶的产量估计和茶叶采摘机器人的嫩芽识别奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号