首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.

? Context

Two-thirds of Britain’s forest area is privately owned. Thus, understanding private forest owners and managers, and their attitudes to uncertainty and change, is essential for the success of climate change adaptation policies.

? Aim

The aims of this study are to (1) assess how beliefs in climate change in the private sector have influenced forest management practices; (2) identify constraints related to changes in species choice and silvicultural systems; (3) analyse the implications for implementing climate change policy in forestry.

? Method

Semi-structured interviews with key informants who provide advice to, or manage woodlands in, the private forest sector in north Wales.

? Results

Woodland managers and some advisers are not generally convinced of a need to adapt. They feel the future is uncertain, more usually in relation to tree disease than to climate change itself. Species choice is the principle focus of adaptation activities and reveals a deep divide in opinion. Commercial advisors look to new exotics but are inhibited by absence of markets, while small-scale owners rely more on native genetic diversity.

? Conclusions

Findings that are likely to apply widely include: the influential role of forest agents in forest management decisions including species choice; lack of confidence in climate change predictions, and in markets; more immediate concerns about tree pests and diseases; demand for leadership from the public sector, and for engagement amongst the private sector. Further research is needed across a wider area to test the variability in relationship between attitudes and behaviours, and local conditions including climate change predictions.  相似文献   

2.

? Context

Projecting changes in forest productivity in Europe is crucial for adapting forest management to changing environmental conditions.

? Aims

The objective of this paper is to project forest productivity changes under different climate change scenarios at a large number of sites in Europe with a stand-scale process-based model.

? Methods

We applied the process-based forest growth model 4C at 132 typical forest sites of important European tree species in ten environmental zones using climate change scenarios from three different climate models and two different assumptions about CO2 effects on productivity.

? Results

This paper shows that future forest productivity will be affected by climate change and that these effects depend strongly on the climate scenario used and the persistence of CO2 effects. We find that productivity increases in Northern Europe, increases or decreases in Central Europe, and decreases in Southern Europe. This geographical pattern is mirrored by the responses of the individual tree species. The productivity of Scots pine and Norway spruce, mostly located in central and northern Europe, increases while the productivity of Common beech and oak in southern regions decreases. It is important to note that we consider the physiological response to climate change excluding disturbances or management.

? Conclusions

Different climate change scenarios and assumptions about the persistence of CO2 effects lead to uncertain projections of future forest productivity. These uncertainties need to be integrated into forest management planning and adaptation of forest management to climate change using adaptive management frameworks.  相似文献   

3.

Context

Recent policy changes in the USA direct agencies managing federal forests to analyze the potential effects of climate change on forest productivity, water resource protection, wildlife habitat, biodiversity, and other values.

Aims

This paper describes methods developed to (1) assess current risks, vulnerabilities, and gaps in knowledge; (2) engage internal agency resources and external partners in the development of options and solutions; and (3) manage forest resources for resilience, not just in terms of natural ecosystems but in affected human communities as well.

Methods

We describe an approach designed to characterize certain climate change effects on forests, and estimate the effectiveness of response options ranging from resistance to a realignment of management objectives.

Results

Field testing on a 6,300 km2 area of conifer forest in the northwestern USA shows this decision model to be useful and cost-effective in identifying the highest sensitivities relating to vegetation management, biological diversity, water resources and forest transportation systems, and building consensus for adaptive strategies and actions.

Conclusions

Results suggest that this approach is an effective means for guiding management decisions to adapt to the effects of climate change, and provides an empirical basis for setting budgetary and management priorities.  相似文献   

4.

Context

In the context of climate change, several forest adaptation options have to be advocated such as a shift to more resistant species.

Aims

We provide an economic analysis of timber species change as a tool for adapting forests to climate change.

Methods

We use the framework of cost–benefit analysis, taking uncertainty into account both exogenously (sensitivity analysis) and endogenously [(quasi-)option value calculations]. We apply the method to assess the economic rationale for converting Norway spruce stands to Douglas-fir in the French Black Mountain.

Results

We find that the Douglas-fir conversion is land expectation value (LEV) maximizing under a wide range of a priori (subjective) probabilities attached to high mortality of Norway spruce under climate change (for probabilities higher than 0.25–0.31). If information about the impacts of climate change is expected to increase over time, and given the large sunk costs attached to conversion, a delay strategy may be preferable to transition and to status quo when the impacts of climate change on Norway spruce mortality are sufficiently ambiguous. In such cases, getting information earlier increases the LEV by €5–60/ha.

Conclusion

Beyond the specifics of the case study, this paper suggests that quasi-option value is a relevant tool to provide insights to forest owners dealing with adaptation decisions in the context of climate change.  相似文献   

5.

Context

Managing forests under climate change requires adaptation. The adaptive capacity of forest tree populations is huge but not limitless. Integrating evolutionary considerations into adaptive forestry practice will enhance the capacity of managed forests to respond to climate-driven changes.

Aims

Focusing on natural regeneration systems, we propose a general framework that can be used in various and complex local situations by forest managers, in combination with their own expertise, to integrate evolutionary considerations into decision making for the emergence of an evolution-oriented forestry.

Methods

We develop a simple process-based analytical grid, using few processes and parameters, to analyse the impact of forestry practice on the evolution and evolvability of tree populations.

Results

We review qualitative and, whenever possible, quantitative expectations on the intensity of evolutionary drivers in forest trees. Then, we review the effects of actual and potential forestry practice on the evolutionary processes. We illustrate the complexity of interactions in two study cases: the evolutionary consequences for forest trees of biotic interactions and of highly heterogeneous environment.

Conclusion

Evolution-oriented forestry may contribute adapting forests to climate change. It requires combining short-term and long-term objectives. We propose future lines of research and experimentation.  相似文献   

6.

??Context

It is assumed that climate change will favour European beech (Fagus sylvatica L.) to Norway spruce (Picea abies [L.] Karst.) at its northern range margins due to climate change and induced disturbance events.

??Aims

An old-growth mixed forest of spruce and beech, situated near the northern beech margin, was studied to reveal effects of disturbances and response processes on natural forest dynamics, focussing on the understory.

??Methods

We carried out analyses on understory dynamics of beech and spruce in relation to overstory release. This was done based on a sequence of stand and tree vitality inventories after a series of abiotic and biotic disturbances.

??Results

It became apparent that beech (understory) has a larger adaptive capacity to disturbance impacts and overstory release (68 % standing volume loss) than spruce. Understory dynamics can play a key role for forest succession from spruce to beech-dominated forests. Disturbances display an acceleration effect on forest succession in the face of climate change.

??Conclusion

Beech is poised strategically to replace spruce as the dominant tree species at the study area. Due to an increasing productivity and a lower risk of stand failure, beech may raise into the focus of forestry in southern Sweden.  相似文献   

7.

? Context

The knowledge of how shrub–seedling interactions vary with summer drought, canopy opening, and tree species is crucial for adapting forest management to climate change.

? Aims

The aim of this study was to assess variation in shrub–oak recruitment associations along a south–north drought climate gradient and between two levels of canopy cover in coastal dune forest communities in a climate change-adapted forest management perspective.

? Material and methods

Mapped data of associational patterns of seedlings of three oak species with interspecific pooled shrubs were analyzed using a bivariate pair correlation function in 10 (0.315 ha) regeneration plots located in forest and recent gap sites along the climate gradient. An index of association strength was calculated in each plot and plotted against a summer moisture index.

? Results

The association strength increased with increasing summer drought from wet south to dry north and from closed forests to gaps.

? Conclusion

Consistent with facilitation theory, our results suggest that climate change may shift associational patterns in coastal dune forest communities towards more positive associations, in particular in canopy gaps. In a perspective of climate change, foresters may need to conserve understory shrubs in gaps in order to promote oak species regeneration.  相似文献   

8.

Key message

Multi-objective robust decision making is a promising decision-making method in forest management under climate change as it adequately considers deep uncertainties and handles the long-term, inflexible, and multi-objective character of decisions. This paper provides guidance for application and recommendation on the design.

Context

Recent studies have promoted the application of robust decision-making approaches to adequately consider deep uncertainties in natural resource management. Yet, applications have until now hardly addressed the forest management context.

Aims

This paper seeks to (i) assemble different definitions of uncertainty and draw recommendation to deal with the different levels in decision making, (ii) outline those applications that adequately deal with deep uncertainty, and (iii) systematically review the applications to natural resources management in order to (iv) propose adoption in forest management.

Methods

We conducted a systematic literature review of robust decision-making approaches and their applications in natural resource management. Different levels of uncertainty were categorized depending on available knowledge in order to provide recommendations on dealing with deep uncertainty. Robust decision-making approaches and their applications to natural resources management were evaluated based on different analysis steps. A simplified application to a hypothetical tree species selection problem illustrates that distinct robustness formulations may lead to different conclusions. Finally, robust decision-making applications to forest management under climate change uncertainty were evaluated and recommendations drawn.

Results

Deep uncertainty is not adequately considered in the forest management literature. Yet, the comparison of robust decision-making approaches and their applications to natural resource management provide guidance on applying robust decision making in forest management regarding decision contexts, decision variables, robustness metrics, and how uncertainty is depicted.

Conclusion

As forest management is characterized by long decision horizons, inflexible systems, and multiple objectives, and is subject to deeply uncertain climate change, the application of a robust decision-making framework using a global, so-called satisficing robustness metric is recommended. Further recommendations are distinguished depending on the decision context.
  相似文献   

9.

Context

Understanding the range of possible climate change impacts on forests and the interactions between them is vital to sustainable forest management.

Aims

We examine whether the combined influence of climate change and timber harvest will affect tree species distribution and productivity beyond predictions based on climate alone.

Methods

We used the landscape disturbance model LANDIS-II to simulate two climate and two harvest scenarios in 14,000 ha of managed watersheds.

Results

The elevated temperature led to a decline in the abundance of boreal species and a substantial increase in some temperate and pioneer species. Importantly, the interaction of climate change and timber harvest yielded changes in the distribution of some species that would not be expected based on climate alone. Conversely, some late-successional species exhibited resistance to climate-driven changes in their distribution. Climate change caused an increase in forest productivity when harvest was simulated, but a decrease in no-harvest scenarios. A time lag in forest response was likely responsible for this decrease in the absence of widespread mortality.

Conclusions

The finding that disturbance may drive the range expansion of early-successional broadleaved species and cause a decline of red spruce has implications for forest community associations, as well as for forest management where conifers are favoured for pulp production.  相似文献   

10.
11.

? Context

The Kyoto Protocol allows the use of domestic forest carbon sequestration to offset emissions to a limited degree, while bioenergy as an unlimited emission reduction option receives substantial financial support in many countries.

? Aim

The primary objective of this study was to analyze (1) whether these limits on forest carbon sequestration would be binding, thereby leading to inefficient mitigation, and (2) the total potential effect of the protocol on the greenhouse gas (GHG) fluxes in the forest sector.

? Methods

A partial equilibrium model of the Norwegian forest sector was used to quantify the GHG fluxes in a base scenario with no climate policy, a Kyoto Protocol policy (KP policy), and a policy with no cap on forest carbon sequestration (FC policy), assuming that the policies apply the rest of the century.

? Results

Carbon offsets are higher under the KP policy than in the base scenario and likewise higher than under the FC policy in the short run, but the KP policy fails to utilize the forest carbon sequestration potential in the long run as it provides considerably less incentives to invest in forestry than the FC policy.

? Conclusion

The KP increases the Norwegian forest sector’s climate change mitigation compared to no climate policy but less in the long run than a carbon policy with no cap on forest carbon credits.  相似文献   

12.

Key message

Pertinence of alternative adaptation strategies to business as usual, namely reactive, active, and robust adaptation strategies, can be evaluated by incorporating the expected costs and benefits of adaptation, climate change uncertainty, and the risk attitudes of decision-makers.

Context

Forest management is used to coping with risky and uncertain projections and estimates. However, climate change adds a major challenge and necessitates adaptation in many ways.

Aims

This paper highlights the dependency of the decisions on adaptation strategies to four aspects of forest management: (i) the costs of mitigating undesirable climate change impacts on forests, (ii) the value of ecosystem goods and services to be sustained, (iii) uncertainties about future climate trajectories, and (iv) the attitude of decision-makers towards risk (risk aversion level).

Methods

We develop a framework to evaluate the pertinence of reactive, active, and robust adaptation strategies in forest management in response to climate change.

Results

Business as usual may still be retained if the value of the forest and cost of climate impacts are low. Otherwise, it is crucial to react and facilitate the resilience of affected forest resources or actively adapt in advance and improve forest resistance. Adaptation should be robust under any future climate conditions, if the value of the ecosystem, the impacts from climatic changes, and the uncertainty about climate scenarios are very high.

Conclusion

The decision framework for adaptation should take into account multiple aspects of forest management under climate change towards an active and robust strategy.
  相似文献   

13.

? Context

Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales.

? Aims

We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China.

? Method

Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development.

? Results

BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests.

? Conclusion

To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.  相似文献   

14.

Context

Prediction of the effect of harvests and climate change (CC) on the changes in carbon stock of forests is necessary both for CC mitigation and adaptation purposes.

Aims

We assessed the impact of roundwood and fuelwood removals and climate change (CC) on the changes in carbon stock of Finnish forests during 2007–2042. We considered three harvest scenarios: two based on the recent projections of roundwood and fuelwood demand, and the third reflecting the maximum sustainable cutting level. We applied two climate scenarios: the climate was in the state that prevailed around year 2006, or it changed according to the IPCC SRES A1B scenario.

Methods

We combined the large-scale forestry model MELA with the soil carbon model Yasso07 for mineral soils. For soils of drained, forested peatlands, we used a method based on emission factors.

Results

The stock change of trees accounted for approximately 80 % of the total stock change. Trees and mineral soils acted as carbon sinks and the drained peatland soils as a carbon source. The forest carbon sink increased clearly in both of the demand-based scenarios, reaching the level of 13–20 Tg C/year (without CC). The planned increase in the use of bioenergy reduced the forest sink by 2.6 Tg C/year. CC increased the forest carbon sink in 2042 by 38 %–58 % depending on the scenario. CC decreased the sink of mineral soils in the initial years of the simulations; after 2030, the effect was slightly positive. CC increased the emissions from the drained peatland soils.

Conclusions

It is likely that forest land in Finland acts as a carbon sink in the future. The changes in carbon stocks of trees, mineral soils, and peatland soils respond differently to CC and fuelwood and roundwood harvests.  相似文献   

15.

Context

Some forest insect pests are currently extending their range as a consequence of climate warming. However, in most cases, the evidence is mainly based on correlations and the underlying mechanism is not clearly known.

Aims

One of the most severe pests of pine forests in Europe, the pine processionary moth, Thaumetopoea pityocampa, is currently expanding its distribution as a result of climate warming and does not occupy entirely its potential habitat. A model describing its spread was developed to simulate its potential range in France under various climate change scenarios.

Methods

The spread model was divided into several sub-models to describe the growth, survival and dispersal of the species. The model was validated on the observed change of species distribution, its sensitivity was tested, and spread scenarios were simulated for the future.

Results

The model shows that climate warming initiated the species range expansion in France since the early 1990s. The spread is now limited by dispersal capability, but human-mediated dispersal could accelerate the range expansion.

Conclusion

Species range expansion is an indicator of climate change. However, time lags can appear due to limited dispersal capabilities, and human-mediated dispersal could create satellite colonies and artificially accelerate the spread.  相似文献   

16.

? Key message

Insurance might be an efficient tool to strengthen adaptation of forest management to climate change. A theoretical model under uncertainty is proposed to highlight the effect, on adaptation decisions, of considering adaptation efforts in forest insurance contracts. Results show that insurance is relevant to increase adaptation efforts under some realistic conditions on forest owner’s uncertainty and risk preferences, and on the observability or not of adaptation efforts.

? Context

One of the challenges of forest adaptation to climate change is to encourage private forest owners to implement adaptation strategies.

? Aims

We suggest the analysis of forest insurance contracts against natural hazards as a vector to promote the implementation of adaptation efforts by private forest owners.

? Methods

We propose a theoretical model of insurance economics under risk and under uncertainty.

? Results

Our results indicate that when climate change makes the probability of the occurrence of the natural event uncertain, then it may be relevant to include adaptation efforts in the insurance contract, leading to an increase in the adaptation efforts of risk-averse and uncertainty-averse forest owners. In addition, we show that the relevance of insurance as a vector to promote adaptation efforts is greater when the forest owner’s effort is unobservable by the insurer as compared to a situation of perfectly observable effort.

? Conclusion

Under some realistic assumptions, the forest insurance contract seems to be a relevant tool to encourage forest owners to adapt to climate change.
  相似文献   

17.

Context

Genetic diversity of sessile oak (Quercus petraea) populations in Hungary was assessed close to the retracting, low-elevation, low-latitude (xeric) distribution limits.

Objective

We aimed at tracing an assumed effect of climatic factors on genetic diversity, particularly at the southern, low elevation limits of distribution.

Methods

Genetic diversity at isozyme-coding loci was analysed in populations, and related to the climate of the sites where the populations grow. A locus-wise analysis proved to be essential to follow responses.

Results

A climate-related cline was found at seven isoenzyme-coding gene loci. Declining allelic numbers and heterozygosity indicated lower diversity at warmer and drier sites. The majority of loci were responsive to precipitation factors, others to temperature. Genetic clustering was neither related to geographic distance nor to random or historic effects.

Conclusions

The results suggest that climatic stress may elicit a genetic diversity loss in populations, which may reduce their plasticity and adaptive potential. The selective pressure may override historic effects and gene flow. With respect to expected climate change, the correlation of diversity with some climatic factors gains specific importance. If supported by further investigations, the results might be utilised for reconsidering conservation strategies and rules for use of forest reproductive material.  相似文献   

18.

? Introduction

Information on spatial variability in tree radial growth is essential for improving predictions of forest ecosystem responses to climate change. To date, researchers have designed models to simulate the potential distribution area of major forest types under different climate change scenarios in Northeast China, but little is known about the spatial variability of tree growth in response to climate.

? Materials and methods

We used a dendroecological technique to examine the climate–growth relationship of six dominant tree species on seven sites varying in altitude on Changbai Mountain in Northeast China, to explore whether the spatial variability of tree growth is an indicator of regional climatic forces, and whether simulation results generated by models can accurately reflect this in tree radial growth.

? Results

Fifteen site-specific species can be distinguished species at or near their upper limit distribution from those at the lower distributions. Species differences were more important than altitude differences in influencing species’ site-specific radial growth. Precipitation, temperature, and soil moisture together constitute the major factors limiting tree radial growth.

? Conclusion

We found the distribution area of dominant tree species on Changbai Mountain will shift upward; growth of Korean pine will not decline at its lower limit of distribution and will not eventually even disappear from forest communities in those areas.  相似文献   

19.

Context

There is strong interest in sustainable forest management systems that preserve characteristics of forests close to naturalness. Assessing the effectiveness of these systems is difficult because defining “natural” baselines from which impacts are estimated is challenging and because the influence of harvesting can have complex interactions with major natural disturbances.

Aims

We used SORTIE/NZ, an individual tree-based forest dynamics model, to understand how harvesting and earthquake disturbance affect the dynamics of a New Zealand podocarp–angiosperm forest.

Methods

Having parameterized SORTIE/NZ with extensive field data, we ran simulations for three natural dynamics scenarios (no disturbance and two earthquake scenarios) and then added podocarp harvesting scenario to each of these.

Results

Simulations suggest that this forest is experiencing transient dynamics, with a natural rise in the dominance of one species of slow-growing podocarp with and without earthquake. Harvesting podocarps strongly affected its increase in basal area.

Conclusion

Our results indicate that transient dynamics may occur in mixed podocarp forests and major disturbances may have complex interactions with management. Evaluating management impacts without accounting for these complex dynamics may be misleading. Models make predictions about transient trajectories that may help to evaluate these impacts.  相似文献   

20.
  • ? Water availability is one of the main factors explaining flora composition and growth in Mediterranean regions, where it may decline with climate change.
  • ? Our goal was to develop a model for forest site assessment in Mediterranean environments, focusing on water availability to assess potential vegetation composition and productivity in any places, whatever their level of disturbance.
  • ? We designed a statistical model, using global climatic and geographic variables, as well as detailed local topographic and edaphic variables, to compute a bioclimatic index for Mediterranean forest environments. This model was calibrated in France with a flora index from 325 old forests. The model explained 80.3% of the flora index variance. The method fills a gap in existing models, bridging scales from the region to forest sites.
  • ? Beyond its theoretical aspect, it was designed to allow practical tools to be derived from it for decision-making and management, such as the assessment of climate change impact on vegetation, and of forest productivity. Its development and adaptation is possible in other Mediterranean regions, and in any region where water is one of the main limiting factors.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号